第七章 耦合电感与变压器-答案01
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题
7-1 题7-1图所示电路中,f =500Hz ,电压表V 的读数为31.4V ,电流表A 的读数为1A ,求互感系数M 。
题7-1图
【例6】 已知图7-13中,f=500Hz ,电压表V 的读数为31.4V ,电流表A 的读数为1A ,求互感系数M 。
图7-13
解 3.14
1M ω=⨯ 所以 31.431.4
1025001
3140
M m H π==
≈⨯⨯
7-2 电路如题7-2图 (a)、(b)所示,写出端口电压与电流的关系式。
1
2
i
M
1
2
2
(a)
(b)
题7-2图
例 7-1 电路如图7-6 (a)、(b)所示,写出端口电压与电流的关系式。
M
1
2
i M
1
2
2
(a ) (b)
图7-6 例7-1 图
解 图7-6(a)所示电路,两线圈端口的电压与电流均为关联参考方向,故互感部分均为正;电流2i 从标有“·”的端子流入,因此数值为2d d i M
t
的互感电压,其“+”极性端位
于第一个线圈的同名端处,即标有“·”的端子上;同理,电流1i 感应到第二个线圈的互感电压1d d i M
t
,其“+”极性端位于电流1i 流入端子的同名端处,所以有
1211
d d d d i i u L M
t t
=+,2122
d d d d i i u L M
t
t
=+
对于图7—6(b )所示电路,第一个线圈的电压与电流为关联参考方向,故其自感电压表达式前取“+”, 互感电压2d d i M
t
的“+”极性端是在与电流2i 流入端的同名端处,即“·”
端子处,故其互感电压表达式前取“—”;第二个线圈的电压与电流为非关联参考方向,故其互感电压表达式前取“—”,故互感电压1d d i M
t
的“+”极性端是在与电流1i 流入端的同名
端处,即没有标“·”的端子上,故互感电压表达式前取“+”。于是
1211
d d d d i i u L M
t t
=-,2122
d d d d i i u L M
t
t
=-+
若互感线圈是处在正弦交流稳态电路中,电压、电流的关系式可以用相量形式表示
111
2222
1j j j j U L I M I U L I M I w w w w üï=北ïýï=北ïþ
(7—13)
自感电压、互感电压前取“+”还是取“—”,须根据电压、电流的参考方向以及两线圈的同名端关系确定。
7-3 题7-3图所示电路中中,(15)x i t =+ A ,求ab u 。
x
i 1H
题7-3图
【例8】 已知图7-15中,(15)x i t =+ A ,求ab u 。
a
b x
i 1H
图7-15
解 25V x x ab di di u dt
dt
=-
=
7-4 题7-4图所示电路中,已知电源1U 的角频率为ω,求2
U 。
题7-4图
【例1】 在图7-6电路中,电源1U 的角频率为ω,求2
U 。 解 用消去互感法,将图7-6的电路等效为图7-7的电路。则2
U 为 1112
11[()]()U R j L M U R j L M j M
++=++- ωωω
R
R
图7-6 图7-7
7-5 题7-5图所示电路中,ω为已知,求Z ab 。
L 1
a
b
题7-5图
【例2】 在图7-8中,ω为已知,求ab Z 。
解 用消去互感法得 2
12122ab L L M
Z j L L M
ω
-=++
2
L 1
L a
b
图7-8
7-6 题7-6图所示电路中,U =20V ,L 1=6mH ,C=200μF ,L 2=3mH ,L 3=7mH ,M=2mH ,电流表的A 1读数为零,求电流表A 的读数。
C
I
题7-6图
【例4】在图7-10中,U=20V,
1
L=6mH,C=200μF,2L=3mH,3L=7mH,M=2mH,电流表的A1读数为零,求电流表A的读数。
图7-10
解
1
L和C发生并联谐振
1
1000/
rad s
ω==
2
L和
2
L部分可去耦等效,但因
1
A0
=,可直接用互感线圈串联分压求。
令200
U V
=∠
3
23
9
V
27
L
L M
U U
L L M
+
==
++
,25.790A
C L
I j C U
==∠
ω
A的读数为25.7A。
7-7 题7-7图所示电路中,已知a、b间的开路电压4
ab
U=V,试求U 、
s
I