有限元分析、特点和应用
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有限元分析、特点和 应用
第一章 有限元法简介
2
有限元法介绍
有限元法的基本思想是将结构离散化,用
有限个容易分析的单元来表示复杂的对象,
单元之间通过有限个结点相互连接,然后
根据变形协调条件综合求解。由于单元的
数目是有限的,结点的数目也是有限的,
所以称为有限元法(FEM,Finite Element
Method)。
j为自由指标,它们可以自由变化;在三维问题中, 分别取为1,2,3;在直角坐标系中,可表示三个 坐标轴x, y, z。
哑指标:在每项中有重复下标出现,如:aijxj bi,
j为哑指标。在三维问题中其变化的范围为1,2,3
42
Einstein 求和约定:哑指标意味着求和
指标记法的应用:
5
有限元法的孕育过程及诞生和发展
牛顿(Newton)
莱布尼茨(Leibniz G. W.) 6
大约在300年前,牛顿和莱布尼茨发明了积 分法,证明了该运算具有整体对局部的可加 性。虽然,积分运算与有限元技术对定义域 的划分是不同的,前者进行无限划分而后者 进行有限划分,但积分运算为实现有限元技 术准备好了一个理论基础。
36
第二章 有限元分析的力学基础
2.1 变形体的描述与变量定义
(1) 变形体
变形体:即物体内任意两点之间可发生相对移动。 有限元方法所处理的对象:任意变形体
38
(2) 基本变量的定义
可以用以下各类变量作为任意变形体的描述
量
因此,在材料确定的情况下,基本的力学变量应该有:
位移、应变、应力
39
目的:对弹性体中的位移、应力、应变进行 定义和表达,进而建立平衡方程、几何方程 和材料物理方程
. .
...
线性
二次
. . 线(弹簧,梁,杆,间隙)
.. .体..(三..维实.体..).............
线性
二次
23
一维波传导问题 点 单元
线 单元
24
线 单元
点 单元
25
面 单元
Y Y
0 -0 .0 2 -0 .0 4 -0 .0 6 -0 .0 8
0
-0 .0 0 1
-0 .0 0 2
有限元方法的思路及发展过程
思路:以计算机为工具,分析任意变形体以获得所有 力学信息,并使得该方法能够普及、简单、高效、方 便,一般人员可以使用。 实现办法:
20
技术路线:
21
发展过程: 如何处理
对象的离散化过程
22
常用单元的形状
.点 (质量)
面 (薄壳, 二维实体,
..
轴对称实体)
. .
...
各个方向上具有相同特性;
(4) 线性弹性假定:物体的变形与外来作用的关系是线性的, 外力去除后,物体可恢复原状;
(5) 小变形假定:物体变形远小于物体的几何尺寸,在建立方 程时,可以高阶小量(二阶以上)。
(6)
以上基本假定将作为问题简化的出发点。
41
2.3 基本变量的指标表达
指标记法的约定:
自由指标:在每项中只有一个下标出现,如 ij ,i,
9
瑞利(Rayleigh)
在19世纪末及 20世纪初,数 学家瑞利和里 兹(Rayleigh Ritz)首先提出 可对全定义域 运用展开函数 来表达其上的 未知函数。
10
1915年,数学家伽辽金(Galerkin)提出了选 择展开函数中形函数的伽辽金法,该方法 被广泛地用于有限元。1943年,数学家库 朗德第一次提出了可在定义域内分片地使 用展开函数来表达其上的未知函数。这实 际上就是有限元的做法。
0 .0 5 8
0 .0 6
X
-0 .0 8
-0 .1 0
0 .0 2
0 .0 4
0 .0 6
0 .0 8
0 .1
0 .1 2
X
29
30
受垂直载荷的托架
31
体单元
•线性单元 / 二次单元 – 更高阶的单元模拟曲面的精度就越高。
低阶单元
更高阶单元
32
有限元分析的作用
复杂问题的建模简化与特征等效 软件的操作技巧(单元、网格、算法参数控制) 计算结果的评判 二次开发 工程问题的研究 误差控制
7
高斯(Gauss)
在牛顿之后约一百年, 著名数学家高斯提出了 加权余值法及线性代数 方程组的解法。这两项 成果的前者被用来将微 分方程改写为积分表达 式,后者被用来求解有 限元法所得出的代数方 程组。
8
拉格朗日(Lagrange J.)
在18世纪,另 一位数学家拉 格朗日提出泛 函分析。泛函 分析是将偏微 分方程改写为 积分表达式的 另一途径。
3
ຫໍສະໝຸດ Baidu
有限元法是最重要的工程分析技术之一。 它广泛应用于弹塑性力学、断裂力学、流 体力学、热传导等领域。有限元法是60年 代以来发展起来的新的数值计算方法,是 计算机时代的产物。虽然有限元的概念早 在40年代就有人提出,但由于当时计算机 尚未出现,它并未受到人们的重视。
4
随着计算机技术的发展,有限元法在各个 工程领域中不断得到深入应用,现已遍及 宇航工业、核工业、机电、化工、建筑、 海洋等工业,是机械产品动、静、热特性 分析的重要手段。早在70年代初期就有人 给出结论:有限元法在产品结构设计中的 应用,使机电产品设计产生革命性的变化, 理论设计代替了经验类比设计。
11
各(
力对
学象
学、
科变
分量
支、
的方
关程
系、
求
解
途
径
)
12
13
任意变形体力学分析的基本变量及方程 研究对象:任意形状的变形体 几种典型的对象 (1) 桥梁隧道问题
14
圆形隧道
三维模型 15
(2) 中华和钟 (3) 矿山机械
16
(4) 压力容器的成形 17
变形体及受力情况的描述 18
求解方法 19
-0 .0 0 3 0 .0 5 4
-0 .1 0
0 .0 2
0 .0 4
0 .0 6
0 .0 8
0 .1
0 .1 2
X
0 .0 5 6
0 .0 5 8
X
0 .0 6
28
Y Y
0
0
-0 .0 2
-0 .0 0 1
-0 .0 4
-0 .0 0 2
-0 .0 6
-0 .0 0 3
0 .0 5 4
0 .0 5 6
(3) 研究的基本技巧
采用微小体积元dxdydz的分析方法(针对任意变 形体)
40
2.2 弹性体的基本假设
为突出所处理的问题的实质,并使问题简单化和抽 象化,在弹性力学中,特提出以下几个基本假定。
(1) 物质连续性假定:物质无空隙,可用连续函数来描述; (2) 物质均匀性假定:物体内各个位置的物质具有相同特性; (3) 物质(力学)特性各向同性假定:物体内同一位置的物质在
第一章 有限元法简介
2
有限元法介绍
有限元法的基本思想是将结构离散化,用
有限个容易分析的单元来表示复杂的对象,
单元之间通过有限个结点相互连接,然后
根据变形协调条件综合求解。由于单元的
数目是有限的,结点的数目也是有限的,
所以称为有限元法(FEM,Finite Element
Method)。
j为自由指标,它们可以自由变化;在三维问题中, 分别取为1,2,3;在直角坐标系中,可表示三个 坐标轴x, y, z。
哑指标:在每项中有重复下标出现,如:aijxj bi,
j为哑指标。在三维问题中其变化的范围为1,2,3
42
Einstein 求和约定:哑指标意味着求和
指标记法的应用:
5
有限元法的孕育过程及诞生和发展
牛顿(Newton)
莱布尼茨(Leibniz G. W.) 6
大约在300年前,牛顿和莱布尼茨发明了积 分法,证明了该运算具有整体对局部的可加 性。虽然,积分运算与有限元技术对定义域 的划分是不同的,前者进行无限划分而后者 进行有限划分,但积分运算为实现有限元技 术准备好了一个理论基础。
36
第二章 有限元分析的力学基础
2.1 变形体的描述与变量定义
(1) 变形体
变形体:即物体内任意两点之间可发生相对移动。 有限元方法所处理的对象:任意变形体
38
(2) 基本变量的定义
可以用以下各类变量作为任意变形体的描述
量
因此,在材料确定的情况下,基本的力学变量应该有:
位移、应变、应力
39
目的:对弹性体中的位移、应力、应变进行 定义和表达,进而建立平衡方程、几何方程 和材料物理方程
. .
...
线性
二次
. . 线(弹簧,梁,杆,间隙)
.. .体..(三..维实.体..).............
线性
二次
23
一维波传导问题 点 单元
线 单元
24
线 单元
点 单元
25
面 单元
Y Y
0 -0 .0 2 -0 .0 4 -0 .0 6 -0 .0 8
0
-0 .0 0 1
-0 .0 0 2
有限元方法的思路及发展过程
思路:以计算机为工具,分析任意变形体以获得所有 力学信息,并使得该方法能够普及、简单、高效、方 便,一般人员可以使用。 实现办法:
20
技术路线:
21
发展过程: 如何处理
对象的离散化过程
22
常用单元的形状
.点 (质量)
面 (薄壳, 二维实体,
..
轴对称实体)
. .
...
各个方向上具有相同特性;
(4) 线性弹性假定:物体的变形与外来作用的关系是线性的, 外力去除后,物体可恢复原状;
(5) 小变形假定:物体变形远小于物体的几何尺寸,在建立方 程时,可以高阶小量(二阶以上)。
(6)
以上基本假定将作为问题简化的出发点。
41
2.3 基本变量的指标表达
指标记法的约定:
自由指标:在每项中只有一个下标出现,如 ij ,i,
9
瑞利(Rayleigh)
在19世纪末及 20世纪初,数 学家瑞利和里 兹(Rayleigh Ritz)首先提出 可对全定义域 运用展开函数 来表达其上的 未知函数。
10
1915年,数学家伽辽金(Galerkin)提出了选 择展开函数中形函数的伽辽金法,该方法 被广泛地用于有限元。1943年,数学家库 朗德第一次提出了可在定义域内分片地使 用展开函数来表达其上的未知函数。这实 际上就是有限元的做法。
0 .0 5 8
0 .0 6
X
-0 .0 8
-0 .1 0
0 .0 2
0 .0 4
0 .0 6
0 .0 8
0 .1
0 .1 2
X
29
30
受垂直载荷的托架
31
体单元
•线性单元 / 二次单元 – 更高阶的单元模拟曲面的精度就越高。
低阶单元
更高阶单元
32
有限元分析的作用
复杂问题的建模简化与特征等效 软件的操作技巧(单元、网格、算法参数控制) 计算结果的评判 二次开发 工程问题的研究 误差控制
7
高斯(Gauss)
在牛顿之后约一百年, 著名数学家高斯提出了 加权余值法及线性代数 方程组的解法。这两项 成果的前者被用来将微 分方程改写为积分表达 式,后者被用来求解有 限元法所得出的代数方 程组。
8
拉格朗日(Lagrange J.)
在18世纪,另 一位数学家拉 格朗日提出泛 函分析。泛函 分析是将偏微 分方程改写为 积分表达式的 另一途径。
3
ຫໍສະໝຸດ Baidu
有限元法是最重要的工程分析技术之一。 它广泛应用于弹塑性力学、断裂力学、流 体力学、热传导等领域。有限元法是60年 代以来发展起来的新的数值计算方法,是 计算机时代的产物。虽然有限元的概念早 在40年代就有人提出,但由于当时计算机 尚未出现,它并未受到人们的重视。
4
随着计算机技术的发展,有限元法在各个 工程领域中不断得到深入应用,现已遍及 宇航工业、核工业、机电、化工、建筑、 海洋等工业,是机械产品动、静、热特性 分析的重要手段。早在70年代初期就有人 给出结论:有限元法在产品结构设计中的 应用,使机电产品设计产生革命性的变化, 理论设计代替了经验类比设计。
11
各(
力对
学象
学、
科变
分量
支、
的方
关程
系、
求
解
途
径
)
12
13
任意变形体力学分析的基本变量及方程 研究对象:任意形状的变形体 几种典型的对象 (1) 桥梁隧道问题
14
圆形隧道
三维模型 15
(2) 中华和钟 (3) 矿山机械
16
(4) 压力容器的成形 17
变形体及受力情况的描述 18
求解方法 19
-0 .0 0 3 0 .0 5 4
-0 .1 0
0 .0 2
0 .0 4
0 .0 6
0 .0 8
0 .1
0 .1 2
X
0 .0 5 6
0 .0 5 8
X
0 .0 6
28
Y Y
0
0
-0 .0 2
-0 .0 0 1
-0 .0 4
-0 .0 0 2
-0 .0 6
-0 .0 0 3
0 .0 5 4
0 .0 5 6
(3) 研究的基本技巧
采用微小体积元dxdydz的分析方法(针对任意变 形体)
40
2.2 弹性体的基本假设
为突出所处理的问题的实质,并使问题简单化和抽 象化,在弹性力学中,特提出以下几个基本假定。
(1) 物质连续性假定:物质无空隙,可用连续函数来描述; (2) 物质均匀性假定:物体内各个位置的物质具有相同特性; (3) 物质(力学)特性各向同性假定:物体内同一位置的物质在