凝聚态物理的发展与应用

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

凝聚态物理的发展与应用

摘要:凝聚态物理学是一门以物质的宏观物理性质作为主要研究对象的学科。自然界中存在着各种各样的凝聚态物质,它们深刻地影响着人们日常生活的方方面。关键词:凝聚态发展应用

1 凝聚态物理

众所周知,复杂多样的物质形态基本上分成三类:气态、液态和固态,在这三种物态中,凝聚态物理研究的对象就占了二个,这就决定了这门学科的每一步进展都与我们人类的生活休戚相关。

凝聚态物理学是从微观角度出发,研究由大量粒子(原子、分子、离子、电子)组成的凝聚态的结构、动力学过程及其与宏观物理性质之间的联系的一门学科。凝聚态物理是以固体物理为基础的外向延拓。在低温下的超流态、超导态、超固态、玻色-爱因斯坦凝聚态、磁介质中的铁磁性、反铁磁性等,也都是凝聚态。凝聚态物理的研究对象除晶体、非晶体与准晶体等固相物质外还包括从稠密气体、液体以及介于液态和固态之间的各类居间凝聚相,例如液氦、液晶、熔盐、液态金属、电解液、玻璃、凝胶等。凝聚态物理的研究对象除晶体、非晶体与准晶体等固相物质外还包括从稠密气体、液体以及介于液态和固态之间的各类居间凝聚相,例如液氦、液晶、熔盐、液态金属、电解液、玻璃、凝胶等[1]。经过半个世纪的发展,目前已形成了比固体物理学更广泛更深入的理论体系。特别是八十年代以来,凝聚态物理学取得了巨大进展,凝聚态物理学取得了巨大进展,研究对象日益扩展,更为复杂。一方面传统的固体物理各个分支如金属物理、半导体物理、磁学、低温物理和电介质物理等的研究更深入,各分支之间的联系更趋密切;另一方面许多新的分支不断涌现,如强关联电子体系物理学、无序体系物理学、准晶物理学、介观物理与团簇物理等,从而使凝聚态物理学成为当前物理学中最重要的分支学科之一。

目前凝聚态物理学正处在枝繁叶茂的兴旺时期。并且由于凝聚态物理的基础性研究往往与实际的技术应用有着紧密的联系,凝聚态物理学的成果是一系列新技术、新材料和新器件,在当今世界的高新科技领域起着关键性的不可替代的作用。近年来凝聚态物理学的研究成果、研究方法和技术日益向相邻学科渗透、扩展,有力的促进了诸如化学、物理、生物物理和地球物理等交叉学科的发展。

汉语中“凝聚”一词是由“凝”字双音演化而来的。“凝”在东汉许慎的“说文解字”一书中同“冰”,指的是水结成冰的过程。可见我们的祖先最初对凝聚现象的注意可能始于对水的观察,特别是水从液态到固态的现象。英语的condense来源于法语,后者又来源于拉丁文,指的是密度变大,从气或蒸汽变液体。看来西方人对凝聚现象的注意可能始于对气体的观察,特别是水汽从气态到

液态的现象。这是很有意思的差别,大概与各自的古代自然生活环境和生活习惯有关。不过东西方二者原始意义的结合,恰恰就是今天凝聚态物理主要研究的对象—液态和固态。当然从科学的含义上来说,二者不是截然分开的。所以凝聚态物理还研究介于这二者之间的态。例如液晶等。液态和固态物质一般都是由量级为10^23的极大数量微观粒子组成的非常复杂的系统。凝聚态物理正是从微观角度出发,研究这些相互作用多粒子系统组成的物质的结构、动力学过程及其与宏观物理性质之间关系的一门学科。

2凝聚态物理学的发展

由于凝聚态物理是用来研究凝聚态物质的原子之间的结构、电子态结构以及相关的各种物理性质的学科,所以它的研究领域涵盖了固体物理、晶体物理、金属物理、半导体物理、电介质物理、磁学、固体光学性质、低温物理与超导电性、高压物理、稀土物理、液晶物理、非晶物理、低维物理(包括薄膜物理、表面与界面物理和高分子物理)、液体物理、微结构物理(包括介观物理与原子簇)、缺陷与相变物理、纳米材料和准晶等诸多方面。

凝聚态物理学是当今物理学最大也是最重要的分支学科之一。据70年代中期的调查统计,凝聚态物理学年发表论文数居首位,占物理学论文总数的三分之一;从事凝聚态物理研究的人数也居首位,占总人数的四分之一;而从60年代末到80年代末,获诺贝尔物理奖的人数中,从事凝聚态研究的人数,超过了研究粒子物理的人数,接近总人数的一半,也居首位。凝聚态物理学得以迅猛发展,首先表现在其研究对象的开拓上。在由原来传统的三维周期性结构,向着低维甚至非周期结构的发展中,所涉及到的理论也逐渐地趋于深化与成熟,从30年代的晶体结构分析的唯象理论与固体的比热理论、金属自由电子论和铁磁性理论,发展到30年代后的能态理论、电子衍射和X射线衍射的动力学理论,以及点阵动力理论。60年代以后,在凝聚态物理学中,对称性破缺理论又占据了中心地位。以它为基础,建立了能态、元激发、缺陷及临界区域四个层次。与之相应,各种有序态的序参量、广义刚度标度不变性、自相似结构等一系列新的概念随之诞生。此外,大量非线性课题相继出现,使凝聚态物理不仅在深度及广度上冲破了传统固体物理学,而且向着更深层次与更大的范围蓬勃发展[2]。

90年代所兴起的纳米物理学,又成为凝聚态物理的一个新的世界性研究热点。纳米粒子与一般尺度物体相比,在力、热、电磁和光等方面具有显著不同的特性,它们不仅成为未来新材料研究的基础,而且也为人类在认识客观世界上展开了一个新的层次,与此相应兴起了介观物理学的研究[3]。

3总结

当今凝聚态物理学已成为物理学最活跃的前沿领域,它不仅突破了传统固体

物理学,使研究对象日益多样化和复杂化,又由于许多有价值的发现出现在相互交叉的学科领域,它又对促进交叉学科的发展,显现出强大的活力。它的实验手段、理论概念与技术不断地向着化学物理、生物、地球物理、天文、地质等领域渗透,从 DNA晶体结构到地球板块驱动力的研究,从量子电子器件的机理到新材料的研制,无一不与凝聚态物理学有关。凝聚态物理在物理学乃至整个自然科学中,正在显示出日益强大的影响力[4]。

文献资料:

[1] 《凝聚态物理》王鼎盛夏建白

[2] 《凝聚态物理的回顾与展望》冯瑞

[3] 《凝聚态物理及其发展前景》史正有

[4] 《生机勃勃的凝聚态物理》黄兴章

相关文档
最新文档