基于灰度特征和模板匹配的人眼定位概要

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基于灰度特征和模板匹配的人眼定位
摘要提出一种基于灰度特征和模板匹配的人眼定位方法。

在人脸图像中寻找与实际眼睛大小相似而且比其相邻区域灰度值低的区域作为可能的眼睛块,然后利用人脸器官分布的一些先验知识进一步判定真正可能的眼睛块,最后利用双眼模板匹配提高眼睛定位的正确性。

关键词灰度特征;模板匹配;人眼定位;人脸检测
1 引言
人脸检测技术在身份识别、安全监控、图像与视频检索和智能人机接口等方面的广泛运用,已成为计算机视觉和模式识别领域内的热门研究课题。

广义来说,人脸检测可以分为两项内容,一项是人脸位置、大小和方向的确定;另一项是面部主要器官的定位,特别是人眼的定位。

人眼作为人脸最显著的特征,比嘴、鼻能够提供更可靠、更重要的信息。

常用的人眼定位方法有阈值分割法[1]、灰度投影法[2]和模板匹配法[3]。

阈值分割法首先对人脸的二值图像进行区域分割,然后设定一系列经验值和支持函数粗定位眼睛。

该方法对于如人眼闭合、戴眼镜等一些情况定位效果较差。

灰度投影法对人脸图像进行水平和垂直方向的投影,根据波峰波谷的分布信息来定位眼睛。

这种方法定位速度较快,但波峰、波谷的分布对不同的人脸和姿态的变化非常敏感,因此定位精度较差,并且容易陷入局部最小而导致定位失败。

模板匹配[5]是一种有效地模式识别技术,它能利用图像信息和有关识别模式的先验知识,更加直接地反映图像之间的相似度,传统的模板匹配方法首先要分别得到左眼和右眼模板,然后分别用左右眼模板在图像中进行匹配,得到两个相似度最大的点作为定位的眼睛,这种方法比较简单,但计算量较大,定位准确率较低。

本文提出的人眼定位方法是通过寻找灰度图像中可能的眼睛区域并进行模板匹配来实现的。

2 基于灰度特征的眼睛定位
在人脸的灰度图像中,由于眼睛虹膜、瞳孔和上眼框部位的灰度值明显比其邻近区域(眼部周围皮肤)灰度值要低[4]。

因此在人脸图像中找出与实际眼
睛大小相似且比其相邻区域灰度值低的区域作为可能的眼睛块;利用人脸器官分布的一些先验知识建立人眼位置的判定准则;如果一对可能的眼睛块大小在
输入图像的每一个像素
均值相比较,即
定得到真正可能是眼睛的像素块。

(1)如果由可能的眼睛像素组成的图像块过大或过小,即由眼睛像素块
组成的矩形高度大于2h
e ,小于0.5h
e
;或者宽度大于0.7w
e
,小于0.15 w
e。


些图像块就不可能为眼睛块,因此这些相连像素被剔除。

(2)在眼睛区域中,其上下眼睑、瞳孔的灰度值相对比眼睛的其它区域低,这样通过像素块灰度值比较后,有一些眼睛附近的像素没有标记为可能的眼睛像素。

因此如果一个像素周围有足够多的可能眼睛像素,则这个像素也被标记为可能眼睛像素。

(3)一般来说,人眼的长度与宽度的比值大约为0.5左右,利用这个条件,我们可以进一步剔除长宽比过大的图像块。

(4)人的两眼中心的连线的距离在0.5w
e 到w
e
之间,且对于人的两眼连
线来说,相对于水平方向的旋转角度在45°到135°之间。

根据这两个条件,可以进一步得到可能的眼睛块。

两个可能眼睛块中心连线的距离通过计算它们中心的距离得到,对于一块可能的眼睛区域来说,可以看作是一个凸多边形,因此可以求出其质心。

以上的处理结果如图2、图3、图4
3 模板匹配
传统的模板匹配法,通常是在整幅图像中进行匹配,运算量大,且干扰因素较多。

本方法中因为已粗略定位出眼睛的区域,再使用模板匹配运算量会减小多,匹配的相似眼睛点也会有所减少,定位准确率会有所提高。

我们通过初步定位已经大致得到可能的成对眼睛块,因此在模板的匹配过程中采用的是双眼模板而不是分开的左眼和右眼模板。

眼睛模板的训练过程可采用文献[5]中的方法,采用多个人脸样本取平均的方法构造,选取标准证件照,手工划出人脸区域作为人脸样本,再从人脸样本上获得眼睛,且要求没有戴眼镜,没有头发遮盖。

用输入图像的可能眼睛块与人眼模板之间的相关系数来度量它们的相似程度(即匹配程度)。

将两个可能为眼睛的图像块相连得到一个新的可能的双眼图像区域,双眼模板根据可能的双眼图区域的大小和方向进行缩放及旋转,计算双眼模板与可能的双眼图像块的相关系数。

令双眼模板的灰度矩阵为
4 实验结果及分析
实验中对不同光照、不同姿态、不同背景的人脸图像进行测试,实验表明该方法对具有一定背景、戴眼睛的人脸基本能够定位,参见图6至图8。

在某种情况下可能会出现人眼定位的偏差,主要原因是将眼睑部分也视为可能的眼睛块处理。

一定的影响。

而在背景较简单、旋转角度不是很大的条件下,能获得较高的定位准确率。

5 总结
本文提出一种基于灰度特征和模板匹配的人眼定位方法。

通过寻找灰度图像中可能的眼睛区域并进行模板匹配来实现眼睛定位的。

实验证明,该方法对有一定背景、戴眼镜及有一定旋转的图像的人眼定位有较高的准确性。

参考文献
[1] 钟威,刘智明,周激流. 人脸检测中眼睛精确定位的研究[J]. 计算机工程与应用, 2004,36,pp:73-76
[2] 冯建强,刘文波,于盛林.基于灰度积分投影的人眼定位[J]. 计算机仿真,2005,22 (4),pp:75-77
[3] 史慧荣,张学帅,梁彦等. 一种基于模糊分类的模板匹配眼睛定位方法[J]. 西北工业大学学报,2005,23(1),pp: 55-59
[4] 陶亮,庄镇泉. 复杂背景下人眼自动定位. 计算机辅助设计与图形学学报 Vol.15,No.1, Jan., 2003 pp:38-42
[5] 梁路宏,艾海舟,徐光佑等.基于模板匹配与人工神经网确认的人脸检测[J] .电子学报, 2001, 67(6): 744-747.。

相关文档
最新文档