间歇恒沸精馏法分离异丙醇水溶液的过程研究

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

摘要: 采用单塔间歇恒沸精馏法 ,选择环己烷作为恒沸剂 ,分离异丙醇和水。应用 ChemCAD5.2 化工模拟软件中的 CC-BATCH间歇精馏模块对间歇恒沸精馏工艺过程进行了模拟计算 ,并应用最优模拟条件来指导实验 ,得到了环己烷-异丙醇-水三元体系的最优操作条件:进料质量比 m (环己烷) / m (异丙醇) / m (水) = 0.428/ 0.5/ 0.07 ,回流比 19 ,汽化量 0.3kg/ h ,塔板数 7。采用环己烷-异丙醇-水三元非均相恒沸精馏脱水法将异丙醇与水分离 ,从含水 12.6 %左右的异丙醇溶液可制得含水小于 0.3 %的异丙醇产品 ,异丙醇单程质量收率可达 61.1 %。

0前言

异丙醇作为一种优良的溶剂 ,在实验室和工业上都有广泛的用途。因此,经常需要从异丙醇水溶液中回收异丙醇。例如,奈普生原药生产过程中就有一定数量的含水为 12.6 %的异丙醇水溶液需要脱水,要求异丙醇中水含量小于0.5 %。HPLC(高效液相色谱) 流动相中也要大量使用异丙醇(IPA) ,其在使用后转化成HPLC 流动相废液。对其进行回收利用 ,既可以作为生产其它高附加值化工产品的优质原料 ,又可以消除对环境的污染。

本文对正己烷-异丙醇-水及少量磷酸的溶液进行分离。该溶液经过预处理再行精馏 ,分离效果较好。预处理过程主要包括以中和、除杂为辅的化学过程和萃取为主的物理过程。首先少量磷酸通过加碱中和 ,然后用水萃取 ,体系分为油相(主要含正己烷)和水相(主要含异丙醇和水)两相 ,对两相分别进行分离提纯。油相通过精馏 ,就能得到满足纯度要求的目标产物之一的正己烷。水相经过简单精馏可得异丙醇和水的共沸物。由于异丙醇和水形成共沸物(见表 1) ,因此不能用一般的蒸馏法制得无水异丙醇。目前 ,制无水异丙醇最具工业意义的是三元非均相恒沸精馏脱水法。

近年来,利用模拟计算来开发新工艺的报道越来越多。本文利用大型化工系统模拟软件Chem-CAD5.2 对三元恒沸精馏工艺过程进行了模拟计算 ,找出了最优条件 ,并用来指导实验。实践证明把过程模拟与实验相结合 ,将大大缩短工艺开发过程 ,且可在较短时间内找出最优。

操作条件 ,这对生产和实验均有积极的参考意义。

1 恒沸剂的选择

恒沸精馏过程中,恒沸剂的选择是否适宜 ,对整个过程的分离效果、经济效益都有直接的关系。能与异丙醇和水形成三元非均相恒沸物的恒沸剂有苯、环已烷和异丙醚(见表 2)。

由表l 和表 2 可知 ,三元恒沸物的沸点都较异丙醇-水二元恒沸点低10 ℃以上 ,有利于分离 ,其中以环已烷和苯作为恒沸剂较好。但由于苯的毒性较大 ,故本文以环已烷作为恒沸剂。在异丙醇-水二元恒沸物中 m (水) / m (异丙醇) = 1 2 .6 / 8 7 .4 =0.144 ,加入恒沸剂环已烷后进行三元恒沸时 ,塔顶组份中 m (水) / m (异丙醇) = 7.5/ 18.5 = 0.405 ,即每份异丙醇在三元恒沸时所带出的水分比不加恒沸剂要高 0.405/ 0.144 = 2.81 倍 ,因此 ,在异丙醇-水二元恒沸液中 ,加入环已烷后水分将全部从塔顶蒸出。若物料中水分 > 12.6 %时 ,可先进行不加恒沸剂的自夹带非均相二元恒沸精馏 ,塔顶得到的含水12.6 %的二元恒沸物 ,再经三元恒沸精馏 ,即可得合格产品。笔者认为对于处理量不大的场合 ,宜采用单塔间歇恒沸精馏操作。

2 实验操作条件的确定

2.1 模拟流程操作条件的优化计算

2.1.1 操作阶段的确定

根据工艺要求将整个分离过程切分成三个阶段:

①三元物系同时馏出阶段;

②异丙醇-环己烷馏出阶段;

③产品出料阶段(收集纯度 > 99 %的异丙醇) 。

2.1.2 恒沸剂用量的确定

对于本文所采用的单塔间歇恒沸精馏塔 ,恒沸剂用量的计算较复杂 ,不仅因为是间歇精馏 ,而且馏出物依次为异丙醇-水-环己烷三元非均相恒沸物,异丙醇-环己烷二元恒沸物等。为此,我们通过模拟对恒沸剂的用量进行确定。在确定并优化精馏塔操作参数之前 ,首先要确定进料中环己烷与异丙醇-水共沸物的比

值 ,使得有足够量的环己烷能挟带走几乎全部的水分。先加入过量的环己烷确保产品纯度 ,然后递减模拟 ,直到找出最小环己烷需要量 ,因为环己烷带走水的同时也要带走部分异丙醇 ,加入量过多 ,则会影响产品的收率。由图 1 和图 2 可得出环己烷质量分率为 0.428 时能兼顾纯度和收率 ,故确定之。

2.1.3 理论板数的确定

用 ChemCAD系统软件模拟异丙醇-环己烷-水三元共沸物 ,确定其最佳质量比为m (环己烷) / m(异丙醇) / m (水) = 0.428∶ 0.5∶ 0.072 ,进行模拟实验 ,固定参数回流比 R = 19 ,汽化量为 0.3kg/ h。模拟过程中 ,在理论板小于 4 时 ,不收敛;在 4~7 收敛;在大于 7 以后模拟体系又不收敛 ,显示空塔板。根据工艺要求将整个分离过程分割成三个阶段 ,模拟起来比较特殊 ,所以软件能得到满意收敛的板数比较局限 ,即 4、 5、 6、 7 ,而且实际上分离任务本来也不需要太多板数。由过程模拟可得 ,塔板数为 N =6或 7 ,就可达到实验要求的效果 ,故确定较佳的理论板数为 7。

2.1.4 汽化量的确定

用 ChemCAD系统软件模拟异丙醇-环己烷-水三元共沸物 ,由 2.1.2 中确定的

最佳比 m (环己烷) / m (异丙醇) / m (水) = 0.428∶ 0.5∶ 0.072 ,进行模拟实验 ,固定参数回流比 R = 19 ,塔板数 N =6。将0.3kg/ h确定为初始汽化量 ,然后固定其他操作条件 ,将汽化量减小或增大 ,寻找异丙醇质量分率

≥99 %的收率的最大值 ,结果如图 3 所示。当汽化量即质量流率为0.29~

0.35kg/ h时收敛 ,且汽化量在0.3kg/ h 时异丙醇单程收率取得最大值 0.78。又从图 3 中可见 ,在模拟的范围内 ,汽化量对收率的影响不是很大。

2.1.5 回流比 R 的确定

由图 4 可见 ,回流比的增大能有效地提高分离效率 ,但是 R 过大 ,能耗和操作时间均相应增大。同时考虑经济性及可操作性 ,确定 R = 19 为较好的回流比。

相关文档
最新文档