红外焦平面成像器件发展现状

红外焦平面成像器件发展现状
红外焦平面成像器件发展现状

先进机载光电红外成像系统

先进机载光电红外成像系统 目前,光电/红外成像系统在不断发展,集成商将日益增多的更高性能传感器装备到稳定转塔上,广泛用于各种军用平台。其中,机载光电/红外成像系统取得长足进步,国外已研制出多种先进机载光电/红外成像系统,很好地完成空中情报、监视与侦察任务。 大多数最新光电/红外系统的典型装置包括高清(HD)电视摄像机、高清近红外(NIR)和中波红外传感器、短波红外(SWIR)传感器以及多种类型激光器(激光指向器、激光照射器、激光测距机和激光指示器)。这些最新光电/红外系统还可与多摄像机大范围运动图像技术相集成,提供一种持久性多情报任务系统。 多年来,对光电/红外传感器系统的主要批评之一就是这些系统的视场太小,常常被比喻成“透过饮料管”观察战场。对于远程观察和单个目标交战,尤其是远程应用,这种窄视场是不错的选择。然而,对于大范围(广域)持久观察任务,这一视场是不够用的。越来越多的集成式多传感器广域运动成像(WAMI)系统逐渐解决了这一问题,通过可将多个传感器图像无缝拼接在一起的软件,这种系统实现了广域运动成像。其中最新系统之一是埃尔比特系统公司SkEye广域持久监视(WAPS)系统,用于诸如中空长航时(MALE)无人机的空中情报、监视和侦察(ISR)平台。 以下将给出目前最新的几种机载光电/红外成像系统,详细介绍系统组成单元及技术特点,并综述这一领域的关键技术和发展趋势。 1. 先进光电/红外成像系统

随着光电/红外传感器技术的不断进步,以及广域监视、全景成像和图像/视频处理等先进技术的发展,目前出现了一批先进的机载光电/红外成像系统,它们在前任机载光电/红外成像系统的基础上,加入最新相关技术,使新型机载光电/红外成像系统不仅可以通过组合多个高清多光谱传感器和激光器完成远程分辨、跟踪和交战多个目标以及情报、监视与侦察任务,而且可以通过广域运动成像等新技术,实现近实时广域探测、识别和认清难以发现的目标,而无需大量后期任务处理,用于诸如中空长航时(MALE)无人机的空中情报、监视和侦察(ISR)平台。 以下分别介绍目前国外最新的4种机载光电/红外成像系统。 1.1 L3 WESCAM公司MX-25/ 25D L3 WESCAM公司MX系列光电/红外/激光系统。 L3 WESCAM公司的MX系列目前推出了全数字、高清MX-25/25D超远程多传感器多光谱成像与目标瞄准系统,可搭载在固定翼飞机、无人机和浮空气球上,执行高空长航时情报、监视与侦察以及目标指示任务(MX-25D)。其中,MX-25可选择组合7个传感器,MX-25D可选择组合9个传感器。 MX-25/MX-25D的技术特点包括采用真正的高清摄像机、先进的图像处理技术、固态IMU(惯性测量单元)内置技术(5轴主动稳定)、短波红外成像技术、多个激光器负载和激光目标指示器以及MX-GEO第三代软件包,并具有MX系列产品的通用性。 1.2 Safran(赛峰)集团新一代EUROFLIR 410 Safran(赛峰)集团在2017年巴黎航展上公布了其新一代EUROFLIR410,这是意欲装备各种类型空中平台(特种任务飞机、直升机、飞艇和无人机等)的单个在线可更换单元(LRU)高性能稳定多传感器转塔,可用于情报、监视与侦察(ISR)、目标瞄准、防护、干预及搜救等各项任务。 早期版本的EUROFLIR410已经服役于NH工业公司NH90直升机和法国海军空中客车AS565黑豹(Panther)直升机。EUROFLIR410是直径16in、重量约53kg的大型转塔,是采用大量传感器的高集成度模块化系统,因此,Safran(赛峰)集团称,该产品是同系列中性能最佳的转塔。特色为采用极高分辨率摄像机,可以昼夜透过烟雾、灰尘、浓雾和盐雾等遮挡物,在更远距离上使目标探测和认清性能最大化;还进行了人机性能和显示器的改进,有助于在高工作载荷条件下做出决策;采用标准接口,保证与飞机座舱内的其它机载系统或无人机地面控制站进行正常通信。 EUROFLIR 410可以容纳多个传感器,从而具备多光谱成像能力。其中的电视传感器工作在0.4μm~0.7 μm光谱波段,采用1920×1080像素探测器芯片,并结合变焦镜头,提供25°~0.33°视场。

一种线阵红外焦平面的图像处理方法

第29卷第2期2010年4月红外与毫米波学报 J.InfraredMillim.Waves V01.29,No.2 April,2010 文章编号:1001—9014(2010)02—0091—03 一种线阵红外焦平面的图像处理方法 李言谨,危峻,胥学荣 (中国科学院上海技术物理研究所,上海200083) 摘要:根据线阵碲镉汞焦平面中少数载流子的横向收集物理特性,提出了一种改善红外焦平面图像质量的处理方法,并应用于某试验卫星的遥感图像上.这些遥感图像是采用上海技术物理研究所研制的256元线列焦平面组件获得的.结果表明,经处理后图像的分辨率和对比度均有显著提高. 关键词:图像处理;红外焦平面;碲镉汞 中图分类号:0472文献标识码:A ⅡⅥAGEPROCESSINGMETHODOFLINEARINFRARED FOCALPLANEARRAY LIYan—Jin,WEIJun,XUXue—Rong (ShanghaiInstituteofTechnicalPhysics,ChineseAcademyofSciences,Shanghai200083,China)Abstract:Accordingtothelateralcollectioncharacteristicsofminoritycarriersinlinear Iq∞dTeinfraredfocalplanearray(IRFPA),曲imageprocessingmethodforimprovingthequalityofimagesw髂proposed.ThismethodWaSappliedtotheremotesensingimages.whichw15reobtainedfromasatelliteloadedwitll256?elementIRFPAsdevelopedbyShanghaiInstituteofTechnicalPhysics.Theresultsshowthatboththeresolutionandcontrastoftheimagesareimprovedobviouslywiththeproposedmethod. Keywords:imageprocessing;infraredfocalplanearray(IRFPA);HgCdTe 引言 线列红外焦平面器件在空间遥感领域正得到广泛应用【l。J,已经成为卫星有效载荷升级换代的关键敏感器件,显示出越来越重要的作用.国外焦平面器件研发主要机构都在为一些空间对地观察系统研制线列红外焦平面器件,长线列的红外焦平面器件已经是焦平面技术的重要发展方向之一.如法国So-fradir公司的1500元线列碲镉汞中长波焦平面器件,采用交错排列的光敏元结构;美国LockheedMartin为大气红外探测仪研制了十个波段的碲镉汞260—400元线列焦平面器件;美国Raytheon公司为地球观察卫星研制了多波段碲镉汞1280元焦平面器件.在国内,上海技术物理研究所为遥感卫星研制了中短波的碲镉汞256元线列焦平面器件MJ,在轨运行近三年,获得了大量清晰的地面遥感图像.对于以半导体p-n结为光敏元的红外探测器,过剩载流子具有扩散效应【5'6J,P.n结存在着横向收集效应,横向收集的范围与过剩载流子的扩散长度相当.对于碲镉汞来说,扩散长度约为十几至数十微米(依不同的组分和温度而不同),实际上增加了光敏元的有效响应面积,在成像系统中会引起相邻像元信号的串扰,从而影响图像的清晰程度.如果横向收集效应是稳定的,相邻像元响应存在着固定的关系,可以通过数学办法进行图像处理来改善图像质量.本文提出了一种线列焦平面器件图像处理方法,并对我国遥感卫星获得的图像进行了处理,在提高图像的清晰度和对比度方面,取得了明显的效果. 1横向收集效应 过剩载流子的扩散运动是半导体的固有特性,如图l所示,正对p-n结的入射红外辐射在体内产生过剩载流子电子空穴对,电子空穴对扩散到结区.电子空穴对被结区的强电场分开,形成光电流.在 收稿日期:2009?03-18.修回日期:2009-10?09Receiveddate:2009—03—18,nviseddate:2009-10—09基金项目:创新基金资助(CXJJ-239) 作者简介:李言谨(1960-),男,江苏东台人,研究员,主要从事航天应用红外探测组件研究,yanjinli@mail.sitp.aC.∞. 万方数据

红外热成像仪检测人体温度

疫情的爆发,鉴于其特征之一即发热咳嗽这一典型症状,当下在公共区域的疫情监控与防治环节,非接触式人员测温筛查成为关键的防疫手段。相较于传统的接触式体温筛检设备,非接触式设备可以依托红外线强度对目标体进行在线温度监测,实现了有效快速的筛检人群,大幅提升了筛选效率。在本次疫情防控当中,基于红外热成像技术的测温筛查设备红外热像仪装备需求旺盛。 红外热成像仪怎么实现人体测温? 正常人体的温度分布有一定的稳定性和特征性,机体各部位温度不同,形成了不同的热场,当人体某处发生疾病或功能改变时,该处血流量会相应发生变化,导致人体局部温度改变,表现为温度偏高或偏低,通常人体体表的比较高的温度一般处于鼻根部周围及眼窝、口腔内部等部位,该部位的血管较多且表皮较薄,可以很好地反映被测人体的温度状态,故红外热像仪检测人脸部的位置为宜。 根据这一原理,通过热成像系统采集人体红外辐射,并转换为数字信号,形成伪色彩热图,利用专用分析软件,经专业医师对热图分析,判断出人体病灶的部位、疾病的性质和病变的程度,为临床诊断提供了可靠依据。

为什么要用红外热成像仪做体温初筛呢? 1.提示炎症:鼻炎、副鼻窦炎、口腔炎症、咽喉炎、甲状腺炎、肺炎、胆囊炎、阑尾炎、胃肠炎、前列腺炎、附件炎等全身各部位的炎症。 2.肿瘤的早期预警:鼻咽癌、甲状腺癌、肺癌、乳腺癌、肝癌、胃癌、肠癌、皮肤癌等癌症的预警作用。 3.周围神经疾病的提示:面瘫、面肌痉挛、偏头痛、三叉神经痛的提示。皮肤疾病的提示与研究,烧伤与冻伤面积与深度的测定,植皮疗效的观察。 4.血管疾病的提示:人的肢体温度主要由血液循环状态所决定,当存在血管病变时,血循环发生障碍,皮温降低。如闭塞性脉管炎、动脉栓塞、动脉瘤等,通常表现为病变部位温度异常,用红外热像仪可清楚显示出病变部位及范围。用红外热成像技术,不但能显示出病变的存在,而且能看出各趾病变的程度和范围,通过早期诊断和及时治疗,可避免肢体发生严重损害,如溃疡和坏死。 红外热像仪,契合疫情防控对高效安全测温的要求,最近备受各方关注。

焦平面红外探测器应用现状

焦平面红外探测器应用现状 0 引言 红外探测器广泛应用于军事、科学、工农业生产和医疗卫生等各个领域,尤其在军事领域,红外探测器在精确制导、瞄准系统、侦察夜视等方面具有不可替代的作用。近年来,红外探测器的需求不断增加。据美国相关公司市场调研分析师预测,全球军用红外探测器需求额有望在2020年达到163.5亿美元,复合年均增长率为7.71%。 红外探测器按探测机理可分为热探测器和光子探测器,按其工作中载流子类型可以分为多数载流子器件和少数载流子器件两大类,按照探测器是否需要致冷,分为致冷型探测器和非致冷型探测器。非致冷探测器目前主要是非晶硅和氧化钒探测器,致冷型探测器主要包括碲镉汞三元化合物、量子阱红外光探测器Ⅱ类超晶格等。 在过去的几十年里,大量的新型材料、新颖器件不断涌现,红外光电探测器完成了第一代的单元、多元光导器件向第二代红外焦平面器件的跨越,目前正朝着以大规模、高分辨力、多波段、高集成、轻型化和低成本为特征的第三代红外焦平面技术的方向发展。 1 焦平面红外探测器应用现状 热探测器的应用早于光子探测器。热探测器包括热释电探测器、温差电偶探测器、电阻测辐射热计等。热探测器具有宽谱响应、室温工作的优点,但是它响应时间较慢、高频时探测率低,目前主要应用于民用领域。光子探测器是基于光电效应制备的探测器,通过配备致冷系统,具有高量子效率、高灵敏度、低噪声等效温差、快速响应等优点。在军事领域,光子探测器占据主导地位。常用的光子探测器有碲镉汞(HgCdTe)、InAs / InGaSb Ⅱ类超晶格、GaAs / AlGaAs量子阱等。近年来量子点红外光探测器也引起广泛关注,量子点红外光探测器在理论上具有很多优点,但实际制备的量子点红外光探测器与理论预测的还是有一定差距。表1对几种常用的光子型焦平面红外探测器进行了比较。 在精确制导领域,主流制导方式有红外制导和雷达制导,这两种方式各有优势,在某些特定的场合,红外制导更是显示出其不可替代性。与雷达制导的主动探测相比,红外探测是

红外热成像技术应用与发展

红外热成像摄象机在智能视频监控中的应用与发展 一、引言 1672年,牛顿使用分光棱镜把太阳光(白光)分解为红、橙、黄、绿、青、蓝、紫等各色单色光,证实了太阳光(白光)是由各种颜色的光复合而成。1800年,英国物理学家 F. W. 赫胥尔从热的观点来研究各种色光时,偶然发现放在光带红光外的一支温度计,比其他色光温度的指示数值高。经过反复试验,这个所谓热量最多的高温区,总是位于光带最边缘处红光的外面。于是他宣布:太阳发出的辐射中除可见光线外,还有一种人眼看不见的“热线”,这种看不见的“热线”位于红色光外侧,叫做红外线。这种红外线,又称红外辐射,是指波长为0.78~1000μm的电磁波。其中波长为0.78 ~1.5μm 的部分称为近红外,波长为1.5 ~10μm的部分称为中红外,波长为10~1000μm的部分称为远红外线。而波长为2.0 ~1000μm的部分,也称为热红外线。 红外线辐射是自然界存在的一种最为广泛的电磁波辐射,它在电磁波连续频谱中的位置是处于无线电波与可见光之间的区域。这种红外线辐射是,基于任何物体在常规环境下都会产生自身的分子和原子无规则的运动,并不停地辐射出热红外能量。分子和原子的运动愈剧烈,辐射的能量愈大;反之,辐射的能量愈小。 在自然界中,一切物体都会辐射红外线,因此利用探测器测定目标本身和背景之间的红外线差,可以得到不同的红外图像,称为热图像。同一目标的热图像和可见光图像不同,它不是人眼所能看到的可见光图像,而是目标表面温度分布的图像。或者可以说,它是人眼不能直接看到目标的表面温度分布,而是变成人眼可以看到的代表目标表面温度分布的热图像。运用这一方法,便能实现对目标进行远距离热状态图像成像和测温,并可进行智能分析判断。 众所周知,海湾战争已成为展示高科技武器使用先进技术的平台。在这些新科技中,红外热成像技术就是其中最为闪亮的高科技技术之一。红外热成像技术(Infrared thermal imaging technology)是利用各种探测器来接收物体发出的红外辐射,再进行光电信息处理,最后以数字、信号、图像等方式显示出来,并加以利用的探知、观察和研究各种物体的一门综合性技术。它涉及光学系统设计、器件物理、材料制备、微机械加工、信号处理与显示、封装与组装等一系列专门技术。该技术除主要应用在黑夜或浓厚幕云雾中探测对方的目标,探测伪装

红外热成像仪的介绍及工作原理

1.红外热成像技术 红外成像技术作为一门新技术,在电力设备运行状态检测中有着无比的优越性。红外成像是以设备的热状态分布为依据对设备运行状态良好与否进行诊断,它具有不停运、不接触、远距离、快速、直观地对设备的热状态进行成像。由于设备的热像图是设备运行状态下热状态及其温度分布的真实描写,而电力设备在运行状态下的热分布正常与否是判断设备状态良好与否的一个重要特征。因此采用红外成像技术可以通过对设备热像图的分析来诊断设备的状态及其隐患缺陷。 2.什么是红外热像图 一般我们人眼能够感受到的可见光波长为:0.38—0.78微米。通常我们将比0.78微米长的电磁波,称为红外线。自然界中,一切物体都会辐射红外线,因此利用探测器测定目标本身和背景之间的红外线差,可以得到不同的红外图像,称为热图像。 同一目标的热图像和可见光图像是不同,它不是人眼所能看到的可见光图像,而是目标表面温度分布图像,或者说,红外热图像是人眼不能直接看到目标的表面温度分布,变成人眼可以看到的代表目标表面温度分布的热图像。 3.红外热像仪的原理 热像仪是利用红外探测器和光学成像物镜接受被测目标的红外辐射能量分布图形反映到红外探测器的光敏元件上,从而获得红外热像图,热图像的上面的不同颜色代表被测物体的不同温度。红外热像仪的非接触式测温方式,能够在不影响轧辊工作的同时测量其实时温度,并随时采取降温措施。

红外热像仪的原理 4.红外热成像的特点 自然界所有温度在绝对零度(-273℃)以上的物体,都会发出红外线,红外线(或称热辐射)是自然界中存在最为广泛的辐射。大气、烟云等吸收可见光和近红外线,但是对3~5微米和8~14微米的红外线却是透明的。因此,这两个波段被称为红外线的“大气窗口”。我们利用这两个窗口,可以在完全无光的夜晚,或是在烟云密布的恶劣环境,能够清晰地观察到前方的情况。 5.在线式红外热像仪 采用红外热成像技术,探测目标物体的红外辐射,并通过光电转换、信号处理等手段,将目标物体的温度分布图像转换成视频图像的设备,我们称为红外热像仪。

红外焦平面阵列简介

红外焦平面阵列简介 自从赫谢尔利第一次发现了红外辐射以来,人们就开始不断运用各种方法对红外辐射进行检测,并根据红外光的特点而加以应用,相继制成了各种红外探测器。进入20世纪后,红外探测器技术取得了惊人的进展,特别是冷战时期,军备竞赛各方投入巨资进行研究,突破了诸多难题,使红外探测器技术从30年代单一的PbS器件发展到现在的多个品种,从单元器件发展到目前焦平面信号处理的大型红外焦平面阵列。红外焦平面阵列技术作为红外探测技术发展的一个里程碑,正在急速地拓展新的应用领域和市场,渗透到工业监测探测、执法、安全、医疗、遥感、设备等商业用领域,改变了其长期以来主要用于军用领域的状况。 红外焦平面阵列是红外系统及热成像器件的关键部件,是置于红外光学系统焦平面上,可使整个视场内景物的每一个像元与一个敏感元相对应的多元平面阵列红外探测器件,在军事领域得到了广泛应用,拥有巨大的市场潜力和应用前景。目前许多国家,尤其是美国等西方军事发达国家,都花费大量的人力、物力和财力进行此方面的研究与开发,并获得了成功。 下面依次介绍其原工作原理、分类以及读出电路,并简述国内外发展情况以及展望其发展方向。 一、红外焦平面阵列原理 焦平面探测器的焦平面上排列着感光元件阵列,从无限远处发射的红外线经过光学系统成像在系统焦平面的这些感光元件上,探测器将接受到光信号转换为电信号并进行积分放大、采样保持,通过输出缓冲和多路传输系统,最终送达监视系统形成图像。 二、红外焦平面阵列分类 1、根据制冷方式划分 根据制冷方式,红外焦平面阵列可分为制冷型和非制冷型。制冷型红外焦平面目前主要采用杜瓦瓶快速起动节流致冷器集成体和杜瓦瓶斯特林循环致冷器集成体[5]。由于背景温度与探测温度之间的对比度将决定探测器的理想分辨率,所以为了提高探测仪的精度就必须大幅度的降低背景温度。当前制冷型的探测器其探测率达到~1011cmHz12W-1,而非制冷型的探测器为~109cmHz12W-1,相差为两个数量级。不仅如此,它们的其他性能也有很大的差别,前者的响应速度是微秒级而后者是毫秒级。 2、依照光辐射与物质相互作用原理划分 依此条件,红外探测器可分为光子探测器与热探测器两大类。光子探测器是基于光子与物质相互作用所引起的光电效应为原理的一类探测器,包括光电子发射探测器和半导体光电探测器,其特点是探测灵敏度高、响应速度快、对波长的探测选择性敏感,但光子探测器一般工作在较低的环境温度下,需要致冷器件。热探测器是基于光辐射作用的热效应原理的一类探测器,包括利用温差电效应制成的测辐射热电偶或热电堆,利用物体体电阻对温度的敏感性制成的测辐射热敏电阻探测器和以热电晶体的热释电效应为根据的热释电探测器。这类探测器的共同特点是:无选择性探测(对所有波长光辐射有大致相同的探测灵敏度),但它们多数工作在室温条件下。 3、按照结构形式划分 红外焦平面阵列器件由红外探测器阵列部分和读出电路部分组成。因此,按照结构形式分类,红外焦平面阵列可分为单片式和混成式两种。其中,单片式集成在一个硅衬底上,即读出电路和探测器都使用相同的材料。混成式是指红外探测器和读出电路分别选用两种材料,如红外探测器使用HgCdTe,读出电路使用Si。混成式主要分为倒装式和Z平面式两种。 4、按成像方式划分 红外焦平面阵列分为扫描型和凝视型两种,其区别在于扫描型一般采用时间延迟积分技术,采用串行方式对电信号进行读取;凝视型式则利用了二维形成一张图像,无需延迟积分,

(仅供参考)红外焦平面探测器普及知识

红外焦平面探测器普及知识 红外焦平面阵列(IR FPA)技术已经成为当今红外成像技术发展的主要方向。红外焦平面阵列像元的灵敏度高,能够获取更多的信息以及更高的可变帧速率。红外焦平面阵列探测器对入射的红外能量进行积分,然后产生视频图像,经过调节后被提供给视频显示器,以供人观察。焦平面阵列每个像元的输出是一种模拟信号,它是与积分时间内入射在该元件上的红外能量成正比的。但是由于制造工艺和使用环境的影响,即使对温度均匀的背景,焦平面背景中所有像元产生的输出信号也是不一致的,即红外焦平面阵列器件的非均匀性(Nonuniformity,NU)。为了满足成像系统的使用要求,需要对红外焦平面阵列探测器进行非均匀性校正。 从生产工艺而言,单纯从提高焦平面阵列质量的角度来降低其非均匀性,不仅困难而且造价昂贵。因此,通过校正算法减小非均匀性对红外焦平面阵列成像质量的影响,提高成像质量,不仅是必须的,同时具有很高的经济价值和应用价值。目前,对红外图像质量的改善,一般是根据红外焦平面阵列对于温度响应的不一致性,采用非均匀性校正的方法,提高红外图像的质量。主要有两类校正方法:基于红外参考辐射源的非均匀性校正算法和基于场景的自适应校正方法。在实际应用中,普遍采用的是基于红外参考辐射源定标的校正方法。但是,采用参考辐射源定标的校正方法校正的红外图像,因红外焦平面阵列器件由于长时间的工作,受到时间、环境等因素的影响,红外图像质量逐渐下降,出现类似细胞状和块状的斑纹,影响了红外图像的质量。所以,需要在基于参考辐射源定标的校正方法的基础上,对于红外图像的质量进行改善。 国内外现状和发展趋势 自然界的一切物体,只要其温度高于绝对零度,总是在不断地辐射能量。红外热成像技术就是把这种红外热辐射转换为可见光,利用景物本身各部分温度辐射与发射率的差异获得图像细节,将红外图像转化为可见图像。利用这项技术研制成的装置称为红外成像系统或热像仪。用热像仪摄取景物的热图像来搜索、捕获和跟踪目标,具有隐蔽性好、抗干扰、易识别伪装、获取信息丰富等优点。因此,红外热成像技术在海上救援、天文探测、遥感、医学等各领域得到广泛应用。 红外热成像系统可以分为制冷和非制冷两种类型,制冷型有第一代和第二代之分,非制冷型可分为热释电摄像管和热电探测器阵列。第一代热成像系统主要由红外探测器、光机扫描器、信号处理电路和视频显示器组成,其中红外探测器是系统的核心器件,一般是分离式探测器。这种

红外成像技术在军事上的应用

红外成像技术的发展及应用 阅读人数:13人页数:7页yangfamingsg 红外成像技术的发展及应用 热成像仪是从对红外线敏感的光敏元件上发展而来,但是光敏元件只能判断有没有红外线,无法呈现出图像。在第二次世界大战中交战各国对热成像仪的军事用途表现出了兴趣,对其进行了零星的研究和小规模应用,1943年美国就与RNO合作生产了一款代号M12的机型,其功能和外观已经能看出热成像仪的雏形,这应该算是最找的一款热成像仪,算是热成像仪的鼻祖。 1952年,一款非常重要的材料研-锑化铟被开发出来,这种新的半导体材料促进了红外线热成像仪的进一步发展。不久之后,德州仪器和RNO公司联合开发出了具有实用价值的前视红外线(Forward looking infrared)热成像仪。这一系统采用的是单原件感光,利用机械装置控制镜片转动,将光线反射到感光元件上。 随着碲镉汞材料制造工艺的成熟,在军事领域大规模采用热成像仪成为了可能。60年代之后出现了由60或更多的感光元件组成的线性整列,美国的RNO公司将热成像仪的应用拓展至民用领域发展。然而由于最初采用的是非制冷感光元件,制冷部件加上机械扫描机构使得整个系统非常庞大。 等到CCD技术成熟之后,焦平面阵列式热成像仪取代了机械扫描式热成像仪。至80年代半导体制冷技术取代了液氮、压缩机制冷之后开始出现了便携、手持的热成像仪。90年代之后,RNO公司又开发 1/7 出了基于非晶硅的非制冷红外焦平面阵列,进一步降低了热成像仪的生产成本。 红外线,又称红外辐射,是指波长为0.78~1000微米的电磁波。其中波长为2~1000微米的部分称为热红外线。 目标的热图像和目标的可见光图像不同,它不是人眼所能看到的可见光图像,而是表面温度分布图像。红外热成像使人眼不能直接看到表面温度分布,变成可以看到的代表目标表面温度分布的热图像。所有温度在绝对零度(-273)℃以上的物体,都会不停地发出热红外线。红外线(或热辐射)是自然界中存在最为广泛的辐射,它还具有两个重要的特性:(1)物体的热辐射能量的大小,直接和物体表面的温度相关。热辐射的这个特点使人们可以利用它来对物体进行无需接触的温度测量和热状态分析,从而为工业生产,节约能源,保护环境等方面提供了一个重要的检测手段和诊断工具。(2) 大气、烟云等吸收可见光和近红外线,但是对3~5微米和8~14微米的热红外线却是透明的。因此,这两个波段被称为热红外线的“大气窗口” 。利用这两个窗口,使人们在完全无光的夜晚,或是在烟云密布的战场,清晰地观察到前方的情况。由于这个特点,热红外成像技术在军事上提供了先进的夜视装备,并为飞机、舰艇和坦克装上了全天候前视系统。这些系统在现代战争中发挥了非常重要的作用。 全球红外热像仪市场发展具有广阔的前景并呈现良好的发展趋势。红外热像仪是一种用来探测目标物体的红外辐射,并通过光电转换、电信号处理等手段,将目标物体的温度分布图像转换成视频图像 2/7 的高科技产品。红外热像仪具有很高的军事应用价值和民用价值。 在军事上,红外热像仪可应用于军事夜视侦查、武器瞄具、夜视导引、红外搜索和跟踪、卫星遥感等多个领域;在民用方面,红外热像仪可以用于材料缺陷的检测与评价、建筑节能评价、设备状态热诊断、生产过程监控、自动测试、减灾防灾等诸多方面。红外热像仪行业是一个发展前景非常广阔的新兴高科技产业,红外热像仪广泛应用于军民两个领域。在现代战争条件下,红外热像仪已在卫星、导弹、飞机等军事武器上获得了广泛的应用;同时,随着

红外热成像安防监控类应用介绍

红外热成像安防监控类应用介绍第一部分:红外热成像原理介绍 1.红外线原理 自然界中的一切物体,只要其温度高于绝对零度(-273℃)的物体都能辐射电磁波,红外线辐射式自然界存在的一种最为广泛的电磁波辐射,它是基于任何物体在常规环境下都会产生的自身的分子和原子无规则运动,并不停地辐射出热红外能量,分子和原子的运动越剧烈,辐射能量越大,反之,辐射能量越小。 2. 红外热成像原理 自然界中的一切物体,只要其温度高于绝对零度(-273℃),就会不断地发射辐射能。 热成像系统的就是通过能够透过红外辐射的红外光学系统将景物的红外辐射聚焦到能够将红外辐射能转换为便于测量的物理量的器件—红外探测器上,红外探测器再将强弱不等的辐射信号转换成相应的电信号,然后经过放大和视频处理,形成可供人眼观察的视频图像。红外热成像系统将物体发射的红外辐射转变为人眼可见的热图像,从而使人眼的视觉范围扩展到不可见的红外区,其基本原理方框图如图:

红外探测器输出的图像通常称为“热图像”,由于不同物体甚至同一物体不同 部位辐射能力和它们对红外线的反射强弱不同。利用物体与背景环境的辐射差异以及景物本身各部分辐射的差异,热图像能够呈现景物各部分的辐射起伏,从而 能显示出景物的特征。 3.红外热像仪基本相关技术参数及名词解释 ?红外热像仪是将不可见的红外辐射变为可见的热图像的一种仪器。 可以通过热图像,观察到被测物体表面温度或热量的差别。 ?红外热像仪分类 按照工作温度分为制冷型和非制冷型 按照功能分为测温型和非测温型 ?红外探测器 探测器是红外热像仪的心脏,它可以将红外辐射转变为电信号。 ?探测器的分辨率 分辨率是衡量热像仪探测器优劣的一个重要参数,表示了探测器焦平 面上有多少个单位探测元。目前市场主流分辨率为160×120,384× 288等,此外还有320×240,640×480等。分辨率越高,成像效果也 就越清晰。 ?探测器尺寸 探测器尺寸指探测器上单个探测元的大小,一般的规格有25μm,35 μm等。探测元越小,则成像的质量越好。 ?焦距 透镜中心到其焦点的距离。焦距的单位通常用mm(毫米)来表示,一个 镜头的焦距一般都标在镜头的前面,如f=50mm(这就是我们通常所说 的“标准镜头”),28-70mm(我们最常用的镜头)、70-210mm(长焦 镜头)等。焦距越大,可清晰成像的距离就越远。 ?视场角(FOV) 视场角是由镜头系统主平面与光轴交点看景物或看成像面的线长度 时所张的角度,通俗的说,镜头有一个确定的视野,镜头对这个视野 的高度和宽度的张角称为视场角。

红外焦平面阵列简介

红外焦平面阵列简介.doc 红外焦平面阵列简介 自从赫谢尔利第一次发现了红外辐射以来,人们就开始不断运用各种方法对红外辐射进行检测,并根据红外光的特点而加以应用,相继制成了各种红外探测器。进入20世纪后,红外探测器技术取得了惊人的进展,特别是冷战时期,军备竞赛各方投入巨资进行研究,突破了诸多难题,使红外探测器技术从30年代单一的PbS器件发展到现在的多个品种,从单元器件发展到目前焦平面信号处理的大型红外焦平面阵列。红外焦平面阵列技术作为红外探测技术发展的一个里程碑,正在急速地拓展新的应用领域和市场,渗透到工业监测探测、执法、安全、医疗、遥感、设备等商业用领域,改变了其长期以来主要用于军用领域的状况。 红外焦平面阵列是红外系统及热成像器件的关键部件,是置于红外光学系统焦平面上,可使整个视场内景物的每一个像元与一个敏感元相对应的多元平面阵列红外探测器件,在军事领域得到了广泛应用,拥有巨大的市场潜力和应用前景。目前许多国家,尤其是美国等西方军事发达国家,都花费大量的人力、物力和财力进行此方面的研究与开发,并获得了成功。 下面依次介绍其原工作原理、分类以及读出电路,并简述国内外发展情况以及展望其发展方向。 一、红外焦平面阵列原理 焦平面探测器的焦平面上排列着感光元件阵列,从无限远处发射的红外线经过光学系统成像在系统焦平面的这些感光元件上,探测器将接受到光信号转换为电信号并进行积分放大、采样保持,通过输出缓冲和多路传输系统,最终送达监视系统形成图像。二、红外焦平面阵列分类 1、根据制冷方式划分

根据制冷方式,红外焦平面阵列可分为制冷型和非制冷型。制冷型红外焦平面目前主要采用杜瓦瓶快速起动节流致冷器集成体和杜瓦瓶斯特林循环致冷器集成体[5]。由于背景温度与探测温度之间的对比度将决定探测器的理想分辨率,所以为了提高探测仪的精度就必须大幅度的降低背景温度。当前制冷型的探测器其探测率达到,1011cmHz12W-1,而非制冷型的探测器为,109cmHz12W-1,相差为两个数量级。不仅如此,它们的其他性能也有很大的差别,前者的响应速度是微秒级而后者是毫秒级。 2、依照光辐射与物质相互作用原理划分 依此条件,红外探测器可分为光子探测器与热探测器两大类。光子探测器是基于光子与物质相互作用所引起的光电效应为原理的一类探测器,包括光电子发射探测器和半导体光电探测器,其特点是探测灵敏度高、响应速度快、对波长的探测选择性敏感,但光子探测器一般工作在较低的环境温度下,需要致冷器件。热探测器是基于光辐射作用的热效应原理的一类探测器,包括利用温差电效应制成的测辐射热电偶或热电堆,利用物体体电阻对温度的敏感性制成的测辐射热敏电阻探测器和以热电晶体的热释电效应为根据的热释电探测器。这类探测器的共同特点是:无选择性探测(对所有波长光辐射有大致相同的探测灵敏度),但它们多数工作在室温条件下。 3、按照结构形式划分 红外焦平面阵列器件由红外探测器阵列部分和读出电路部分组成。因此,按照结构形式分类,红外焦平面阵列可分为单片式和混成式两种。其中,单片式集成在一个硅衬底上,即读出电路和探测器都使用相同的材料。混成式是指红外探测器和读出电路分别选用两种材料,如红外探测器使用HgCdTe,读出电路使用Si。混成式主要分为倒装式和Z平面式两种。 4、按成像方式划分

红外成像系统性能参数测试系统

红外成像系统性能参数测试系统 摘要:经过近几十年的发展,红外成像系统经历数次变革,已经由最初的点源和线阵扫描型发展到现在的第三代红外焦平面凝视型系统,目前国外对红外成像系统实验室测试的性能参数多达十六七项。本文对其最主要的信号传递函数(SITF)、噪声等效温差(NETD)和三维噪声模型、调制传递函数(MTF)、最小可分辨温差(MRTD)五个参数进行研究,阐述了它们的定义、物理意义和测量方法。 关键字:红外成像系统性能参数定义测量方法 1 红外成像系统性能参数测试研究的意义 基于光电图像的测量,是以图像的获取及其处理为手段,来确定被测对象的诸如空间、时间、温度、速度以及功能等等有关参数或者特性的一种测量方法。把图像当作检测和传递的手段或载体加以利用,是一种建立在光学成像技术基础上并融入了计算机技术、光电子学数字图像处理技术以及光机电一体化的综合测量技术,其目的在于从图像中提取有用的信号。由于其具有非接触、高灵敏度和高准确度等特点,在信息科学、生命科学、工农业生产和制造业、航空航天、国防军事、科学研究以及人们的日常生活等领域中得到了广泛应用,是当代先进测试技术之一[1]~[3]。 自然界中凡是温度高于绝对零度的物体,就会一直向外辐射能量。通过探测并收集这些辐射能,再现物体的辐射起伏,进而显示出物体的特征信息,这样的成像系统就是红外成像系统。红外成像系统利用景物本身各部分辐射的差异获取被测对象的细节,可以穿透烟、雾、霾以及雪等不利因素以及识别伪装,具有较强的抗干扰和全天时远距离观察目标的能力,这些特点使红外成像系统广泛应用于军事领域。现代军事应用中,要求红外系统不仅具有高灵敏度、大视场、高空间分辨率、高帧频、适装性好的特点,为了适应恶劣的环境条件,还同时要求具有很好的结构稳定性和温度特性等。传统的红外光学系统的结构形式有反射式、折射式和折反式,它们共同的特点是结构简单,这往往不能满足现代军用特殊条件下的高质量的成像要求,需要增加辅助器件,就使得结构变得复杂,更加促使了人们开发新型的结构[4]。 世界各国都以巨额投资竞相开展这一领域的研究工作。经过近几十年的发展,红外成像系统经历数次变革,已经由最初的点源和线阵扫描型发展到现在的第三代红外焦平面(IRFPA)凝视型系统。同时,红外成像系统的性能测试技术也必须适应红外焦平面成像技术的发展,因此,对红外成像系统的性能评估也变

如何拍摄红外热像仪的成像图

如何拍摄红外热像仪的成像图 红外热像仪的工作原理就是依据它的红外成像原理,拍摄出不同温度的成像图,然后根据成像图顺利的找出所需物体的准确位置。只要物体本身具有温度,科研人员就可以使用这款设备拍摄出它的红外成像图。我们在使用这款设备时有许多要注意的地方。拍摄红外成像图时我们也应该多加认真和谨慎、通常我们在使用这款设备时要注意三个方面,我们要把这三个方面的参数和精度把握好,才可以拍摄出精确的红外成像图。下面就来和大家说说具体都有那三个方面需要我们去注意。 1、确定温度范围 红外热像仪可以自行进行测温,它可以智能的根据周围的温度生成一幅红外成像图。但是这款设备在使用前一定要设定一定的温度范围,要在一定的温度范围下才可以更加精确的工作。所以研究人员在使用设备开始工作前首先要选择测温范围,将设备设定为设定自动调整测温范,手动调整温度范围。也就是说在工作时我们要人为的设定温度范围,再由设备自行测温。这种工作原理有利于提高热像仪的工作效率,降低测温时间。 2、调整好焦距 既然是用来拍照的设备,那么红外热像仪多少都具有了一定的相机功能,在使用上也应该要调整好焦距,焦距的范围范围太高或太低都不利于读取温度。目前市场上的热像仪大多具有自动聚焦功能,可以在此基础上进行手动调焦,使用者可以根据自己的需求进行配合使用。 3、拍摄避免环境的影响 使用红外热像仪在室外进行拍摄时,难免会受到环境影响。特别是太阳光的直射会给拍摄带来很大的影响。环境的温度和太阳的温度使无标物体的温度增加,那么设备就很难拍摄到正确的成像图。相反环境温度过低依然会对拍摄造成影响,物体和周围环境融为一体,我们更加无法判断物体的准确位置。我们在使用这款设备时,尽量避免这样的天气。 现在有不少红外热像仪还具备拍摄可见光照片的功能。如RNO IR160升级版红外热像仪配备130万像素可见光摄像头,能将可见光图片与红外图片关联存储,红外图片带红外原始测量数据。适用于探测相同或者相近等不易于区分的目标。随同图像可带60秒语音注释。使用Micro SD存储卡,标配含8GB,最高可扩展到16GB。 IR160升级版热像仪采用非制冷焦平面微热型的160x120像素的探测器。非制冷红外探测器不需要在系统中安装制冷装置,因此尺寸较小、重量较轻且功耗较低。此外,它们与制冷型光子探测器相比可提供更宽的频谱响应和更长的工作时间。因此,非制冷技术能为用户提供成本更低、可靠性更高的高灵敏传感器。 此外,IR160升级版热像仪配置50/60Hz帧频。帧频是指每秒种放映或显示的帧或图像的数量。帧频越大,动画的速度就越快,过低的帧频会导致播放时断时续。

红外焦平面成像技术发展现状

红外焦平面成像技术发展现状 姓名:高洁班级:11级硕研1班学号:S11080300007 摘要 红外焦平面列阵成像技术已经进入了成熟期。本文对几种红外焦平面列阵器件如MCT、Insb 和QWIP 的最新进展作一评述,简要介绍其器件发展水平、技术路线和关键工艺。简要提及一种新颖的非制冷焦平面成像技术:光学读出微光机红外接收器。 关键词:红外焦平面列阵;碲镉汞;锑化铟;量子阱红外探测器 Abstract Infrared focal plane array (IRFPA) imaging technology has been matured during the passed decade. In this paper an overview of recent progress to several kind of IRFPA such as MCT, Insb and QWIP is provided , focusing on new device development, technical lines and key technologies. Also, a new type of uncooled FPA imaging technigue micro !optomechanical infrared receiver with optical readout is briefly introduced. Key words: IRFPA; MCT; Insb; QWIP 引言 红外探测器技术在20 世纪90 年代取得了飞速发展。红外焦平面列阵成像技术进入了成熟期。高性能大规格焦平面列阵已正式地应用于各种重大国家安全项目中,例如弹道导弹防御计划和重要新型武器系统。另外,新型非制冷红外焦平面技术的涌现正在促进红外技术走向第三代。美国人预言,未来几年美国红外市场将出现年均30%的连续高速增长[1]。本文简要评述了几种红外焦平面列阵器件技术的最新进展。 1. 碲镉汞红外焦平面器件 1.1器件和材料发展水平 通过调整碲镉汞(MCT)材料的组分,可以方便地调节其材料的禁带宽度,器件可以响应多个红外波段范围,因此,MCT 受到各国的高度重视。MCT 焦平面列阵器件在短波(1~3 μm)、中波(3~5μm )、长波(8~12μm )和甚长波(12~18μm )各个波段取得了全面进展。 1.1.1 短波MCT 焦平面 波音北美公司和洛克威尔科学中心合作,在替代衬底PACE-1 上生长的MCT 薄膜材料制造了大规模的焦平面列阵。低背景天文应用,代号为Hawaii-2 的器件性能参数如表1 所示[2]。多光谱遥感应用的1024*1024 元FPA,截止波长2.5 μm,在1.2*1011 phs/cm2 s 背景水平和115 K 工作温度下的平均探测率达到2.3*1013 cmHZ1/2W-1,非均匀性12.5%,量子效率74%,77 K 下平均暗电流仅为0.02 e-/s,有效像元率99.1%,100 次热循环脱焊率<0.2%[3]。

红外成像仪的主要分类

首先给大家简单介绍一下红外成像仪的主要分类: 光子感应器式红外成像仪 1. 根据红外成像仪的感应器不同来分类 热感应器式红外成像仪 光子感应器是将接受的辐射能量直接转换成电信号。灵敏度很高,工作稳定,反映迅速。 热感应器是由多个感应单元同时接受辐射并被加热,通过比较热量的变化来给出成像信号,灵敏度比光子感应器式低,工作不如光子感应器稳定,反映速度也不及光子感应器,但是体积小,重量轻,价格便宜。图一所提到的PM545 型就是热感应器式红外成像仪,在其说明书中有介绍。 中波红外线成像仪 2. 根据红外线成像仪所适用的红外波长不同,可分为长波红外线成像仪 以下给出的光谱图(图二),以便大家有一个感性的认识 图二 ?可视光的波长范围一般为0.4 到0.7μm ?近红外线的波长范围一般为0.7 到1μm ?红外短波的波长范围一般为0.9 到2.5μm ?红外中波的波长范围一般为 2 到5μm ?红外长波的波长范围一般为7.5 到13 或14μm 从图一的参数要求spectral band 7.5 to 13μm,我们看出其手册所要求的波长范围是长波红外线成像仪。 那么长波和中波红外线成像仪对红外图像的影响是什么?通过普朗克曲线图三,可以看出

图三 其影响主要在于随着待观察物体的温度升高,该物体所辐射的能量随着波长的减小而增大。 通俗点说也就是在测量接近常温下的物体时,长波红外线成像仪较敏感。在测量超高温的物体时,中波红外线成像仪较敏感。 其次给大家介绍一下红外线成像仪的参数含义: 1. 像素:是图像最基本的单位(Pixel),可以通俗的理解像素就是一个小点,而不同颜色或灰度的点(像素)聚集起来就变成一幅影像。像素越高,意味着你可以更远的距离发现更细微的问题。我公司采购的FLIR T400 型红外成像仪的像素为320X240 。对于低分辨率的成像仪,为了提高影像的清晰度,可以安装长焦镜头。但是,同时其视野也会随之减小。对于给定的距离,同样的视野,像素越高,那么影像越清晰。总之在不考虑经济因素下,像素越高越好。 2. FOV(视野):也就是所能见到的空间范围,用角度来表示。图四中的角度,即可以理解为红外成像仪的水平视野,当然还有垂直视野。图一中所要求的红外成像仪的视野为水平24°垂直18°。同样的像素条件下,视野越小,影像越清晰。

红外热成像智能视觉监控系统方案

红外热成像智能视觉监控系统 “红外热成像智能视觉监控系统”是我司采用国国际先进厂商监控设备并进行二次开发的“智能监控管理系统”。包括“红外热成像防火图像监控系统”、“嵌入式智能视觉分析安保系统”及“防感应雷系统”三部分。 该系统具有热成像防火检测、防盗入侵检测、非法停车检测、遗弃物检测、物品搬移检测、自动PTZ跟踪、徘徊检测等功能模块,可以很好为场区周界防提供各种监控管理需求。而且产品具有自学习自适应能力,即使是在各种极端恶劣的环境和照明条件下也可以保持极高的性能——在保持99.9%超高检测率的同时,只有极低的误报率(少于1个/天)。 防火检测: 通过红外热成像防火图像监控系统,工作人员在监控中心可对监控点周边半径1公里至5公里或更大的区域(设置动态轮循状态)进行24小时实时动态系统监控,能在第一时间侦察到地表火情或烟雾,并及时触发联动报警。帮助尽早发现灾情或隐患,及时处理可能突发的火灾及其他异常事件,并且为灾情发生时现场指挥提供依据。防盗检测: 基于嵌入式智能视觉分析技术的监控跟踪系统,具有入侵检测和自动PTZ跟踪功能模块。支持无人值守、自动检测、报警触发录像、短信自动外发报警等功能。

车辆监控: 支持车容车貌监控、场区路线、远程实时WEB监控、监控录像、视频存储、回放查询等功能。满足中心或其他相关单位对车辆运输的监控管理。 防雷系统: 考虑到野外环境下系统运行的稳定性,防止外界强电压、大电流浪涌串入系统,损坏系统的设备,造成系统不能正常运行,我们将从视频信号、RS485控制信号、网络信号、电源四个方面做好防雷保护措施,以保证系统较好的抗干扰性。 系统拓扑图: 技术说明详解: ◆前端热成像仪技术详述 1)红外成像原理 自然界中一切温度高于绝对零度(-273.16摄氏度)的物体都

相关文档
最新文档