响应面分析法

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

响应面优化法的优点
响应面优化法,考虑了试验随机误差;同时, 响应面法将复杂的未知的函数关系在小区域内 用简单的一次或二次多项式模型来拟合,计算 比较简便,是解决实际问题的有效手段。
所获得的预测模型是连续的,与正交实验相比, 其优势是:在实验条件寻优过程中,可以连续 的对实验的各个水平进行分析,而正交实验只 能对一个个孤立的实验点进行分析。
应用举例:响应面分析法优化槐米总黄酮 的提取工艺
根据Box-Benhnkende的中心组合设计原理选取乙醇浓 度、提取时间、液料比对槐米总黄酮影响显著的3个因 素,采取3因素3水平响应面分析法。
响应面实验设计方案
以提取时间A、乙醇浓度B、液料比C为自变量, 以槐米总黄酮提取率为响应值(Y)进行响应面分析 实验,
对更多因素的 BBD实验设计,若 均包含三个重复的中心点,四因素 实验对应的实验次数为27次,五因 素实验对应的实验次数为 46次。因 素更多,实验次数成倍增长,所以 对在BBD设计之前,进行析因设计 对减少实验次数是很有必要的。
按照实验设计安排实验,得出实验数据,下一步 即是对实验数据进行响应面分析。响应面分析主要 采用的是非线性拟合的方法,以得到拟合方程。最 为常用的拟合方法是采用多项式法,简单因素关系 可以采用一次多项式,含有交互相作用的可以采用 二次多项式,更为复杂的因素间相互作用可以使用 三次或更高次数的多项式。一般,使用的是二次多 项式。
响应面实验设计
班级:高分子12研 姓名:孙新华
响应面优化法简介
响应面优化法,即响应曲面法( Response Surface Methodolog y ,RSM),这是一种实 验条件寻优的方法,适宜于解决非线性数据处 理的相关问题。它囊括了试验设计、 建模、 检验模型的合适性、 寻求最佳组合条件等众 多试验和计技术;通过对过程的回归拟合和响 应曲面、等高线的绘制、可方便地求出相应于 各因素水平的响应值。在各因素水平的响应值 的基础上,可以找出预测的响应最优值以及相 应的实验条件。
响应面优化法的不足
响应面优化的前提是:设计的实验点应包括最 佳的实验条件,如果实验点的选取不当,使用 响应面优化法是不能得到很好的优化结果的。 因而,在使用响应面优化法之前,应当确立合 理的实验的各因素与水平。
因素与水平的选取方法
多种实验设计方法
使用已有文献报道结果,确定实验 的各因素与水平。
使用单因素实验,确定合理的响应面优化法实 验的各因素与水平。
使用爬坡实验,确定合理的响应面优化法实 验的各因素与水平。
使用两水平因子设计实验,确定合理的响 应面优化法实验的各因素与水平。
响应面分析实验设计
可以进行响应面分析的实验设计有多种,但 最用的是下面两种: Central Composite Design- 响应面优化分析、Box-Behnken Design - 响应面优化分析。
多元二次响应面回归模型的建立于分析
通过RAS软件程序进行二次回归响应分析, 建立多元二次响应面回归模型。
各因素的方差分析
回归模型 的决定系 数为B、C、 BC、AC, 它们的 Prob>F对 总黄酮提 取率影响 显著,说 明该模型 拟合度好。
响应面图示
根据得到的拟合方程,可采用绘制出响应面图 的方法获得最优值;也可采用方程求解的方法, 获得最优值。另外,使用一些数据处理软件,可 以方便的得到最优化结果。 响应面分析得到的优
化结果是一个预测结果,需要做实验加以验证。 如果根据预测的实验条件,能够得到相应的预测 结果一致的实验结果,则说明进行响应面优化分 析是成功的;如果不能够得到与预测结果一致的 实验结果,则需要改变响应面方程,或是重新选 择合理的实验因素与水平。
Box-Behnken Design
Box-Behnken Design,简称BBD,也是响应 面优化法常用的实验设计方法,其设计表安排 以三因素为例(三因素用A、B、C表示),见下 页表2,其中 0 是中心点,+, -分别是相应的高 值和低值。其设计的表格的信息和三因素BBD设
计表格如下表1和表2。
中心组合设计
ห้องสมุดไป่ตู้
也称为星点设计。其设计表是在两水平析因设计的基础
上加上极值点和中心点构成的,通常实验表是以代码的
形式编排的, 实验时再转化为实际操作值,(一般水平取
值为 0, ±1, ±α, 其中 0 为中值, α为极值, α=F*
(1/ 4 ); F 为析因设计部分实验次数,

, 其中 k为因素数,
(1/2一般5 因素以上采用),设计表有下面三个部分组成:
(1) 析因设计。
2极值点。由于两水平析因设计只能用作线性考察, 需 再加上第二部分极值点, 才适合于非线性拟合。如果以 坐标表示, 极值点在相应坐标轴上的位置称为轴(axialpo int)或星点( star poin t) , 表示( ±α,0,…,0) ,(0,±α , …, 0) , …, (0, 0, …, ±α)星点的组数与因素数相同。 3一定数量的中心点重复试验。中心点的个数与CCD 设 计的特殊性质如正交(o rthogonal)或均一精密有关。
相关文档
最新文档