初中数学:利用非负数的性质求值
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学 2015-2-5
利用非负数的性质求值 第 1 页 共 1 页 利用非负数的性质求值
若几个非负数的和为零,则每个非负数都为零,这个性质在代数式求值中经常被使用. 例1 若x 2-4x+|3x-y|=-4,求y x 的值.
分析与解: x ,y 的值均未知,而题目却只给了一个方程,似乎无法求值,但仔细挖掘题中的隐含条件可知,可以利用非负数的性质求解.
因为x 2-4x+|3x-y|=-4,所以
x 2-4x +4+|3x-y|=0,
即 (x-2)2+|3x-y|=0.所以(x-2)2 =0,且|3x-y|=0,解得x=2,y=6,
所以 y x =62=36.
例2 未知数x ,y 满足
(x 2+y 2)m 2-2y(x+n)m+y 2+n 2=0, 其中m ,n 表示非零已知数,求x ,y 的值.
分析与解:两个未知数,一个方程,对方程左边的代数式进行恒等变形,经过配方之后,看是否能化成非负数和为零的形式.
将已知等式变形为
m 2x 2+m 2y 2-2mxy-2mny+y 2+n 2=0,
(m 2x 2-2mxy+y 2)+(m 2y 2-2mny+n 2)=0,即 (mx-y)2+(my-n)2=0.
∴(mx-y)2=0,(my-n)2=0,∴ mx-y=0, my-n=0, 其中m ,n 表示非零已知数, 解得2,n n x y m m
==。 1. 已知非零实数a 、b 满足a b a b a 24)3(|2||42|2=+-+++-,则b a +等于( C )
A .1-
B .0
C .1
D .2 2.已知
0)3(|9|322=+-+-x x y x ,求1
1++y x 的值。答案:2
3. 已知0172822=+--+b a b a ,求
a b a b a -++2)(的值。答案:1(配成完全平方)
4. 已知R b a ∈,,且2222
2+-+-=a a a b ,求2)22a b a b ---+-(的值。 答案:224-(根式有意义)