数学建模B“拍照赚钱”的任务定价模型

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

精心整理

“拍照赚钱”的任务定价模型

摘要

本题要求分析“拍照赚钱”任务的服务模式,研究其定价规律,并设计新的任务定价方案,结合实际情况,修改定价模型,最终对新项目设计任务定价方案,并评价方案的实施效果。求解的具体流程如下:

结合前

用户

一、问题重述

“拍照赚钱”是移动互联网下的一种自助式服务模式。用户下载APP,注册成为APP的会员,然后从APP上领取需要拍照的任务(比如上超市去检查某种商品的上架情况),赚取APP对任务所标定的酬金。APP是该平台运行的核心,而APP中的任务定价又是其核心要素。如果定价不合理,有的任务就会无人问津,而导致商品检查的失败。

1. 研究附件一中项目的任务定价规律,分析任务未完成的原因。

2. 为附件一中的项目设计新的任务定价方案,并和原方案进行比较。

3. 实际情况下,多个任务可能因为位置比较集中,导致用户会争相选择,一种考虑是将这些任务联合在一起打包发布。在这种考虑下,如何修改前面的定价模型,对最终的任务完成情况又有什么影响?

4. 对附件三中的新项目给出你的任务定价方案,并评价该方案的实施效果。

二、模型假设

1.会员对任务没有主观偏好,不会因为自身原因不完成任务;

2.各个任务难度相等,不影响会员的选择;

3.假设会员与任务间的距离都是直线距离,不受道路、河流等的影响;

4.问题中所有数据都真实有效。

三、符号说明

符号含义

地球半径

两地之间的球面距离

,两地的纬度

两地的经度差

P 打包后总价

四、问题分析

4.1问题一分析

问题一要求研究附件一中项目的定价规律,并分析任务未完成的原因。首先应在地图中找出附件一中所有任务的位置,确定任务的分布规律,同时将附件二中会员的位置定位于地图。观察出这些数据集中分布在广东、东莞、佛山、深圳四个城市。以深圳市为例,对深圳的任务进行聚类分析,分析聚类结果,从而得出项目的定价规律。分别计算每个任务与所有会员之间的距离,结合每个任务周围十公里的会员数与任务的定价,确定任务未完成的原因。

4.2问题二分析

问题一可明显看出任务价格与任务周围人数和任务所在地区人口密度等有关。利用网络爬虫爬取广州等四市医院、学校、小区、超市等人口密度大的场所,统计成功任务方圆十公里内的人口密度大的场所个数。使用RBF神经网络分析,用所获得的数据训练神经网络,从而确定新的任务定价方案。将新的任务定价方案与附件一中的任务定价做出比较,说明两种定价方案的不同情况。

4.3问题三分析

问题三要求将任务打包发布并设计新的定价方案,以解决用户争相选择等问题。利用问题二中RBF神经网络模型求出新的定价方案下的任务的定价;利用问题一中两点经纬度坐标求出两点距离的计算方法求出每个任务与其他任务之间的距离,当两个任务之间的距离小于一定值时,便可将这两个任务种做打包处理。对于打包的任务,可将每个任务的定价结合附近会员的信息求出最终定价;对于未打包的任务,任务定价不变。

4.4问题四分析

问题四要求对一个新项目设计定价方案,并评价该方案的实施效果,将附件三中的任务的地理位置定位于地图上,可以发现任务集中分布于两个区域。通过前面的问题分析可知,任务定价与地区经济发展水平和会员距离有关。对会员而言,可以从任务的难易程度和会员到任务的距离两个方面判断会员对任务的偏好,从而使用灰度关联分析对的方法,建立不同任务对会员吸引力的模型,便可以对这种方案的实施效果做出分析。

五、模型建立与求解

5.1问题一模型

利用地图定位将附件一中经度纬度定位到地图中,发现这些数据集中分布在广东,东莞,佛山和深圳四个城市中。分别分析四个城市的价格规律,以深圳市为例。考虑到城市内部存在区的划分,因此对数据进行聚类分析,猜测聚类结果呈区域块状分布,结果同样验证猜测。这是价格的分布规律,其内部原因是受每个任务周围会员数量的影响。分别求出任务方圆每十公里会员人数,分析任务周围的会员数与任务定价的关系,从而确定任务未完成的原因。

5.1.1模型建立

此题采用Q型聚类法建立模型并求解。

Step1.距离

表5.1.1数据观测值

变量

样本

1

2

n

设为第i个样本的第k个指标,数据观测值如上表所示。在表中,每个样本有p个变量,故每个样本可以看作中的一个点,n个样本就是中的n个点。在中需要定义某种距离,第i 个样本与第j个样本之间的距离记为,在聚类过程中距离较近的点倾向于归为一类,距离较远的点应属于不同类。所定义的距离满足如下4个条件:

(1),对一切;

(2),当且仅当第i个样本与第j个样本的各个变量值相等;

(3),对一切;

(4),对一切的。

最常用的几种距离:

(1)Minkowski(闵可夫斯基)距离

,q>0

对于q=1时,对应的是绝对值距离

(2)绝对值距离

对于q=2时,对应的是Euclid距离

(3)Euclid(欧几里得)距离

Step2.数据标准化

标准化变换:

其中,均值:

方差:

变换后的数据均值为0,标准差为1,而且标准化后的数据与变量的量纲无关。

Step3.系统聚类

系统聚类法(hierarchicalclusteringmethod)是聚类分析诸多方法中用的最多的一种,其基本思想是:开始将n个样本各自为一类,并规定样本之间的距离和类与类之间的距离,然后将距离最近的两类合并成一个新类,计算新类与其它类的距离;重复进行两个最近类的合并,每次减少一类,直到所有样本合并为一类。

以下用表示第i个样本与第j个样本的距离,,,…表示类,表示与的距离。下面所介绍的系统聚类法中,所有的方法开始时每个样本自成一类,类与类之间的距离与样本之间的距离相同,即,所以最初的距离矩阵全部相同,记为。

常用的系统聚类法:

(1)重心法

类与类之间的距离定义为它们重心(均值)之间的Euclid距离。设与的重心分别为和,则和之间的平方距离为:

这种系统聚类方法称为重心法(centroidhierarchicalmethod)。它的递推公式为:

重心法在处理异常值方面比其它系统聚类法更稳健,但是其他方面却不如离差平方和法的效果好。(2)离差平方和法(Ward方法)

离差平方和法基于方差分析的思想,如果分类分得正确,则同类样本之间的离差平方和应当较小,不同类样本之间的离差平方和应当较大。设类与合并成新的类,则,,的离差平方和分别为:

相关文档
最新文档