烟气循环流化床石灰半干法脱硫 存在的问题与改造方案

烟气循环流化床石灰半干法脱硫 存在的问题与改造方案
烟气循环流化床石灰半干法脱硫 存在的问题与改造方案

烟气循环流化床石灰半干法脱硫

存在的问题与改造方案

刘振涛

华能烟台发电有限公司山东烟台邮编:264002

摘要:烟气循环流化床石灰半干法脱硫在我国属于新兴的环保项目,本文主要针对某厂#6炉烟气循环流化床石灰半干法脱硫自投运以来存在的问题进行了分析,并针对每个问题提出了可行性解决方案,其中部分方案已经得以实施,并取得一定成效。

关键词:半干法脱硫存在问题解决方案

1、脱硫系统概述

某厂#6 炉150MW机组是上海锅炉厂生产的循环流化床锅炉,烟气脱硫除尘系统,采用循环流化床半干法脱硫装置,脱硫除尘岛布置在锅炉尾部的空气预热器出口至烟囱的区域范围,每台锅炉的烟气从空气预热器出来后,进入预除尘器(ESP1)预除尘,除去85%的飞灰,然后进入脱硫塔,在塔内进行脱硫反应,再进入脱硫除尘器(ESP2),除尘后由吸风机排入烟道通过烟囱排放到大气。

脱硫工程除消石灰制备系统和压缩空气系统采用三台机组共用外,其它系统为一台机组一套配置,主要包括:烟气系统、预除尘系统、脱硫塔系统、脱硫电除尘器系统、脱硫工艺水系统、物料再循环系统等。

脱硫塔是烟气脱硫系统的核心设备,其包括烟气进入口、雾化喷嘴安装口、回料口和仓顶排气接入口、顶部封盖、烟气径向出口、底部排灰斗等,从预除尘器出来的烟气经过脱硫塔排出,在脱硫塔中,增湿雾化水、吸收剂分别从文丘里装置扩散管上端喷入,从脱硫电除尘器返回的脱硫灰返回到中间文丘里管的收缩段出口部分。烟气与脱硫剂进行混合、反应,这种强烈的多相流保证烟气中的SO2与脱硫剂具有较好的反应、换热及传质性能。从而达到脱硫的目的。

从预除尘器出来的烟气中未被捕集的烟尘、脱硫塔产生的脱硫副产物(脱硫灰)、未完全反应的吸收剂等被气流夹带从脱硫塔顶部排出,进入脱硫电除尘器,这些粉尘绝大部分被捕集落入到电除尘器的灰斗中。根据脱硫塔内压差的控制信号,一、二电场灰斗下的大部分脱硫灰通过空气斜槽返回脱硫塔参与进一步的化学反应,形成了物料的再循环,只有一小部分物料排出脱硫系统。

由自卸式密封罐车运来的生石灰粉经罐车自带的输送装置输送到生石灰仓,生石灰仓仓底设有排放口,通过插板阀、旋转阀、给料螺旋输送机、称重螺旋输送机进入干式消化器进行生石灰粉的消化,生成干态消石灰,然后通过仓泵输送到消石灰仓。消石灰仓仓底设有排放口,消石灰通过仓泵输送至中继仓。中继仓底设置气力输送装置,消石灰以送粉鼓风机提供的压缩空气为

动力,通过喷射装置喷入脱硫塔内参加脱硫反应。

增湿系统以压缩空气为动力,通过双流体雾化喷枪使水细化成50~150μm的雾滴,喷入到反应塔中的烟气中去,使烟气温度降低、湿度增大,保证较好脱硫反应条件。所以增湿系统主要由水及压缩空气系统组成。主要设备有工艺水箱、工艺水泵、双流体雾化喷枪、雾化空压机等。

2、脱硫系统存在问题

2.1以往出现问题及解决办法

2.1.1.#6机组返料斜槽堵塞多次。原因一是流化布磨损泄漏,灰进入气室,造成返料斜槽堵塞,更换流化布后正常;二是电动流量阀磨损,泄漏严重,流量无法控制,造成返料斜槽堵塞,更换修复电动流量阀后正常。

2.1.2 #6机组消化水泵腔室和螺杆磨损、发涩造成消化水泵启动超时,消化器无法正常运行。增加了一台消化水泵,修复以前的水泵互为备用。

2.1.3脱硫塔积灰、塌灰多次,造成锅炉灭火机组停运。采取的措施一是运行加强脱硫塔出、入口压力和床压的监视,发现异常进行涮床;二是每次机组停运后进行脱硫塔清灰,启动后记录各负荷下的空床参数,以备异常时对比数据。

2.1.4各料位DCS计指示不准。经过更换各厂家料位计后,安装就地测量装置。

2.1.5工艺水泵烧电机。原工艺水泵与电机为直联方式,电机主轴弯曲,设备可靠性较差,现改为IS型泵,设备可靠性得到进提高。

2.2目前存在问题

由于煤质、烟气温度、烟气量及石灰品质比脱硫系统设计参数相比发生较大变化,导致脱硫系统存在以下主要问题:

2.2.1消石灰输送系统出力不满足脱硫正常运行需要量。

2.2.1.1从消化器出口到消石灰仓的仓泵以及从消石灰仓到中继仓的仓泵出力均不能满足脱硫正常运行需要量。

2.2.1.2 从中继仓到脱硫塔的消石灰输送能力不能满足脱硫正常运行需要量。

2.2.2现有压缩空气系统出力不满足脱硫用气量。

2.2.3脱硫塔喷嘴雾化效果不好,造成脱硫塔积灰塌灰,运行不稳定。

2.2.4脱硫塔底部排灰困难。

2.2.5脱硫系统对锅炉负荷适应性不强。

2.2.6消化器除尘系统运行不稳定。

针对以上问题,建议对#6机组脱硫的消石灰输送系统、压缩空气系统、增湿水系统、塔底灰处理系统进行改造、并增加烟气再循环,消化器除尘器更换为适合高粉尘高含湿量的布袋除尘器。

3、问题分析及改造方案

3.1 脱硫塔积灰、塌灰比较严重

脱硫塔积灰、塌灰情况比较严重,主要原因是由于喷嘴雾化情况不好引起的,#6机组脱硫塔经过流场模拟发现塔内流场紊乱,这也是引起脱硫塔积灰的一个原因。

改造方案:

3.1.1脱硫塔入口段增设导流板

导流板采用16MnR材质,与脱硫塔连接方式为焊接连接。根据#6机组增加导流板的情况,尽快进行塔内流场试验,确定并完善导流板增加方案。并根据导流板磨损情况适当考虑防磨处理。增加导流板后流场模拟见下图:

由上图可以看出,脱硫塔内流场得到了很好的改善,从文丘里喷射出的烟气,水平动量得到了很好的抵消,并且阻力损失较小,流型在较大的高度内呈现环核流动状态,较好的体现了流化床的运行行为。

3.1.2增湿水系统改造

采用双流体雾化喷嘴,每台脱硫塔设两层喷嘴,安装标高不变,每塔设6个喷嘴,喷嘴额定流量为6m3/h,喷嘴采用欧洲PNR公司生产的双流体喷嘴;每个喷枪增设一个喷枪托架,托架迎风侧增设防磨层,喷枪增加简易防磨护套,定期检查更换。原工艺水泵符合要求可以利用原有,不符合要求必须更换。

3.2 脱硫塔底部缺少排灰装置,排灰困难

改造方案:

保留脱硫塔底插板门及电动锁气给料机,增设埋刮板输送机、斗式提升机、渣仓、双轴加湿搅拌机等设备。

根据现场情况结合工艺要求,对于增设的埋刮板输送机、斗式提升机、电动锁气给料机、双轴加湿搅拌机,现场就近配控制箱。埋刮板输送机和斗式提升机,每套设置一个现场控制箱;电动锁气给料机和双轴加湿搅拌机,每套设置一个现场控制箱。电源拟就近取自电控楼内电气配电柜。电缆敷设尽量利用原电缆通道或电缆桥架。

3.3 脱硫系统对锅炉负荷适应性不强

脱硫系统对锅炉负荷适应性不强,低负荷情况下,脱硫塔内喉口流速降低,脱硫塔内灰循环无法建立,影响脱硫系统运行。

改造方案:

增加一条净烟气再循环烟道,由引风机出口烟道引出,接入脱硫塔入口烟气联箱,净烟气再循环烟道设置调节型烟气挡板门,根据机组负荷情况调节风门开度。

3.4 石灰消化系统

#6机组使用干式消化器消化制取消石灰粉,现消化器存在一些问题。石灰消化过程中,消化器顶端安装的布袋除尘器的滤袋经常发生损坏,需要对消化器进行一些改造。

3.4.1消化器经常性堵塞

石灰消化过程中,由于产生大量的蒸汽和粉尘,消化器顶端安装的布袋除尘器在运行过程中大量的粉尘凝结在内部。运行一段时间之后,布袋除尘器内累积灰量达到一定程度时,积灰突然垮塌,堵住消化器,消化器从而无法继续运行,需要进行清灰处理。布袋除尘器反吹系统运行正

常,但是反吹过程不能清理下布袋上粘附的石灰。

改造方案:

此问题经过我方咨询消化器厂家,得到的答复:主要问题在消化器布袋除尘器的滤袋材质不符合要求,不能适应这种高粉尘高含湿量的环境,在此种环境中会因为灰浓度高、湿度大,而造成糊袋。因此建议改变现有布袋除尘器的滤袋的材质,并准备两套滤袋。其中一套滤袋使用一段时间后,更换另外一套滤袋。替换下来的滤袋进行清洗和晾干后备用。如此交替进行,可以在一定程度上避免因为布袋除尘器积灰后塌灰而堵住消化器。

3.4.2消化器出力不够

消化器设计消化能力为10t/h(合同为16 t/h),但目前实际的消化能力仅能达到4~5t/h,且由于前述原因,经常停机检修。且根据最新煤质的计算结果,三台机组同时满负荷运行需要消石灰量为18.5t/h。

改造方案:

我们根据此问题咨询消化器厂家,主要问题可能是一方面布袋除尘器运行阻力不符合要求,造成消化器不进料。另一方面,可能是由于现场使用的生石灰品质不符合该消化器的设计要求。建议落实消化器对生石灰品质的要求。

另外一个原因可能与后续的消石灰输送系统的出力不足有关。消化器制造出的消石灰不能被及时的排出,消化器不能正常工作。

根据计算,现有的消化器即使能够达到10t/h的消化出力,也不能满足现有脱硫系统的满负荷运行。需要新上一套消化系统。

3.5 消石灰输送系统

3.5 .1 从消化器出口到消石灰仓的仓泵以及从消石灰仓到中继仓的仓泵出力均不够。

改造方案:

仓泵输送消石灰能力不够,可以从两方面来解决,一方面,由于输送系统使用一段时间后输送能力下降,可能是因为输送系统长期使用,输送系统的管道或者设备内壁积灰,造成出力下降,需要对设备进行清理检修。另一方面,由于发电机组燃煤量、燃煤煤质或者运行参数的变化造成烟气参数的变化,原输送设计能力不能满足现在的运行条件要求。可以采取增加一套气力输送装置。

需要变动的设备根据所采取的方案确定。其中增大单台仓泵的输送能力最经济。

3.5.2 从中继仓到脱硫塔的消石灰输送能力不够。

由于含硫量和烟气量有变化,现在的中继仓到脱硫塔的原输送能力不能满足脱硫需要。

改造方案:

从中继仓到脱硫塔的输送采用稀相输送,根据我方重新核算,计算基础参数参见下表,现在的消石灰用量为6.2t/h ,稀相输送应保证50%以上的输送裕量,因此设计能力应能达到9.3t/h。需要更换型号大的风机和管道。

计算基础参数

#5、#6、#7机组脱硫压缩空气系统原有2台20m3/min输送空压机(三台机组共用)和2台24m3/min雾化空压机(三台机组共用)。三台机组脱硫系统的双流体雾化喷嘴改造后耗气量在56m3/min左右,原有压缩空气系统不能满足脱硫用气量。

改造方案:

增加3台24m3/min空压机,与原有2台空压机一起采用三运二备运行模式。

5#、6#、7#机组脱硫单独设立压缩空气站,七台空压机集中布置(新增的3台和原有的4台),包含管路改造,压缩空气站布置于7#机组南侧。原4台空压机及3台冷干机需移至压缩空气站,需要敷设新的电缆。

3.7电气部分改造方案:

埋刮板输送机等新增设备设置就地控制箱,根据现场情况就近设备布置。电源从脱硫电控楼引接,室外控制箱防护等级不低于IP54。空压机改造所需回路,需增加两面开关柜,开关柜放置在电厂电控楼低压配电室。

3.8仪控部分改造方案:

工作范围为塔底灰系统改造等配套的仪控系统改造。负责本工程脱硫岛改造工作范围内仪控系统的系统设计、设备及材料供货及安装、调试及试运行等。

4.改造后性能预计效果

分项工程结束后,应进行调试,所有改造工程结束后,应对其进行168h连续运行验收测试,并提供调试及验收报告。

本工程结束后,应达到改造前系统脱硫效率和除尘效率,并能保证改造后各系统能达到如下预期性能保证:

4.1脱硫系统不妨碍锅炉燃烧的正常运行。

4.2改造后脱硫系统能承受锅炉负荷处于40%-100%之间时,不低于±5%/min负荷波动下能正常运行。

4. 3消石灰输送系统改造后能够满足如下保证值:

4. 3.1从消石灰仓到中继仓的仓泵出力均能满足脱硫正常运行需要量。

4. 3.2从中继仓到脱硫塔的消石灰输送能力能满足脱硫正常运行需要量。

4. 4 压空系统改造后能满足如下保证值:

满足脱硫系统和消石灰输送系统压缩空气用量。

4. 5 増湿水系统改造后能满足如下保证值:

4.5.1改造后脱硫系统能够适应机组负荷变化,并在考虑锅炉排烟温度升高的情况下留有裕量。

4. 5.2改造后脱硫塔内增湿降温稳定性增加,避免因喷嘴雾化不好造成积灰、塌灰现象,影响系统稳定。

4. 6塔底灰系统改造后能满足如下性能保

证值:

塔底灰改造后能够将脱硫塔底部的落灰及时排出,保证机组的安全运行。

4.7 增加再循环烟道后能满足如下性能保证值:

脱硫系统在锅炉机组低负荷运行时能够正常投运,且不影响锅炉安全运行。

4.8 增加消化器除尘器后能满足如下性能保证值:

消化器更换布袋除尘器后能够改善消化器堵灰。

5. 结束语

某厂150机组配备的半干法脱硫系统从设计、设备选型、施工等方面都存在一些不尽人意的问题。对这些问题进行分析,一方面有助于我们根据实际情况,积极采取相应防范措施,保证我公司脱硫系统安全稳定运行。另一方面可以为今后新机组脱硫系统设计、设备选型提供一定的借鉴!

致谢

本文编写过程中得到该厂领导及生技部、燃灰维护部领导的大力支持、得到山大能源公司的大力支持指导,以及公司有关技术人员集体智慧的支持,在此一并感谢!!!

参考文献

[1]该公司半干法脱硫运行规程

[2]该公司半干法脱硫检修规程

[3]工业脱硫技术(化学工业出版社)

[4]脱硫技术改造方案(山东山大能源环境有限公司编写)

烟气循环流化床一体化脱硫、脱硝技术

烟气循环流化床一体化脱硫、脱硝技术 摘要:利用烟气循环流化床在脱硫方面的技术已日渐成熟,但利用该装置同时 实现脱硝方面的研究在我国尚处于初级阶段。此文取石灰与粉煤灰制作的强活性 吸收剂,向里边投入氧化性M添加剂之后,将其变成拥有强活性和强氧化性的活性吸收剂,且运用烟气循环流化床和这一活性吸收剂实施一体化脱硫、脱硝的实验,以进一步研究烟气循环流化床一体化脱硫、脱硝技术。 关键词:烟气循环流化床;脱硫、脱硝技术;吸收剂 一、研究背景 我国近几年颇受雾霾天气的困扰,这种天气形成的一大因素是空气当中的 SO2与氮氧化物过多,火电厂等排出的烟气成分中这两种物质的比重就极大,纵 使浓度不算太高,但排放量太大,依然会对空气质量有很严重的影响。所以,要 加强火电厂等烟气污染企业的烟气处理,脱硫、脱硝一体化技术在这方面是强项,不但脱硫、脱硝的效率高,而且成本低,能够实现能源的循环利用,也是火电厂 等烟气污染企业的希望。 近些年,烟气循环流化床在脱硫技术方面的势头强劲,其与湿法脱硫比起来,于投入资金和维护费用两种情况下都体现出十分明显的优势,所以其在国际上的 使用越来越多。伴随新型烟气循环流化床脱硫装置的制造与引入,脱硫事业获得 了很好的成效。然而,该项技术并不涉及脱硝,导致该技术的应用前景大受影响。本文针对烟气循环床在脱硫的过程中如何脱硝进行分析,希望能够为拓展该技术 的使用范围提出有力依据。 二、实验研究 2.1一体化脱硫、脱硝实验 把流化床反应器安装于内径3000mm、高度5000mm圆筒内,于其主体设测 温处,实验中,运用SO2、NO、H2O与空气混合之后的气体仿效现实烟气,将该 气体热处理以后输入流化床反应器,由引风机提供动力,系统于负压情况下工作 应用螺旋式给料机把强活性吸收剂投入反应器里,然后对加料口打开程度予以适 度更改,可以控制吸收剂供应多少与快慢。旋风除尘器收敛经过反应过程排出来 的固态物质,这之后固态物质经过回料返回到烟气流化床。高压水泵中出现的零 划水滴基本上是自流化床下边流进去,这能针对烟气中湿度情况予以调整,系统 中进入及流出的SO2和NO两者浓度是利用烟气分析仪予以检测。 2.2制作氧化性、强活性吸收剂 氧化性、强活性吸收剂制作流程:把质量比例情况是3∶1的粉煤灰与工业石灰投入水中进行混合消化,保持于90℃上下,6个小时之后再对之进行热烘处理 使之干燥,往里边混入少许具备较高氧化能力的锰盐粉,也就是M添加剂,再行搅散,使之能够匀实分布于吸收剂表层,且出现氧化点,最后制作出可以一同脱硫、硝的强氧化性、强活性吸收剂。 2.3脱除效率确认和产物研究 将系统内烟气进口与出口处的NO与SO2浓度予以检测,这样能够对脱除成 效予以确认。利用电子显微镜对粉煤灰,强氧化性、强活性吸收剂,经过反应的 强氧化性、强活性吸收剂三者分别进行观测并记录,应用X射线能谱仪对三种物 质的表层形态予以研究,且通过化学方法对系统反应之后产生的物质予以探究, 利用锌粉还原法检测残留物质中硝酸盐的质量并予以确认。 2.4反应器固态颗粒物的浓度

烟气循环流化床脱硫技术

大家先来看一道2017年的大气知识题: ?2017-1-P-50 50.关于循环流化床干法烟气脱硫,在正常运行条件下,以下哪些说法是正确的?【】(A)循环是指烟气循环(B)循环是指灰渣循环 (C)脱硫塔内温度越高,脱硫效率越高(D)塔内流速越低,脱硫效率越高 解析: 《教材上册(第四版)》P197,CFB-FGD借助循环流化床原理,通过脱硫剂(灰渣)的多次循环利用,增大脱硫剂与烟气的接触时间,从而提高脱硫剂的利用率,故A选项错误、B选项正确;《教材第1分册(第三版)》P759,近绝热饱和温度越低,浆液蒸发慢,液相存在时间长,脱硫剂与烟气中二氧化硫的离子反应时间长,脱硫效率高,另一方面必须保证脱硫剂到达脱硫塔出口前完全干燥,以及整个脱硫系统在露点以上安全运行,否则将引起系统黏壁堵塞和结露,这要求近绝热饱和温度大于℃,故C选项错误;塔内流速越低,接触时间长,脱硫效率越高,D选项正确。 张工培训答案:【BD】 上面这道题的“C选项”涉及到的是“CFB-FGD”设计参数对脱硫性能的影响因素,那么,现在咱们来看看《第一分册(第三版)》P759关于该部分知识点的介绍是怎么样的(如下):

再来看看《教材上册(第四版)》,P197也有关于“烟气循环流化床脱硫技术”相关知识点的介绍,但是相对于《第三版》教材来说,删除了“烟气循环流化床脱硫技术”的反应机理、主要性能设计参数及性能影响因素两个最重要的知识点,而2017年第一天下午的多选题-50题恰好就考到了,这充分说明:并不是第三版教材中删掉的内容就不考了,注册环保工程师考试的内容范围是不固定的,而且每年考试的范围比较广。 针对上述问题,笔者在张工培训注册环保工程师大气精讲班上特意补充了上述内容(如下),还请各位小伙伴们能补充到复习教材的相应位置处哦:

循环流化床半干法脱硫工艺流化床的建立及稳床措施

循环流化床半干法脱硫工艺流化床的建立及稳床措施浙江洁达环保工程有限公司吴国勋、余绍华、傅伟根、杨锋 【摘要】 循环流化床半干法脱硫工艺技术要求高,建立和稳定流化床是两个关键点,只有做好恰当的流化床设计和配置合理的输送设备,才可保证脱硫系统的稳定高效运行。 【关键词】 循环流化床半干法脱硫床体 1、简介 循环流化床脱硫工艺技术是较为先进的运用广泛的烟气脱硫技术。该法以循环流化床原理为基础,主要采用干态的消石灰粉作为吸收剂,通过吸收剂的多次再循环,延长吸收剂与烟气的接触时间,以达到高效脱硫的目的,其脱硫效率可根据业主要求从60%到95%。该法主要应用于电站锅炉烟气脱硫,已运行的单塔处理烟气量可适用于6MW~300MW机组锅炉,是目前干法、半干法等类脱硫技术中单塔处理能力最大、在相对较低的Ca/S摩尔比下达到脱硫效率最高、脱硫综 合效益最优越的一种方法。 该工艺已经在世界上10多个国 家的20多个工程成功运用;最大业 绩项目烟气量达到了1000000Nm3/h, 最高脱硫率98%以上,烟尘排放浓度 30mg/Nm3以下,并有两炉一塔、三炉 一塔等多台锅炉合用一套脱硫设备 的业绩经验,有30余套布袋除尘器的业绩经验,特别是在奥地利Thesis热电厂300MW机组的应用,是迄今为止世界上干法处理烟气量最大的典范之作;在中国先后被用于210MW,300MW,50MW 燃煤机组的烟气脱硫。 但是很多循环流化床半干法脱硫项目由于未能建立稳定的床体,导致项目的失败,不能按原有计划完成节能减排的要求。因此很有必要在此讨论一下关于“循

环流化床半干法工艺流化床的建立及稳定措施”的相关问题。 2、循环流化床脱硫物理学理论 循环流化床脱硫塔内建立的流化床使脱硫灰颗粒之间发生激烈碰撞,使颗粒表面生成物的固形物外壳被破坏,里面未反应的新鲜颗粒暴露出来继续参加反应,从而客观上起到了加快反应速度、干燥速度以及大幅度提高吸收剂利用率的作用。另外由于高浓度密相循环的形成,塔内传热、传质过程被强化,反应效率、反应速度都被大幅度提高,而且脱硫灰中含有大量未反应吸收剂,所以塔内实际钙硫比远远大于表观钙硫比。 而建立稳定的流化床,就需要有分布均匀的流场和一定高度的床料。可见该技术的重点是:1、建立稳定的流化床;2、建立连续循环的脱硫灰输送系统。而这两个基本项的控制技术就成为了整个脱硫项目成功与否的关键。 首先我们先来了解下循环流化床的动力学特性。 脱硫循环流化床充分利用了固体颗粒的流化特性,采用的气固流化状态为快速流态化(Fast Fluidization)。快速流态化现象即细颗粒在高气速下发生聚集并因而具有较高滑落速度的气固流动现象,相应的流化床称为循环流化床。 当向上运动的流体对固体颗粒产生的曳力等于颗粒重力时,床层开始流化。 如不考虑流体和颗粒与床壁之间的摩擦力,根据静力分析,可得出下式,并通过式(2-1a 、1b)可以预测颗粒的最小流化速度。 ()12 12 3221R c g d c c u d e r p r p f mf p mf -??? ? ????-+= μρρρ=μ ρ (2-1a) ()2 3μρρρg d Ar r p r p -= (2-1b) 式中: c 1=33.7,c 2=0.0408 mf e R ——对应于mf u 的颗粒雷诺数; p ρ ——颗粒密度,kg/m 3; r ρ ——流体密度,kg/m 3;

循环流化床半干法脱硫装置计算书编辑版

一、喷水量的计算(热平衡法) 参数查表: 144℃: ρ(烟气)=0.86112Kg/m 3; C p(烟气)=0.25808Kcal/Kg ·℃ 78℃: ρ(烟气)=1.0259Kg/m 3; C p(烟气)=0.25368Kcal/Kg ·℃ 144℃:C 灰=0.19696Kcal/Kg ·℃ 78℃: C 灰=0.19102Kcal/Kg ·℃;C 灰泥,石膏=0.2Kcal/Kg ·℃ C Ca(OH)2=0.246Kcal/Kg ·℃ 1.带入热量: Q 烟气, Q 灰,Q Ca(OH)2,Q 水 M 烟气 =ρ 烟气 ·V 烟=510453.286112.0??510112.2?=(Kg/hr ) Q 烟气=C P ·M ·t 5510489.7814410112.225808.0?=???=(Kcal/hr) M 灰253105694.4810453.2108.19?=???=-(Kg/hr ) Q 灰=C 灰?M 灰?t =52103775.1144105694.4819696.0?=???(Kcal /hr) Q Ca(OH)2=C Ca(OH)2?M ?20=20246.02)(??OH Ca M 当 Ca/S=1.3, SO 2浓度为3500mg/m 3时 Kg M OH Ca 244.151810743.185 .06410453.21035003532 )(=???????=-- ∴Q Ca(OH)2=76.746920244.1518246.0=??(Kcal/hr) Q 水=cmt=χχ20201=??(Kcal/hr) 其中χ为喷水量 2.带出热量:Q 灰3,Q 烟气,Q 灰2,Q 蒸汽,Q 散热 M 灰3=M Ca(OH)2=1518.244Kg ; Q 灰3=Q Ca(OH)2=7469.76(Kcal/hr) Q 烟气=cmt=551079.417810112.225368.0?=???(Kcal/hr); Q 灰2=264.7576810785694.482.02=???(Kcal/hr) Q 蒸汽=630.5χ(Kcal/Kg ) 热损失以3%计: Q 散=(Q 烟气+Q 灰) 03.0?03.0)103775.110489.78(55??+?= 3.系统热平衡计算: Q in =Q out ,即: 03 .0)103775.110489.78(5.630264.757681079.4176.74692076.7469103775.110489.785 5 5 55??+?+++?+=++?+?χχ ∴χ=5.72(t/hr)

循环流化床脱硫效率影响因素浅谈.

循环流化床脱硫效率影响因素浅谈 1、引言 我国已经成为世界三大酸雨区之一,且我国的酸雨主要为硫酸型的。分析其主要原因是煤的不洁净燃烧所造成。控制和减少火电厂SO2的排放对于改善我国目前严峻的环境问题和实现电力行业的持续发展意义重大。我国目前火电厂燃煤中,优质低硫煤少,而高硫煤所占比重较大。所以,必须对电厂燃煤烟气中的SO2排放严格控制。烟气脱硫就显得尤为重要,烟气脱硫常用的方法有干法、半干法、湿法等。 循环流化床烟气脱硫属于半干法脱硫,以消石灰(Ca(OH)2)为脱硫剂。山西长治漳山发电公司2×300MW机组采用此法,效果良好。 2、循环流化床烟气脱硫系统的基本流程及脱硫原理 漳山发电公司循环流化床脱硫与电除尘器相结合,其基本工艺流程如图2-1所示。 烟气先进入预除尘器,预除尘器的作用是除去烟气中的大颗粒粉煤灰,收尘效率设计为85%左右。经预除尘的烟气进入脱硫塔,在位置2处喷入脱硫剂即消石灰,在位置1处进行喷水降温、增湿。烟气中的硫氧化物在脱硫塔内上升过程中与消石灰反应生成CaSO3和CaSO4,从而达到脱硫的目的。漳山发电公司的后除尘器共有四级即四个电场,其中一二电场共用一个灰斗,三电场和四电场各有一个灰斗。由于喷入脱硫塔的消石灰不可能完全反应。所以,一二电场将粉煤灰与消石灰的混合物回收参与再循环,通过回料斜槽的气动调阀控制回灰量的大小,三电场在一二电场灰量不足时也会参与循环以维持脱硫塔内的差压。四电场回收的灰中消石灰很少且活性低,所以将灰全部输走。后除尘器的收尘效率设计为99.9%,后除尘器出来的烟气经过烟囱排入大气。

半干法脱硫的基本原理是SO2和SO3与Ca(OH)2的化学反应,即: Ca(OH)2 + SO2 → CaSO3+ H2O (2-1) Ca(OH)2 + SO3 → CaSO4 + H2O (2-2) 其中,烟气中的硫氧化物以SO2为主,所以反应以2-1为主。 3、脱硫效率影响因素 如何让喷入的消石灰更加充分的与烟气中的硫氧化物反应,怎么样提高脱硫效率?这是我们要考虑的主要问题。一般情况下,其影响因素主要有温度、湿度、循环倍率、钙硫比等。下面我们结合漳山发电公司的实际应用作以简要分析。 3.1温度对脱硫效率的影响 温度是对脱硫效率影响最明显的一个因素,也最容易控制。 消石灰Ca(OH)2与二氧化硫SO2的反应是放热反应,温度高不利于反应的正向进行。如图3-1为漳山发电公司脱硫投运后的脱硫塔内的温度与脱硫率的关系曲线。 由图3-1可以看出,在烟气量,烟气中的二氧化硫SO2以及喷入脱硫塔内的消石灰等基本恒定的前提下,温度越低,脱硫率越高。所以,为了提高脱硫率我们应该尽可能降低温度。漳山发电公司根据本公司的实际情况,考虑到亚硫酸的露点温度在50~55℃之间,为了尽可能避免酸腐蚀保证设备的安全运行,将温度设定在70~75℃之间。这样既可以保证设备的安全,又可以有较高的脱硫率。 3.2湿度对脱硫效率的影响 湿度是影响脱硫效率的另一个重要因素。在其他条件不变的情况下,脱硫效率随着湿度的增大而增大。但是,当湿度增大到一定值以后,脱硫率几乎不再随着湿度的增大而变化。湿度与脱硫率的关系如图3-2所示。

烟气循环流化床(CFB-FGD)干法脱硫工艺

烟气循环流化床(CFB-FGD)干法脱硫工艺 gaojilu 发表于2006-2-20 20:40:31 工艺流程 从工艺流程图表明一个典型的 CFB-FGD 系统由吸收塔、除尘器、吸收剂制备系统、物料输送系统、喷水系统、脱硫灰输送及存储系统、电气控制系统等构成。 来自锅炉的空气预热器出来的烟气温度一般为 120~180℃左右,通过一级除尘器(当脱硫渣与粉煤灰须分别处理时),从底部进入吸收塔,在此处高温烟气与加入的吸收剂、循环脱硫灰充分预混合,进行初步的脱硫反应,然后通过吸收塔底部的文丘里管的加速,吸收剂、循环脱硫灰受到气流的冲击作用而悬浮起来,形成流化床,进行第二步充分的脱硫反应。在这一区域内流体处于激烈的湍动状态,循环流化床内的Ca/S值可达到40~50,颗粒与烟气之间具有很大的滑落速度,颗粒反应界面不断摩擦、碰撞更新,极大地强化了脱硫反应的传质与传热。 在文丘里出口扩管段设一套喷水装置,喷入的雾化水一是增湿颗粒表面,二是使烟温降至高于烟气露点20℃左右,创造了良好的脱硫反应温度,吸收剂在此与SO2充分反应,生成副产物CaSO3·1/2H2O,还与SO3、HF和HCl 反应生成相应的副产物CaSO4·1/2H2O、CaF2、CaCl2等。净化后的含尘烟气从吸收塔顶部侧向排出,然后进入脱硫除尘器(可根据需要选用布袋除尘器或电除尘器),通过引风机排入烟囱。由于排烟温度高于露点温度20℃左右,因此烟气不需要再加热,同时整个系统无须任何的防腐。 经除尘器捕集下来的固体颗粒,通过再循环系统,返回吸收塔继续反应,如此循环,少量脱硫灰渣通过物料输送至灰仓,最后通过输送设备外排。

240t循环流化床锅炉烟气脱硝脱硫除尘超低排放改造

240t/h循环流化床锅炉烟气脱硝、脱硫、除尘超低排放改造 技 术 方 案

4x240t/h循环流化床锅炉脱硫脱硝除尘超低排放改造方案 目录 公司简介 (3) 1 概述 (3) 1.1项目名称 (3) 1.2工程概况 (3) 1.3主要设计原则 (3) 2燃煤CFB锅炉烟气污染物超低排放方案 (4) 2.1总体技术方案简介 (4) 2.2脱硝系统提效方案 (4) 2.3脱硫除尘系统提效 (6) 2.4脱硫配套除尘改造技术 (7) 2.5引风机核算 (8) 3 主要设计依据 (10) 4 工程详细内容 (12) 5投资及运行费用估算 (14) 6 涂装、包装和运输 (15) 7 设计和技术文件 (17) 8 性能保证 (18) 9项目进度一览表 (20) 10 联系方式 (21)

公司简介 1概述 1.1项目名称 项目名称:XXXXXX机组超低排放改造工程 1.2工程概况 本工程为XXXX的热电机组工程。本期新建高温、高压循环流化床锅炉。不考虑扩建。同步建设脱硫和脱硝设施。机组实施烟气污染物超低排放改造,对现有的除尘、脱硫、脱硝系统进行提效,使机组烟气的主要污染物(烟尘、二氧化硫、氮氧化物)排放浓度达到燃气锅炉机组的排放标准(GB13223-2011)。 1.3主要设计原则 为了保证在满足机组安全、经济运行和污染物减排的条件,充分考虑老厂的运行管理现状,结合省环保厅要求,就电厂本期工程的主要设计原则达成了一致意见。主要设计原则包括有:1)燃煤锅炉烟气污染物污染物超低排放改造可行性研究,主要包括处理100%因气量 的除尘、脱硫和脱硝装置进行改造,同时增设臭氧氧化污染物深度脱除系统,改造后 烟囱出口烟尘排放浓度不大于10 mg/Nn3,SO2排放浓度不大于35 mg/Nn3; NO排放浓度不大于50 mg/Nn i,达到天然气燃气轮机污染物排放标准。 2)装置设计寿命为30年。系统可用率》98% 3)设备年利用小时数按7500小时考虑。 4)减排技术要求安全可靠。 5)尽量减少对原机组系统、设备、管道布置的影响。 6)改造时间合理,能够在机组停机检修期内完成改造。 7)工艺应尽可能减少噪音对环境的影响。 8)改造费用经济合理。 2燃煤CFB锅炉烟气污染物超低排放方案 2.1总体技术方案简介

3×160th 垃圾焚烧炉循环流化床半干法烟气脱硫方案设计

3×160t/h 垃圾焚烧炉循环流化床半干法烟气脱硫方案设计 摘要:本文根据某垃圾焚烧厂3×160 t/h 垃圾焚烧厂锅炉具体情况,进行了循环流化床半干法烟气脱硫工程的工艺设计。本工艺利用原有的静电除尘器作为预除尘系统,采用“一电场预除尘+循环流化床半干法烟气脱硫+布袋除尘器”的工艺流程,采用一炉一塔设计,单塔塔径3.1m,塔高22m。脱硫时,设计处理量约为260000 Nm3/h。预计脱硫效率90%,SO2 排放浓度≤80 mg/Nm3,烟尘排放浓度≤20 mg/Nm3。 关键词:烟气脱硫;循环流化床半干法;方案设计。 SDFGD engineering design program for 3×160t/h waste incineration boiler Abstract: In this paper, according to the 3×160t/h waste incineration plant boiler of a factory, a process design of the circulating fluidized bed semi-dry flue gas desulfurization project is proposed. In this program, the original electric field is retained as a pre-precipitator electrostatic precipitators, and the process can be described as “a pre-electric dust + SDFGD + bag filter”. The design is used the one-boiler-and-one-tower process. The single tower diameter is 3.1m. It’s height is 22 m. The capacity is designed for 260000 Nm3/h. Desulfurization effect is expected to 84%. SO2 concentration ≤80mg/Nm3, dust emission concentration≤ 20mg/Nm3. Key words: flue gas desulfurization; circulating fluidized bed semi-dry flue gas desulfurization; design program. 1引言 1.1 设计背景和意义 我国是燃煤大国,连续多年SO2 排放总量超过2000万t,已成为世界上最大的SO2排放国。烟气脱硫是控制SO2 排放最有效、最经济的手段。目前,我国大型火电厂烟气脱硫主要采用国外应用较成熟、业绩较多的石灰石/石膏湿法工艺,但由于湿法工艺系统复杂、投资较大、占地面积大、耗水较多、运行成本较高。而国内诸多中小型企业迫切需要投资少、运行成本低、效率高的脱硫技术。德国鲁奇能捷斯集团(LLAG)公司在上世纪70年代末率先将循环流化床工艺用于烟气脱硫,开发了一种循环流化床烟气脱硫工艺(Circulating Fluidized Bed Flue Gas Desulfurization,简称CFB-FGD;)。经过近30年的不断改进(主要是在90

循环流化床干法脱硫工艺描述

福建龙净环保循环流化床干法脱硫除尘一体化工艺描述 1.循环流化床干法脱硫系统(CFB-FGD)概述 CFB-FGD烟气循环流化床干法脱硫技术是循环流化床干法烟气脱硫技术发明人---世界著名环保公司德国鲁奇能捷斯公司(LLAG)公司具有世界先进水平的第五代循环流化床干法烟气脱硫技术(CirculatingFluidizedBedFlueGasDesulphurization,简称CFB-FGD),该技术是目前商业应用中单塔处理能力最大、脱硫综合效益最优越的一种干法烟气脱硫技术。该技术已先后在德国、奥地利、波兰、捷克、美国、爱尔兰、中国、巴西等国家得到广泛应用,最大机组业绩容量为660MW。简要介绍如下:发展历史 德国鲁奇能捷斯(LLAG)公司是世界上最早从事烟气治理设备研制和生产的企业,已有一百多年的历史(静电除尘器的除尘效率计算公式——多依奇公式,就是该公司的工程师多依奇先生发明的)。LLAG在上世纪六十年代末首先推出了循环流化床概念,此后把循环流化床概念应用到四十多个不同的工艺。LLAG在发明循环流化床锅炉的基础上,首创将循环流化床技术(CFB)应用于工业烟气脱硫,经过三十多年不断的完善和提高,目前其循环流化床干法烟气脱硫技术居于世界领先水平。 LLAG公司的循环流化床干法烟气脱硫技术(CFB-FGD)的应用业绩已达150多台套,居世界干法脱硫业绩第一位。 (90年代初,全世界还只有LLAG公司拥有循环流化床烟气脱硫技术。目前,全世界除了直接转让鲁奇能捷斯公司的烟气循环流化床技术的公司外,其它所有的烟气循环流化床脱硫技术均来自于鲁奇能捷斯公司90年代初从鲁奇公司离开的个别职工所带走的早期技术。) 2001年10月,福建龙净首家技术许可证转让LLAG公司的CFB-FGD技术;

烟气循环流化床脱硫CFB-FGD技术使用简介

烟气循环流化床脱硫CFB-FGD技术简介 1. 概况 烟气循环流化床(CFB)脱硫技术在最近几年中已有所发展,不但用户增多,而且系统的烟气处理能力也比过去增大了,达到950,000Nm3/h,用于300MW机组的烟气脱硫系统。 目前,已达到工业化应用的主要有三种流程, 它们是: 1.由德国Lurgi公司开发的烟气CFB脱硫技术; 2.由德国Wulff公司在Lurgi技术基础上进行改进后的RCFB脱硫技术; 3.由丹麦F.L.Smith公司开发的GSA烟气脱硫技术。 早在七十年代初,擅长于冶金工业工程建设的德国Lurgi公司就采用了烟气循环流化技术对炼铝设备的尾气进行处理。八十年代中期,由于开始对环境质量的严格控制以及政府的有关法规的强行规定,德国的动力工业对烟气脱硫设备有了巨大的需求。Lurgi公司在原来用于炼铝尾气处理的技术的基础上开发了一种新的适用于锅炉和其它燃烧设备的干法烟气脱硫工艺,即烟气循环流化床脱硫工艺。 这种工艺以循环流化床原理为基础,通过吸收剂的多次再循环,使吸收剂与烟气接触时间增加,一般可达30分钟以上,从而大大提高了吸收剂的利用效率。这种工艺不但具有干法工艺的许多优点,如流程简单、占地少、投资低以及脱硫副产品呈干态,因而易于处理或综合利用,而且能在很低的钙硫比的情况下(Ca/S=1.1-1.2)达到与湿法工艺相近的脱硫效率(95%)。 德国Wulff公司是一个成立较晚的设计和建造烟气CFB脱硫工程的小型企业。它的创始人R. Graf原是Lurgi公司在烟气CFB脱硫技术开发方面的主要负责人。脱离Lurgi公司后自建了Wulff公司,专门从事烟气CFB脱硫技术的开发工作,在Lurgi技术的基础上开发研制了一种叫做回流式烟气循环流化床的烟气CFB脱硫技术,对烟气CFB脱硫技术作了较大的改进,使之更加适用于动力工业(详见后)。 F.L.Smith公司是丹麦最大的工业企业,在水泥工业及散装物料输送机械制造方面享有很高的声誉。该公司的子公司F.L.Smith Mill 专门从事环保设备设计和环境工程建设,在静电除尘器及烟气脱硫方面有不少业绩。它们独自开发的

循环流化床锅炉烟气脱硫项目技术方案

循环流化床锅炉烟气脱硫项目技术文件

一、项目简介 1.1.工程概述 贵公司现有1台75t/h锅炉因燃料中含有一定的硫份,在高温燃烧过程中产生的粉尘及SO2会对周围的大气环境造成一定的污染,根据国家环保排放标准和当地环保部门的要求进行进一步除尘脱硫,确保锅炉尾部排放粉尘及SO2按照国家和当地环保排放要求达标排放,并按照环保总量控制要求在确保达标的同时进一步削减粉尘及SO2的排放量。 本期工程为锅炉烟气治理工程除尘脱硫系统的设计、制造、安装及运行调试,针对业主方的现场特点,结合我司的工艺技术和工程经验,从工艺技术、安全运行、排放指标、经济指标等各方面进行了细致的论证,提出以双碱法湿法脱硫工艺处理,新建使用喷淋雾化型脱硫塔(GCT-75),另外方案中还包含脱硫剂制备、脱硫循环水系统、再生、沉淀及脱硫渣处理系统等,供业主方决策参考。 本技术方案在给定设计条件下, SO2排放浓度≤300mg/m3的标准进行整体设计。技术方案包括脱硫系统正常运行所必须具备的工艺系统设计、设备选型、采购或制造、运输、土建(构)筑物设计、施工及全过程的技术指导、安装督导、调试督导、试运行、考核验收、人员培训和最终的交付投产。 1.2.国脱硫技术现状 我国电力部门在七十年代就开始在电厂进行烟气脱硫的研究工作,先后进行了亚钠循环法(W-L法)、含碘活性炭吸附法、石灰石-石膏法等半工业性试验或现场中间试验研究工作。进入八十年代以来,电力工业部门开展了一些较大规模的烟气脱硫研究开发工作,同时,近年来我国也加入了烟气脱硫技术的引进力度。目前国主要的脱硫工艺有:(1)石灰石-石膏湿法烟气脱硫工艺 石灰石(石灰)-石膏湿法烟气脱硫工艺主要是采用廉价易得的石灰石或石灰作为脱硫吸收剂,石灰石经破碎磨细成粉状与水混合搅拌制成吸收浆液。在吸收塔,吸收浆液与烟气接触混合,烟气中的二氧化硫与浆液中的碳酸钙以及鼓入的氧化空气进行化学反应被吸收脱除,最终产物为石膏。脱硫后的烟气依次经过除雾器除去雾滴,加热器加

循环流化床锅炉原理说明

一、循环流化床锅炉及脱硫 1、循环流化床锅炉工作原理 煤和脱硫剂被送入炉膛后,迅速被炉膛内存在的大量惰性高温物料(床料)包围,着火燃烧所需的的一次风和二次风分别从炉膛的底部和侧墙送入,物料在炉膛内呈流态化沸腾燃烧。在上升气流的作用下向炉膛上部运动,对水冷壁和炉内布置的其他受热面放热。大颗粒物料被上升气流带入悬浮区后,在重力及其他外力作用下不断减速偏离主气流,并最终形成附壁下降粒子流,被气流夹带出炉膛的固体物料在气固分离装置中被收集并通过返料装置送回炉膛循环燃烧直至燃尽。未被分离的极细粒子随烟气进入尾部烟道,进一步对受热面、空气预热器等放热冷却,经除尘器后,由引风机送入烟囱排入大气。 燃料燃烧、气固流体对受热面放热、再循环灰与补充物料及排渣的热量带入与带出,形成热平衡使炉膛温度维持在一定温度水平上。大量的循环灰的存在,较好的维持了炉膛的温度均化性,增大了传热,而燃料成灰、脱硫与补充物料以及粗渣排除维持了炉膛的物料平衡。 煤质变化或加入石灰石均会改变炉内热平衡,故燃用不同煤种的循环流化床锅炉在设计及运行方面都有不同程度的差异。循环流化床锅炉在煤种变化时,会对运行调节带来影响。试验表明,各种煤种的燃尽率差别极大,在更换煤种时,必须重新调节分段送风和床温,使燃烧室适应新的煤种。 加入石灰石的目的,是为了在炉内进行脱硫。石灰石的主要化学成份是CaO .而煤粉燃烧后产生的SO2、SO3等,若直接通过烟囱排入大气层,必然会造成污染。加入石灰石后,石灰石中的的Cao 与烟气中的SO2、SO3等起化学反应,生成固态的CaSO3 、CaSO4 (即石膏),从而减少了空气中的硫酸类的酸性气体的污染。另外,由于流化床锅炉的燃烧温度被控制在800-900 ℃范围内,煤粉燃烧后产生的NOx 气体也会大大减少硝酸类酸性气体。 2、循环流化床锅炉的特点 可燃烧劣质煤 因循环流化床锅炉特有的飞灰再循环结构,飞灰再循环量的大小可改变床内(燃烧室)的吸收份额,即任何劣质煤均可充分燃烧,所以循环流化床锅炉对燃料的适应性特别好。

火电厂烟气脱硫工程技术规范 烟气循环流化床法

附件3 火电厂烟气脱硫工程技术规范 烟气循环流化床法 (征求意见稿) 编制说明 《火电厂烟气脱硫工程技术规范烟气循环流化床法》编制组 2015年11月 —39—

项目名称:火电厂烟气脱硫工程技术规范烟气循环流化床法 项目统一编号:2013-GF-010 承担单位:中国环境保护产业协会、福建龙净环保股份有限公司、武汉凯迪电力股份有限公司 编制组主要成员:燕中凯、刘媛、陈树发、彭溶、韩旭、詹威全、王建春、吴孝敏、刘碧莲、赵红 标准所技术管理负责人:姚芝茂 标准处项目经办人:范真真 —40—

目录 1任务来源 (42) 2规范修订的必要性 (42) 3主要工作过程 (44) 4国内外相关标准研究 (45) 5同类工程现状调研 (46) 6标准主要技术内容及说明 (66) 7标准实施的环境效益及技术经济分析 (77) 8标准实施建议 (78) —41—

1任务来源 为适应国家环境保护工作需要,2012年环境保护部《关于开展2013年度环境技术管理项目承担单位的通知》(环科函〔2012〕59号)下达《火电厂烟气脱硫工程技术规范烟气循环流化床法》(HJ/T178-2005)的修订任务,项目统一编号2013-GF-010。 参编单位有中国环境保护产业协会、福建龙净环保股份有限公司、武汉凯迪电力股份有限公司。 2规范修订的必要性 我国是一个“富煤、缺油、少气”的国家,长期以来,一次能源中的70%左右依赖于煤炭。近几年,虽然我国加大了绿色能源的替代建设工作力度,但能源结构决定了我国一次能源主要依赖于煤炭的局面在短期内还很难得到改善,煤烟型污染在未来相当长的一段时间内仍将是我国工业烟气的主要特点。我国煤炭消耗量从2000年的14.9亿吨,增加到了2014年的35.1亿吨,增长了2.4倍。其中电力行业仍然是煤炭消耗的大户。2014年燃煤发电量达到4.23万亿千瓦时,占全国发电量的74.9%,发电供热燃煤超过19亿吨。在污染物排放方面,约70%的烟尘、85%的二氧化硫及67%的氮氧化物排放都来自于燃煤,同时燃煤产生的SO3、汞等重金属污染物给环境和人类健康所带来的危害也是不可估量的。 目前,我国政府已高度重视大气污染防治工作,国务院多次转发大气污染控制通知。2013年9月国务院发布了《大气污染防治行动计划》,进一步提出了燃煤电厂脱硫、脱硝、除尘改造工程建设。所有燃煤电厂都要安装脱硫设施,每小时20蒸吨及以上的燃煤锅炉要实施脱硫。2013年,《火电厂大气污染物排放标准》(GB13223-2011)的实施,将烟尘、SO2、NOx的排放限值降至20、50、100 mg/m3,还新增了汞及其化合物的排放限值(0.03mg/m3)。2015年底,环境保护部、国家发展和改革委员会、国家能源局联合发布《全面实施燃煤电厂超低排放和节能改造工作方案》,全面实施燃煤电厂超低排放要求,将烟尘、SO2、NOx 的排放限值再次降低至10、35、50mg/m3。 烟气循环流化床法是可以与湿式石灰石/石灰-石膏法在大型机组上应用上进行比选的一种干法/半干法脱硫工艺。相关数据表明,2012年全国投运燃煤机组 —42—

循环流化床烟气脱硫工艺设计 资料

1、前言 循环流化床燃烧是指炉膛内高速气流与所携带的稠密悬浮颗粒充分接触,同时大量高温颗粒从烟气中分离后重新送回炉膛的燃烧过程。循环流化床锅炉的脱硫是一种炉内燃烧脱硫工艺,以石灰石为脱硫吸收剂,与石油焦中的硫份反应生成硫酸钙,达到脱硫的目的。较低的炉床温度(850℃~900℃),燃料适应性强,特别适合较高含硫燃料,脱硫率可达80%~95%,使清洁燃烧成为可能。 2、循环流化床内燃烧过程 石油焦颗粒在循环流化床的燃烧是流化床锅炉内所发生的最基本而又最为重要的过程。当焦粒进入循环流化床后,一般会发生如下过程:①颗粒在高温床料内加热并干燥;②热解及挥发份燃烧;③颗粒膨胀及一级破碎;④焦粒燃烧伴随二级破碎和磨损。符合一定粒径要求的焦粒在循环流化床锅炉内受流体动力作用,被存留在炉膛内重复循环的850℃~900℃的高温床料强烈掺混和加热,然后发生燃烧。受一次风的流化作用,炉内床料随之流化,并充斥于整个炉膛空间。床料密度沿床高呈梯度分布,上部为稀相区,下部为密相区,中间为过渡区。上部稀相区内的颗粒在炉膛出口,被烟气携带进入旋风分离器,较大颗粒的物料被分离下来,经回料腿及J阀重新回入炉膛继续循环燃烧,此谓外循环;细颗粒的物料随烟气离开旋风分离器,经尾部烟道换热吸受热量后,进入电除尘器除尘,然后排入烟囱,尘灰称为飞灰。炉膛内中心区物料受一次风的流化携带,气固两相向上流动;密相区内的物料颗粒在气流作用下,沿炉膛四壁呈环形分布,并沿壁面向下流动,上升区与下降区之间存在着强烈的固体粒子横向迁移和波动卷吸,形成了循环率很高的内循环。物料内、外循环系统增加了燃料颗粒在炉膛内的停留时间,使燃料可以反复燃烧,直至燃尽。循环流化床锅炉内的物料参与了外循环和内循环两种循环运动,整个燃烧过程和脱硫过程就是在这两种形式的循环运动的动态过程中逐步完成的。 3、循环流化床内脱硫机理 循环流化床锅炉脱硫是一种炉内燃烧脱硫工艺,以石灰石为脱硫吸收剂,石油焦和石灰石自锅炉燃烧室下部送入,一次风从布风板下部送入,二次风从燃烧室中部送入。石灰石在850℃~900℃床温下,受热分解为氧化钙和二氧化碳。气流使石油焦、石灰石颗粒在燃烧室内强烈扰动形成流化床,燃料烟气中的SO2与氧化钙接触发生化学反应被脱除。为了提高吸收剂的利用率,将未反应的氧化钙、脱硫产物及飞灰等送回燃烧室参与循环利用。按设计,II电站CFB锅炉钙硫比达到1.97时,脱硫率可达90%以上。 高硫石油焦在加热到400℃就开始有硫份析出,经历下列途径逐步形成SO2,即硫的燃烧过程: S--→H2S--→HS--→SO--→SO2 硫的燃烧需要一定的时间,石油焦床内停留时间将影响硫的燃烧完全程度,其随时间同步增长。同时床温对硫的燃烧影响很大,硫的燃烧速率随床温升高呈阶梯增高。 以石灰石为脱硫剂在炉膛内受高温煅烧发生分解反应: △CaCO3--→CaO + CO2 - 179 MJ/mol 上式是吸热反应。由于在反应过程中分子尺寸变小,石灰石颗粒变成具有多孔结构的CaO颗粒,在有富余氧气时与床内石油焦的析出硫分燃烧生成的SO2气体发生硫酸盐化反应:CaO + SO2 + 1/2 O2--→CaSO4 + 500 MJ/mol 使Ca0变成CaSO4即达到脱硫目的。但是生成的CaSO4密度较低,容易堵塞石灰石的细孔,使SO2分子不能深人到多孔性石灰石颗粒内部,所以,Ca0在脱硫反应中只能大部分被利用。 4:影响脱硫的因素与清洁燃烧控制 影响脱硫的因素有许多,一部分属于设计方面的因素,诸如给料方式的不同会有不同的脱硫效果;炉膛的高度影响脱硫时间等。另一部分属于运行方面的因素,如Ca/S摩尔比、床温、物料滞留时间、石灰石粒度、石灰石脱硫活性等,本文仅从运行角度,对II电站CFB锅炉的脱硫工艺进行研究分析。 4.1:Ca/S摩尔比的影响 当Ca/S比增加时,脱硫效率提高。由于II电站CFB锅炉燃烧用高硫石油焦的硫含量基本上为4%~4.5%,

循环流化床干法脱硫工艺描述

附件一循环流化床干法脱硫工艺描述 1.循环流化床干法脱硫系统(CFB — FGD )概述 CFB- FGD烟气循环流化床干法脱硫技术是循环流化床干法烟气脱硫技术发明人--- 世界著名环保公司德国鲁奇能捷斯公司(LLAG )公司具有世界先进水平的第五代循环流化床干法烟气脱硫技术(CirculatingFluidizedBedFlueGasDesulphurization,简称 CFB-FGD),该技术是目前商业应用中单塔处理能力最大、脱硫综合效益最优越的一种干法烟气脱硫技术。该技术已先后在德国、奥地利、波兰、捷克、美国、爱尔兰、中国、巴西等国家得 到广泛应用,最大机组业绩容量为660MW。简要介绍如下: 1.1 发展历史 德国鲁奇能捷斯(LLAG )公司是世界上最早从事烟气治理设备研制和生产的企业,已有一百多年的历史(静电除尘器的除尘效率计算公式一一多依奇公式,就是该公司的 工程师多依奇先生发明的)。LLAG在上世纪六十年代末首先推出了循环流化床概念,此后把循环流化床概念应用到四十多个不同的工艺。LLAG在发明循环流化床锅炉的基 础上,首创将循环流化床技术(CFB)应用于工业烟气脱硫,经过三十多年不断的完善和提高,目前其循环流化床干法烟气脱硫技术居于世界领先水平。 LLAG公司的循环流化床干法烟气脱硫技术(CFB-FGD)的应用业绩已达150多台套,居 世界干法脱硫业绩第一位。 (90年代初,全世界还只有LLAG公司拥有循环流化床烟气脱硫技术。目前,全世界除了直接转让鲁奇能捷斯公司的烟气循环流化床技术的公司外,其它所有的烟气循环流化床脱 硫技术均来自于鲁奇能捷斯公司 90年代初从鲁奇公司离开的个别职工所带走的早期技术。)2001年10月,福建龙净首家技术许可证转让 LLAG公司的CFB-FGD技术;

循环流化床半干法脱硫降低运行成本探讨

循环流化床半干法脱硫降低运行成本探讨 摘要本文通过对活性灰与脱硫灰混合制浆的实验叙述,并对实验结果进行分析,阐述了活性灰与脱硫灰混合制浆的可行性与经济性。 关键字循环硫化床;脱硫;活性灰;脱硫灰;混合制浆 The Running cost reducing of Circulating Fluid Bed-flue Gas Desulfurization YANG JianMingMA LiMin Panzhihua Steel City Groap Cooperation Branch Office617023 Abstract Throng the mixed pulping expriment of activated carbon and FGD residues,and analyzinng the expriment results,the article expatiates the feasibility and affordability of mixed pulping expriment of activated carbon and FGD residues. Keywords circulating fluidbed;desulfurization;activated carbon;FGD residues; mixed pulping 0 引言 环境保护在当下既是建设和谐社会的一项理念和政策,又是建设可持续发展的一项制度和技术,已广受世人关注[1]。近年来我国SO2排放量逐年上升,已成为制约经济和社会发展的重要因素。而烟气脱硫是控制SO2排放最有效的手段[2]。循环流化床烟气脱硫采用脱硫、除尘一体化工艺,具有系统简单、造价低、维护费用低、脱硫效率高等优点,是我国应用最多的半干法脱硫技术。攀钢钒有限公司烧结机脱硫系统也是采用此技术进行脱硫,工艺流程如图1。 图1 脱硫工艺流程图 烟气通过脱硫塔底部的文丘里管的加速,进入循环流化床,物料在循环流化床里,气固两相由于气流的作用,产生激烈的湍动与混合,充分接触,不断反应后的脱硫产物和未反应的脱硫剂,经旋风分离器回收装置回收,返回脱硫塔内继续循环利用。脱硫后的烟气经布袋除尘器净化后排出大气。

循环流化床干法脱硫工艺描述-龙净

附件一附件一 循环流化床干法脱硫工艺描述循环流化床干法脱硫工艺描述 1. 循环流化床干法脱硫循环流化床干法脱硫系统系统系统((CFB -FGD )概述 CFB -FGD 烟气循环流化床干法脱硫技术是循环流化床干法烟气脱硫技术发明人---世界著名环保公司德国鲁奇能德国鲁奇能捷斯捷斯捷斯公司公司公司((LLAG )公司具有世界先进水平的第五代循环流化床干法烟气脱硫技术(CirculatingFluidizedBedFlueGasDesulphurization ,简称CFB-FGD ),该技术是目前商业应用中单塔处理能力最大、脱硫综合效益最优越的一种干法烟气脱硫技术。该技术已先后在德国、奥地利、波兰、捷克、美国、爱尔兰、中国、巴西等国家得到广泛应用,最大机组业绩容量为660MW 。简要介绍如下: 发展历史 德国鲁奇能捷斯德国鲁奇能捷斯((LLAG )公司是世界上最早从事烟气治理设备研制和生产的企业,已有一百多年的历史(静电除尘器的除尘效率计算公式——多依奇公式,就是该公司的工程师多依奇先生发明的)。LLAG 在上世纪六十年代末首先推出了循环流化床概念,此后把循环流化床概念应用到四十多个不同的工艺。LLAG 在发明循环流化床锅炉的基础上,首创将循环流化床技术(CFB )应用于工业烟气脱硫,经过三十多年不断的完善和提高,目前其循环流化床干法烟气脱硫技术居于世界领先水平。 LLAG 公司的循环流化床干法烟气脱硫技术(CFB-FGD )的应用业绩已达150多台套,居世界干法脱硫业绩第一位。 (90年代初,全世界还只有LLAG 公司拥有循环流化床烟气脱硫技术。目前,全世界除了直接转让鲁奇能捷斯公司的烟气循环流化床技术的公司外,其它所有的烟气循环流化床脱硫技术均来自于鲁奇能捷斯公司90年代初从鲁奇公司离开的个别职工所带走的早期技术。) 2001年10月,福建龙净首家技术许可证转让LLAG 公司的CFB-FGD 技术;

相关文档
最新文档