氮化铝粉末的生产工艺
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
文献检索的作业
实习:专利文献检索
实习目的:了解专利文献检索的方法
实习要求:能用多种途径进行专利文献检索
实习设备:计算机
实习内容:
1、氮化铝粉末的生产工艺(国外专题数据库)
(1)、Rare earth-activated aluminum nitride powders and method of making
Inventors
BING HAN
US
Applicants
OSRAM SYLVANIA INC
US
Priority
US 763689 P 31-Jan-2006
Classifications
International (2006.01):C04B 35/00
European: C04B 35/581; C01B 21/072; C09K 11/08J;
Abstract
Rare earth-activated aluminum nitride powders are made using a solution-based approach to form a mixed hydroxide of aluminum and a rare earth metal, the mixed hydroxide is then converted into an ammonium metal fluoride, preferably a rare earth-substituted ammonium aluminum hexafluoride ((NH4)3Al1-xRExF6), and finally the rare earth-activated aluminum nitride is formed by ammonolysis of the ammonium metal fluoride at a high temperature. The use of a fluoride precursor in this process avoids sources of oxygen during the final ammonolysis step which is a major source of defects in the powder synthesis of nitrides. Also, because the aluminum nitride is formed from a mixed hydroxide co-precipitate, the distribution of the dopants in the powder is substantially homogeneous in each particle.
(2)、ALUMINUM NITRIDE SINTERED BODY AND METHOD OF PRODUCING THE SAME
摘要An aluminum nitride sintered body comprising aluminum nitride crystals belonging to a Wurtzite hexagonal crystal system wherein the 3 axes a, b and c of the unit lattice of the crystal are defined such that the ratio b/a of the lengths of the axes b and a is 1.000 near the center of the crystal grain and lies within the range 0.997-1.003 in the vicinity of the grain boundary phase. Aluminum nitride sintered body is produced by sintering a molded body of a raw material powder having aluminum and nitrogen as its principal components at a temperature of 1700.degree.-1900.degree. C. in a non-oxidizing atmosphere having a partial pressure of carbon monoxide or carbon of not more than 200 ppm and then cooling the sintered body to 1500.degree. C. or a lower temperature at a rate of 5.degree. C./min or less. The aluminum nitride sintered body has a greatly improved thermal conductivity and, therefore, is suitable for heat slingers, substrates or the like for semiconductor devices.
权利要求1. An aluminum nitride sintered body comprising aluminum nitride crystals belonging to a Wurtzite hexagonal crystal system wherein three axes a, b, and c of a unit lattice of the crystal are defined whereby a ratio b/a of the lengths of axes b and a is 1.000 near a center of the crystal grain, and lies within a range of 0.997 to 1.003 in a vicinity of a grain boundary phase, said sintered body containing at least one compound selected from the group consisting of Ti, V, and Co.
2. An aluminum nitride sintered body as defined in claim 1 wherein the sintered body has a thermal conductivity of 150 W/m.K or higher.
3. An aluminum nitride sintered body as defined in claim 1 wherein the sintered body has a 3-point flexural strength of 35 kg/mm.sup.2 or higher.
4. A method of manufacturing an aluminum nitride sintered body comprising adding, to a raw material powder comprising aluminum and nitrogen as its principal components, 0.13 to 0.5% by weight of at least one compound selected from the group consisting of Ti, V, and Co,
molding the raw material powder to form a molded body,
sintering said molded body at a temperature of 1700.degree. to 1900.degree.
C. in a non-oxidizing atmosphere having a partial pressure of carbon monoxide or carbon of not more than 200 ppm to form a sintered body, and
cooling said sintered body to 1500.degree. C. or less, at a rate of 5.degree. C. per minute, or less.
描述BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to an aluminum nitride (AlN) sintered body having an excellent thermal conductivity, and a method of manufacturing such a body.
2. Description of the Prior Art
Aluminum nitride has very good electrical insulation properties and a very high thermal conductivity. For this reason, aluminum nitride sintered bodies are used as a replacement for beryllia (BeO) in power transistor heat slingers or the like, as a replacement for alumina (Al.sub.2 O.sub.3) in substrates or packaging materials for semiconductor devices, and in laser tubes, etc.
Although the thermal conductivity of aluminum nitride sintered bodies is far higher than that of other ceramic materials, the thermal conductivity of actual aluminum nitride sintered bodies industrially produced does not exceed about half the theoretical value of 320 W/mK. It is known that the thermal conductivity of aluminum nitride sintered bodies largely reduce when it contains impurities, such as silicon or oxygen, in solid solution. Recently, due to higher purity of the
raw material powder and improved sintering techniques, it has become possible to obtain sintered bodies having a thermal conductivity of at most approximately 180 W/mK.
However, even such conventional aluminum nitride sintered bodies are still unsatisfactory in their thermal conductivity and, with recent higher levels of integration of IC and LSI, a need has emerged for heat slingers, substrates, packaging materials or the like with enhanced heat releasing properties for the use in semiconductor devices.
………………………….
2、合成氨原料气得净化方法(中国专利)
(1)、一种合成氨原料气的净化方法
一种用深度变换配甲烷化代替铜洗工艺,用以净化合成氨原料气的方法。
该工艺通过两次低温变换反应,使原料气CO降至<0.3%,此二次低变反应均采用低温,高活性耐毒性能力极强的钴钼系变换催化剂。
再经氧化铁和氧化锌两级脱硫至总含硫量痕量,最后通过甲烷化反应将原料气净化至CO+CO-[2]≤10PPM。
本方法工艺稳定,气体净化度高,延长了合成催化剂的寿命。
简化了流程,管理方便,运行费用低,节能效果好,特别适用于以煤为原料,原料气含硫高,含氨高,工艺水及蒸汽含氯根的中小型合成氨厂。
一种合成氨原料气的净化方法
一种代替铜洗工艺净化合成氨原料气的方法,原料气经脱硫、中变、低变后,来自低变炉的变换气表压0.75MPa,温度200—250℃,含CO—1%,其特征是将此变换气经水冷器降温至160—200℃入深度变换炉,进行变换反应,此反应采用钴钼系耐硫低温变换催化剂作为深变的催化剂,汽气比控制在0.4—0.7,反应后将CO含量降至≤0.3%,温度为170—220℃的深度变换气进入热水塔,与来自饱和塔的热水在塔内逆流接触回收热量后,温度降至80—100℃,再入水冷器进一步降温至30—40℃,送碳化工段,热水塔出口热水则通过生产系统的热水泵送入水加热器循环使用,深变气经碳化脱碳后,CO↓[2]降至≤0.3%,CO+CO↓[2]≤0.6%,该原料气进入压缩机三段加压至1.5MPa,送至氧化铁脱硫槽,脱除H↓[2]S至≤5PPM,接着进入甲烷化热交换器,与甲烷化后的高温气体换热,温度达到240—300℃,通过氧化锌脱硫槽,使原料气中总硫降至痕量,然后直接入甲烷化炉进行甲烷化反应,出口之甲烷气中CO+CO↓[2]≤10PPM,反应气经热交换器与反应前气体换热,降温至60—80℃,再通过水冷器降至常温,最后进入压缩机四段、五段、六段送合成工段。
武汉制氨厂
本发明公开了一种合成氨原料气的净化工艺,由半水煤气和天然气混合组成原料气经高温变换——低温变换——脱硫——碳化——精脱硫——甲烷化等步骤至合成氨。
缓解了天然气供应日趋紧张的矛盾,具有操作简单、净化效果好、运行费用低,无铜离子污染的特点。
◎主权项
一种合成氨原料气的净化工艺,其特征在于它按以下次序的步骤进行:(1).原料气:由经脱硫的半水煤气与天然气的转化气混合组成原料气,半水煤气占原料气总量(以体积计)的百分之二十以上,原料气中H↓[2]S的含量大于70mg/Nm↑[3],(2).高温变换:原料气在铁铬系催化剂作用下,控制温度在300~500℃、压力在0.6~0.8MPa的条件下进行高温变换反应,(3).低温变换:高变气在钴钼系催化剂作用下、控制温度在180~230℃、压力在0.55~0.75MPa的条件下进行低温变换反应,(4).脱硫:低变气在温度为25~40℃、压力为0.55~0.75MPa的条件下、用PDS稀氨水吸收硫化物,(5).碳化:脱硫低变气在温度为25~40℃、压力为0.55~0.75MPa的条件下进行碳化反应,(6).精脱硫:碳化气在温度为320~350℃、压力为1.3~1.5MPa的条件下,在钴钼脱硫剂的作用下进行有机硫加氢转化反应及氧化锌吸收H↓[2]S生成ZnS,(7).甲烷化:精脱硫后的无硫气体在镍系催化剂作用下,控制温度在270~330℃,压力在1.3~1.5MPa的条件下进行甲烷化反。
申请专利号CN94111679.4
专利申请日1994.03.18
名称合成氨原料气的净化工艺
公开(公告)号CN1092739
公开(公告)日1994.09.28
类别化学;冶金
颁证日
优先权
申请(专利权)四川省眉山县氮肥厂
地址612164四川省眉山县象耳镇
发明(设计)人刘朝慧; 雷林
国际申请
国际公布
进入国家日期
专利代理机构乐山市专利事务所
代理人邹明德
(3)、一种合成氨原料气深度净化方法
本发明属于氮肥工业技术域。
合成氨原料气深度净化技术,采用“二甲醚-甲烷化”净化合成氨生产原料气的新工艺,以取代铜洗工艺,或者取代“甲醇-甲烷化”净化合成氨原料气工艺,使有害气体一氧化碳和二氧化碳转化为二甲醚,残余气体中的一氧化碳和二氧化碳再经甲烷化达到精制气的标准。
一种合成氨原料气深度净化方法
一种合成氨原料气深度净化技术,是以煤为原料生产半水煤气,或以重油为原料制取合成氨原料气,或以天然气为原料制取合成氨原料气,其特征是原料气经压缩后送变换,再经湿法脱硫、碳化或脱碳,脱碳气经压缩后干法脱硫;然后通过“二甲醚-甲烷化”系统,使原料气中的一氧化碳和二氧化碳残余量达到精制气的标准。
南化集团研究院
专利号: 200410066166
申请日: 2004年12月10日
公开/公告日: 2005年10月5日
授权公告日: 2007年2月14日
申请人/专利权人: 南化集团研究院
国家/省市: 南京(84)
申请人地址: 江苏省南京市六合区葛关路699号
邮编: 210048
发明/设计人: 金汉强、俞提升、赵思远、陈永平、范超贤、孙雪玲代理人: 汤志武
专利代理机构: 南京市专利事务所(32112)
专利代理机构地址: 江苏省南京市成贤街118号(210018)
专利类型: 发明
公开号: 1676459
公告日: 2007年2月14日
授权日: 20
公告号: 1299971
优先权:
审批历史:
附图数: 1
页数: 6
权利要求项数: 1
(4)、合成氨原料气低压下净化联产甲醇的方法
本发明公开了一种合成氨原料气低压下净化联产甲醇的方法,属于肥料技术领域。
本发明是原料气经压缩后送变换,再经湿法脱硫、碳化或脱碳,脱碳气经压缩后干法脱硫;然后通过低压“甲醇-甲烷化”系统,使原料气中的一氧化碳和二氧化碳残余量达到精制气的标准。
该方法由于甲醇过程转化率很高,使甲烷化过程产生的惰性气体甲烷大为减少,合成氨原料气消耗也减少,吨氨成本消耗下降,提高了市场竞争力。
申请日:2008年11月19日
公开日:2010年06月30日
授权公告日:
申请人/专利权
陶伟平
人:
申请人地址:江苏省南京市白下区王府大街67号902室
发明设计人:陶伟平。