稀土含量对低铬合金钢性能影响分析

稀土含量对低铬合金钢性能影响分析
稀土含量对低铬合金钢性能影响分析

稀土含量对低铬合金钢的性能影响分析

摘要:本文对不同稀土含量的低铬合金钢性能进行了实验研究,实验结果表明:为了细化合金钢的组织,获得合适的碳化合物尺寸,使合金元素相互作用良好以及降低有害元素的影响,应将稀土含量控制在0.1%左右。

abstract: the article has carried on the experimental study on the performance of low chromium alloy steel with different rare earth content, the experimental results show that: in order to refine the organization of alloy steel, get the right size of carbon compound, make good interaction of alloy element and reduce the influence of harmful elements, the rare earth content should be controlled at about 0.1%.

关键词:合金钢;稀土;力学性能

key words: alloy steel;rare earth;mechanical performance 中图分类号:tg142.7 文献标识码:a 文章编号:1006-4311(2013)20-0321-02

0 引言

在炼钢过程中,添加适当的稀土,对合金钢的强化和净化有着良好的作用。我国稀土资源丰富,合理利用稀土,控制合金钢中稀土的含量尤为重要[1]。为了合理的利用稀土,探索稀土提高合金钢性能的规律,有必要对稀土与合金钢性能之间的关系进行研究。

1 试验合金钢的选择

低合金钢分类

低合金钢分类 文章来源:钢铁E站通低合金钢分类 根据国家标准GB/T 13304《钢分类》第二部分“钢按主要质量等级和主要性能及使用特性分类”,低合金钢分类如下。 低合金钢按主要质量等级分为普通质量低合金钢、优质低合金钢、特殊质量低合金钢三类: (1)普通质量低合金钢 普通质量低合金钢是指不规定生产过程中需要特别控制质量要求的供作一般用途的低合金钢。应同时满足下列条件: 1)合金含量较低(符合对低合金钢的合金元素规定含量界限值的规定); 2)不规定热处理(退火、正火、消除应力及软化处理不作为热处理对待); 3)如产品标准或技术条件中有规定,其特性值应符合下列条件: 硫或磷含量最高值:≥%; 抗拉强度最低值:≤690MPa; 屈服点或屈服强度最低值:≤360MPa; 伸长率最低值:≤26%; 弯心直径最低值:≥2×试样厚度; 冲击功最低值(20C,V型纵向标准试样):≤27J。 注:①力学性能的规定值指厚度为3~16mm钢材的纵向或横向试样测定的性能。 ②抗拉强度、屈服点或屈服强度特性值只适用于可焊接的低合金高强度结构钢。 4)未规定其他质量要求。 普通质量低合金钢主要包括: ①一般用途低合金结构钢,规定的屈服强度不大于360MPa,如GB/T 1591规定的 Q295A、Q345A;

②低合金钢筋钢,如GB 1499规定的20MnSi、20MnTi、20MnSiV、25MnSi、 20MnNbb; ③铁道用一般低合金钢.如GB 11264规定的低合金轻轨钢45SiMnP、50SiMnP; ④矿用一般低合金钢,如GB/T 3414规定的M510、M540、M565热轧钢。 (2)优质低合金钢 优质低合金钢是指除普通质量低合金钢和特殊质量低合金钢以外的低合金钢,在生产过程中需要特别控制质量(例如降低硫、磷含量,控制晶粒度,改善表面质量,增加工艺控制等),以达到比普通质量低合金钢特殊的质量要求(例如良好的抗脆断性能、良好的冷成形性能等),但这种钢的生产控制和质量要求,不如特殊质量低合金钢严格。 优质低合金钢主要包括: ①可焊接的高强度结构钢,规定的屈服强度大于360MPa而小于420MPa的一般用途低合金结构钢,如GB/T 1591规定的Q295B、Q345B、Q345C、Q345D、Q345E、 Q390A、Q390B、Q390C,Q390D、Q390E; ②锅炉和压力容器用低合金钢,如GB 713规定的16Mng、12Mng、15MnVg; YB/T5139规定的16MnR;GB 6653规定的HP295、HP325、HP345、HP365;GB 6654规定的16MnR、15MnVR、15MnVNR;GB 6479规定的16Mn、15MnV; ③造船用低合金钢,如GB 712规定的AH36、DH36、EH36; ④汽车用低合金钢,如GB/T3273规定的09MnREL、06TiL、08TiL、09SiVL、16MnL、16MnREL: ⑤桥梁用低合金钢,如YB 168规定的12Mnq、12MnVq、16Mnq、15MnVq、 15MnVNq,YB(T)10规定的16Mnq、16MnCuq、15MnVq、15MnVNq; ⑥自行车用低合金钢,如YB/T 5064、YB/T 5066、YB/T 5067、YB/T 5068规定的 12Mn、15Mn、19Mn;

中国工具钢和硬质合金牌号及其化学成分

第一章中国工具钢和硬质合金牌号及化学成分 第一节碳素工具钢(1)中国GB标准碳素工具钢的钢号与化学成分[GB/T1298-1986](表6-1-1) 表6-1-1碳素工具钢的钢号与化学成分(质量分数)(%) 钢号C Si Mn P≤S≤ T7 T8 T8Mn T9 T10 T11 T12 T13 0.65-0.74 0.75-0.84 0.80-0.90 0.85-0.94 0.95-1.04 1.05-1.14 1.15-1.24 1.25-1.35 ≤0.35 ≤0.35 ≤0.35 ≤0.35 ≤0.35 ≤0.35 ≤0.35 ≤0.35 ≤0.40 ≤0.40 0.40-0.60 ≤0.40 ≤0.40 ≤0.40 ≤0.40 ≤0.40 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 注:1.高级优质钢(带“A”的钢号)磷、硫含量(质量分数):P≤0.030%;S≤0.030%。 2.钢中残余元素含量(质量分数):Cr≤0.25%,Ni≤0.20%,Cu≤0.30%。 3.用作铅浴钢丝的残余元素含量(质量分数):Cr≤0.10%,Ni≤0.12%,Cu≤0.20%,Cr+Ni+Cu≤0.40%。 4.要求检验钢的淬透性时,允许添加少量合金元素。 (2)中国GB标准碳素工具钢的交货硬度与淬火硬度(表6-1-2和表6-1-3) 表6-1-2碳素工具钢的交货硬度与淬火硬度钢号 交货状态试样淬火 硬度HBS压痕直径/mm淬火温度/℃冷却介质硬度>HRC T7≤187≥4.4800-820水62 T8≤187≥4.4780-800水62 T8Mn≤187≥4.4780-800水62 T9≤192≥4.35760-780水62

硬质合金牌号性能对照表

硬质合金牌号性能、应用推荐及牌号对照 合金牌号 密度 g/cm2 抗弯 强度 不低 于 N/cm2 硬度 不低 于 HRA 加工条件及用途 ISO 国际标准 YT15 11.0- 11.7 1150 91 适用于碳素钢与合金钢加工中,连续切削时的粗车、半精车 及精车,间断切削时的小断面精车,连续面的半精铣与精铣, 孔的粗扩与精扩。 P10 YT14 11.2- 12.0 1270 90.5 适于在碳素钢与合金钢加工中,不平整断面和连续切削时的 粗车,间断切削时的半精车与精车,连续断面粗铣,铸孔的 扩钻与粗扩。 P20 YT5 12.5- 13.2 1430 89.5 适于碳素钢与合金钢(包括钢锻件,冲压件及铸件的表皮) 加工不平整断面与间断切削时的粗车、粗刨、半精刨,非连 续面的粗铣及钻孔。 P30 YS25 12.8- 13.2 2000 91 适应于碳素钢、铸钢、高锰钢、高强度钢及合金钢的粗车、 铣削和刨削。 P20、P40 YS30 12.45 1800 91 属超细颗粒合金,适于大走刀高效率铣削各种钢材,尤其是 合金钢的铣削。 P25 P30 YW1 12.6- 13.5 1180 91.5 适于耐热钢、高锰钢、不锈钢等难加工钢材及普通钢和铸铁 的加工。 M10 YW2 12.4- 13.5 1350 90.5 适于耐热钢、高锰钢、不锈钢及高级合金钢等特殊难加工钢 材的精加工,半精加工。普通钢材和铸铁的加工。 M20 YW3 12.7- 13.3 1300 92 适于合金钢、高强度钢、低合金、超强度钢的精加工和半精 加工。亦可在冲击力小的情况下精加工。 M10、M20 YL10.1 14.9 1900 91.5 具有较好的耐磨性和抗弯强度,主要用为生产挤压棒材,适 合做一般钻头、刀具等耐磨件。 K15、K25 M10、M30 YL10.2 14.5 2200 91.5 具有很好的耐磨性和抗弯强度,主要用来生产挤压棒材,制 作小直径微型钻头、钟表加工用刀具,整体铰刀等其它刃具 和耐磨零件。 K25、K35 M25、M40 YG3X 14.6- 15.2 1320 92 适于铸铁、有色金属及合金淬火钢合金钢小切削断面高速精 加工。 K05 YG6A 14.6- 15.0 1370 91.5 适于硬铸铁,有色金属及其合金的半精加工,亦适于高锰钢、 淬火钢、合金钢的半精加工及精加工。 K10

碳素钢和低合金钢的定义

碳钢 主要指力学性能取决于钢中的碳含量,而一般不添加大量的合金元素的钢,有时也称为普碳钢或碳素钢。 碳钢也叫碳素钢,指含炭量WC小于2%的铁碳合金。 碳钢除含碳外一般还含有少量的硅、锰、硫、磷。 按用途可以把碳钢分为碳素结构钢、碳素工具钢和易切削结构钢三类,碳素结构钢又分为建筑结构钢和机器制造结构钢两种; 按冶炼方法可分为平炉钢、转炉钢和电炉钢; 按脱氧方法可分为沸腾钢(F)、镇静钢(Z)、半镇静钢(b)和特殊镇静钢(T Z); 按含碳量可以把碳钢分为低碳钢(WC ≤ 0.25%),中碳钢(WC0.25%—0.6%)和高碳钢(WC>0.6%); 按磷、硫含量可以把碳素钢分为普通碳素钢(含磷、硫较高)、优质碳素钢(含磷、硫较低)和高级优质钢(含磷、硫更低)和特级优质钢。 一般碳钢中含碳量较高则硬度越大,强度也越高,但塑性较低。 按国际标准,把钢区分为非合金钢和合金钢两大类,非合金钢是通常叫做碳素钢的一大钢类,钢中除了铁和碳以外,还含有炉料带入的少量合金元素Mn、Si、Al,杂质元素P、S及气体N、H、O等。合金钢则是为了获得某种物理、化学或力学特性而有意添加了一定量的合金元素Cr、Ni、Mo、V,并对杂质和有害元素加以控制的另一类钢。 原则上讲,合金钢分为低合金钢、中合金钢和高合金钢,顾名思义,以含有合金元素的总量来加以区分,总量低于3%称为低合金钢,5~10%为中合金钢,大于10%为高合金钢。在国内习惯上又将特殊质量的碳素钢和合金钢称为特殊钢,全国31家特钢企业专门生产这类钢,如优质碳素结构钢、合金结构钢、碳素工具钢、合金工具钢、高速工具钢、碳素弹簧钢、合金弹簧钢、轴承钢、不锈钢、耐热钢、电工钢,还包括高温合金、耐蚀合金和精密合金等等。在钢的分类上,近年虽努力向国际通用标准靠拢,但还有许多不同之处。 ①随着特钢向“特”、“精”、“高”发展,向深加工方向延伸,特钢的领域越来越窄。美国特钢协会将特钢定位在工模具钢、不锈钢、电工钢、高温合金和镍合金。日本把结构钢和高强度钢归并在特钢范畴。随着我国普钢企业的技术改造和工艺进步,特钢企业的产品领域也在缩小,1999年普钢厂已生产特钢产品总量的34%。 ②国外的低合金钢,实际上是我们所熟悉的低合金高强度钢,属于特殊钢范畴,在美国叫做高强度低合金钢(HSLA—Steel),俄罗斯及东欧各国称为低合金建筑钢,日本命名为高张力钢。而在国内,首先是把低合金钢划入了普钢范围,概念上的区别导致在产品质量上的差异。在名称上也几经变化,如低合金建筑钢、普通低合金钢、低合金结构钢,至1994年叫做低合金高强度结构钢(GB/T1591—94)。到目前为止,从发表的资料文献来看,低合金钢的名称仍然随着国家、企业和作者而异。

硬质合金材料及牌号

硬质合金材料及牌号 YG3X 14.6-15.2 1320 92 适于铸铁、有色金属及合金淬火钢合金钢小切削断面高速精加工。K01 YG3X YG6A 14.6-15.0 1370 91.5 适于硬铸铁,有色金属及其合金的半精加工,亦适于高锰钢、淬火钢、合金钢的半精加工及精加工。K05 YG6A YG6X 14.6-15.0 1420 91 经生产使用证明,该合金加工冷硬合金铸铁与耐热合金钢可获得良好的效果,也适于普通铸铁的精加工。K10 YG6X YK15 14.2-14.6 2100 91 适于加工整体合金钻、铣、铰等刀具。具有较高的耐磨性及韧性。K15 K20 YK15 YG6 14.5-14.9 1380 89 适于用铸铁、有色金属及合金非金属材料中等切削速度下半精加工。K20 YG6 YG6X-1 14.6-15.0 1500 90 适于铸铁,有色金属及其合金非金属材料连续切削时的精车,间断切削时的半精车、精车、小断面精车、粗车螺纹、连续断面的半精铣与精铣,孔的粗扩与精扩。K20 YG6X-1 YG8N 14.5-14.8 2000 90 适于铸铁、白口铸铁、球墨铸铁以及铬、镍不锈钢等合金材料的高速切削。K30 YG8N YG8 14.5-14.9 1600 89.5 适于铸铁、有色金属及其合金与非金属材料加工中,不平整断面和间断切削时的粗车、粗刨、粗铣,一般孔和深孔的钻孔、扩孔。K30 YG8 YG10X 14.3-14.7 2200 89.5 适于制造细径微钻、立铣刀、旋转锉刀等。K35 YG10X YS2T 14.4-14.6 2200 91.5 属超细颗粒合金,适于低速粗车,铣削耐热合金及钛合金,作切断刀及丝锥、锯片铣刀尤佳。K30 YS2T YL10.1 14.9 1900 91.5 具有较好的耐磨性和抗弯强度,主要用为生产挤压棒材,适合做一般钻头、刀具等耐磨件。K15-K25 YL10.1 YL10.2 14.5 2200 91.5 具有很好的耐磨性和抗弯强度,主要用来生产挤压棒材,制作小直径微型钻头、钟表加工用刀具,整体铰刀等其它刃具和耐磨零件。 K25-K35 YL10.2 YG15 13.9-14.2 2100 87 适于高压缩率下钢棒和钢管拉伸,在较大应力下工作的顶锻、穿孔及冲压工具。YG15 YG20 13.4-13.7 2500 85 适于制作冲压模具,如冲压手表零件、乐器弹簧片等;冲制电池壳、牙膏皮的模具;小尺寸钢球、螺钉、螺帽等的冲压模具;热轧麻花钻头的压板。YG20 YG20C 13.4-13.7 2200 82 适于制作标准件、轴承、工具等行业用的冷镦、冷冲、冷压模具;弹头对弹壳的冲压模具。YG20C

低合金钢与合金钢教案

第五章低合金钢与合金钢 引言:碳素钢应用很广泛,但也存在缺点,如:强度和韧性不能兼备(回忆碳素钢与含C量的关系),∴造成使用问题。又:碳素钢淬透性差,不能用于大型零件,∴加入合金元素,成为合金钢。 一、合金钢概述: 1、定义:加入合金元素的钢。如:C r、N i、M n、S i、M o、W、T i、B、N b、A l、R e(稀土元素)。 即:加入合金元素的含C量小于 2.11%的F e—C合金。 2、合金元素在钢中存在形态: (1)合金F:合金元素的原子溶入F晶格形成的固溶体。 合金F=α-F e(C、M n、S i、C r、N i……) 固溶强化:使合金强度、硬度提高,当合金元素量适当时,(M n、S i <1.0%;C r<1.5%;N i<5%)不但提高强度、硬度,还提高韧性。 (2)合金碳化物:合金元素和碳形成化合物。 T i C、W C、V C、M o C 强度比渗C体还硬。 第二相强化:碳化物可以提高钢的强度、硬度,也使塑性、韧性下降。 3、合金元素对钢性能影响: (1)可以提高钢的强度,硬度(同时,量合适时,还可不降低塑性、韧性)。 (2)可以提高淬透性(除C o外) (3)可以细化晶粒(细化晶粒的方法) T i、N b、V、M o细化,B微量可以细化 (4)提高了回火稳定性 (5)产生二次硬化:W、V、M o回火到500C以上时,出现大量W C、V C,以微粒出现在边界。∴高温时硬度提高。 (6)可以使钢获得特殊的性能: 不锈钢:C r N i;耐磨钢:M n;耐热钢:W、M o、V 二、合金钢的牌号: 牌号可经看出许多内容:含量、热处理等。 1、低合金钢=碳素结构钢差不多。 Q390A(Q295-Q460)Q235A F(Q175-Q275) 屈390m p a A级A级沸

硬质合金牌号、性能及用途【完整版】

硬质合金牌号、性能及用途【完整版】 硬质合金是以一种或几种难熔碳化物(碳化钨、碳化钛等)的粉末为主要成分,加入作为粘接剂的金属粉末(钴、镍等),经粉末冶金法而制得的合金。它主要用于制造高速切削刃具和硬、韧材料切削刃具,以及制作冷作模具、量具和不受冲击、振动的高耐磨零件。 硬质合金的特点 (1)硬度、耐磨性和红硬性高 硬质合金常温下硬度可达86~93HRA,相当于69~81HRC。在900~1000℃能保持高硬度,并有优良的耐磨性。与高速工具钢相比,切削速度可高4~7倍,寿命长5~80倍,可切削硬度高达50HRC的硬质材料。 (2)强度、弹性模量高 硬质合金的抗压强度高达6000MPa,弹性模量为(4~7)×105MPa,都高于高速钢。但其抗弯强度较低,一般为1000~3000MPa。 (3)耐蚀性、抗氧化性好 一般能很好地抗大气、酸、碱等腐蚀,不易氧化。 (4)线膨胀系数小 工作时,形状尺寸稳定。 (5)成形制品不再加工、重磨 由于硬质合金硬度高并有脆性,所以粉末冶金成形烧结后不再进行切削加工或重磨,特需再加工时,只能采用电火花、线切割、电解磨削等电加工或专门的砂轮磨削。通常由硬质合金制成的一定规格的制品,采用钎焊、粘接或机械装夹在刀体或模具体上使用。 常用硬质合金 常用硬质合金按成分和性能特点分为三类:钨钴类、钨钛钴类、钨钛钽(铌)类。生产中应用最广泛的是钨钴类和钨钛钴类硬质合金。 (1)钨钴类硬质合金 主要成分是碳化钨(WC)和钴,牌号用代号YG(“硬”、“钴”两字汉语拼音字首),后加钴含量的百分数值表示。如YG6表示钴含量为6%的钨钴类硬质合金,碳化钨含量为94%。 (2)钨钛钴类硬质合金 主要成分是碳化钨(WC)、碳化钛(TiC)及钴,牌号用代号YT(“硬”、“钛”两字汉语拼音字首),后加碳化钛含量的百分数值表示。如YT15表示碳化钛含量15%的钨钛钴类硬质合金。 (3)钨钛钽(铌)类硬质合金 这类硬质合金又称通用硬质合金或万能硬质合金,主要成分是碳化钨(WC)、碳化钛(TiC)、碳化钽(TaC)或碳化铌(NbC)和钴组成。牌号用代号YW(“硬”、“万”两字汉语拼音字首)后加序数表示。 表①常用硬质合金的牌号及化学成分

低合金钢定义

低合金钢定义 中国钢产量已突破6亿吨,钢材数量不再是主要矛盾,钢材品种结构不合理的矛盾十分突出。当前行业的主要任务是努力提高产品的市场竞争力,站在可持发展的新起点上,把大力开发低合金钢列入发展战略的重要内容。许多普钢企业在钢材品种结构调整和编制科技发展规划中,已意识到低合金钢生产是提高产品技术含量和附加值的关键,对低合金钢开发中碰到的种种问题心中无数,一些科技管理干部觉得“成也低合金钢,败也低合金钢”,迫切要求对低合金钢有个全面的了解。 按国际标准,把钢区分为非合金钢和合金钢两大类,非合金钢是通常叫做碳素钢的一大钢类,钢中除了铁和碳以外,还含有炉料带入的少量合金元素Mn、Si、Al,杂质元素P、S及气体N、H、O等。合金钢则是为了获得某种物理、化学或力学特性而有意添加了一定量的合金元素Cr、Ni、Mo、V,并对杂质和有害元素加以控制的另一类钢。原则上讲,合金钢分为低合金钢、中合金钢和高合金钢,顾名思义,以含有合金元素的总量来加以区分,总量低于3%称为低合金钢,5~10%为中合金钢,大于10%为高合金钢。在国内习惯上又将特殊质量的碳素钢和合金钢称为特殊钢,全国31家特钢企业专门生产这类钢,如优质碳素结构钢、合金结构钢、碳素工具钢、合金工具钢、高速工具钢、碳素弹簧钢、合金弹簧钢、轴承钢、不锈钢、耐热钢、电工钢,还包括高温合金、耐蚀合金和精密合金等等。 在钢的分类上,近年虽努力向国际通用标准靠拢,但还有许多不

同之处。 ①随着特钢向“特”、“精”、“高”发展,向深加工方向延伸,特钢的领域越来越窄。美国特钢协会将特钢定位在工模具钢、不锈钢、电工钢、高温合金和镍合金。日本把结构钢和高强度钢归并在特钢范畴。随着中国普钢企业的技术改造和工艺进步,特钢企业的产品领域也在缩小,1999年普钢厂已生产特钢产品总量的34%。 ②国外的低合金钢,实际上是我们所熟悉的低合金高强度钢,属于特殊钢范畴,在美国叫做高强度低合金钢(HSLA—Steel),俄罗斯及东欧各国称为低合金建筑钢,日本命名为高张力钢。而在国内,首先是把低合金钢划入了普钢范围,概念上的区别导致在产品质量上的差异。在名称上也几经变化,如低合金建筑钢、普通低合金钢、低合金结构钢,至1994年叫做低合金高强度结构钢(GB/T1591—94)。到目前为止,从发表的资料文献来看,低合金钢的名称仍然随着国家、企业和作者而异。 ③低合金钢与碳素钢、低合金钢与合金钢之间,明确划出的概念是不存在的。在国外,50年代曾给低合金钢下过定义

低合金钢品种

低合金钢品种

微合金化钢知识讲座二低合金钢主要品种 编辑条目 第二部分低合金钢主要品种 2.1 焊接高强度钢 焊接高强度钢,又叫做可焊接低合金高强度结构钢,是低合金高强度钢钢类的主体。 它有三个基本属性: 第一,较低的碳含量,有良好的焊接性。 第二,屈服强度高于普通碳素钢,作为结构用材时,钢的屈服强度参与结构的强度设计。 第三。以高强度为基础,根据用途的不同要求,具有不同的特性,如抗时效、抗冲击、抗韧性撕裂,抗缺口敏感、耐火性等等。 我国的焊接高强度钢的主要钢种牌号已纳入GB /T1591—94中,由此派生的低合金专用钢分类及标准: 锅炉用钢 BG713—86,YBG741—87 压力容器用钢 GB5681—85,GB6653—86, GB6654—86 GB6655—86,GB6479—86,GB3513 造船用钢 GB712—88

汽车用钢 GB3273—82 桥梁用钢 YB(T)60—81 自行车用钢 GB3647—83,GB3696—83 保证厚度方向性能钢 GB5313 管材用钢 GB479—86,GB8162—87 GB8163—87,YB231—70 核能用钢 舰船用钢 兵器用钢等。 焊接高强度钢的合金设计,放在第一位考虑的是钢的强度,强化机制包括固溶强化、析出强化、细晶强化、位错及亚结构强化、以及相变的组织强化。此5种强化机制的组合,可以生产出屈服强度由295MPa~880Mpa不同级别的焊接高强度钢,以及不同强度和韧性匹配的强韧钢等级。 焊接性是焊接高强度钢的基本属性,要求在一定的焊接条件下,容易得到优良的焊缝及热影响区,具有与母材相当的力学性能和加工工艺性能。钢的化学成分对焊接性的影响从表2可见。提高焊接性能的有效措施是降低碳含量、降低P、S含量,选用适宜的合金元素。

硬质合金国际对照表及性能

硬质合金与国际标准对照及性能表 合金牌号 物理机械性能 推荐用途 相当于 ISO 相当于 国内密度g/cm2 抗弯强度不 低于N/cm2 硬度不低于 HRA YG3X 14.6-15.2 1320 92 适于铸铁、有色金属及合金淬火钢合金钢小 切削断面高速精加工。 K01 YG3X YG6A 14.6-15.0 1370 91.5 适于硬铸铁,有色金属及其合金的半精加 工,亦适于高锰钢、淬火钢、合金钢的半精 加工及精加工。 K05 YG6A YG6X 14.6-15.0 1420 91 经生产使用证明,该合金加工冷硬合金铸铁 与耐热合金钢可获得良好的效果,也适于普 通铸铁的精加工。 K10 YG6X YK15 14.2-14.6 2100 91 适于加工整体合金钻、铣、铰等刀具。具有 较高的耐磨性及韧性。 K15 K20 YK15 YG6 14.5-14.9 1380 89 适于用铸铁、有色金属及合金非金属材料中 等切削速度下半精加工。 K20 YG6 YG6X-1 14.6-15.0 1500 90 适于铸铁,有色金属及其合金非金属材料连 续切削时的精车,间断切削时的半精车、精 车、小断面精车、粗车螺纹、连续断面的半 精铣与精铣,孔的粗扩与精扩。 K20 YG6X-1 YG8N 14.5-14.8 2000 90 适于铸铁、白口铸铁、球墨铸铁以及铬、镍 不锈钢等合金材料的高速切削。 K30 YG8N YG8 14.5-14.9 1600 89.5 适于铸铁、有色金属及其合金与非金属材料 加工中,不平整断面和间断切削时的粗车、 粗刨、粗铣,一般孔和深孔的钻孔、扩孔。 K30 YG8 YG10X 14.3-14.7 2200 89.5 适于制造细径微钻、立铣刀、旋转锉刀等。K35 YG10X YS2T 14.4-14.6 2200 91.5 属超细颗粒合金,适于低速粗车,铣削耐热 合金及钛合金,作切断刀及丝锥、锯片铣刀 尤佳。 K30 YS2T YL10.1 14.9 1900 91.5 具有较好的耐磨性和抗弯强度,主要用为生 产挤压棒材,适合做一般钻头、刀具等耐磨 件。 K15-K25 YL10.1 YL10.2 14.5 2200 91.5 具有很好的耐磨性和抗弯强度,主要用来生 产挤压棒材,制作小直径微型钻头、钟表加 工用刀具,整体铰刀等其它刃具和耐磨零 件。 K25-K35 YL10.2 YG15 13.9-14.2 2100 87 适于高压缩率下钢棒和钢管拉伸,在较大应 力下工作的顶锻、穿孔及冲压工具。 YG15 YG20 13.4-13.7 2500 85 适于制作冲压模具,如冲压手表零件、乐器 弹簧片等;冲制电池壳、牙膏皮的模具;小 尺寸钢球、螺钉、螺帽等的冲压模具;热轧 麻花钻头的压板。 YG20 YG20C 13.4-13.7 2200 82 适于制作标准件、轴承、工具等行业用的冷YG20C

复合材料力学性能表征(教学资料)

复合材料力学性能表征(characterization of mechanical properties of composites) 力学性能包括拉伸、压缩、弯曲、剪切、冲击、硬度、疲劳等,这些数据的取得必须严格遵照标准。试验的标准环境条件为:温度23℃±2℃,相对湿度45%~55%,试样数量每项试验不少于5个。 此检测方法适用于树脂基复合材料,金属基复合材料力学性能可参考此方法进行。 拉伸拉伸试验是对尺寸符合标准的试样,在规定的试验速度下沿纵轴方向施加拉伸载荷,直至其破坏。通过拉伸试验可获得如下材料的性能指标: 式中P为最大载荷,N;b,h分别为试样的宽度和厚度,mm。 式中△L为试样破坏时标距L0内的伸长量,mm;L0为拉伸试样的测量标距,mm。 拉伸弹性模量Et 式中△P为载荷一形变曲线上初始直线段的载荷增量,N;△L为与△P相对应的标距L0内的变形增量,mm。 由于复合材料的各向异性,特别是用单向预浸带做的复合材料通常同时测以下项目: σL:∥纤维方向的拉伸强度; σT:⊥纤维方向的拉伸强度; EL:∥纤维方向的拉伸模量; ET:⊥纤维方向的拉伸模量。 应力-应变曲线记录拉伸过程中应力-应变变化规律的曲线,用于求取材料的力学参数和分析材料拉伸破坏的机制。 压缩对标准试样的两端施加均匀的、连续的轴向静压加载荷,直至试样破坏,以获得有关压缩性能的参数,若压缩试验中试样破坏或达最大载荷时的压缩应力为P(N),试样横截面积为F(mm2),则压缩强度σc为:

由压缩试验中应力-应变曲线上初始直线段的斜率,即应力与应变之比,可求出压缩弹性模量(MPa)。 由于复合材料的各向异性,特别是用单向预浸带做的复合材料通常同时测 σL:∥纤维方向的压缩强度; σT:⊥纤维方向的压缩强度; EL:∥纤维方向的压缩模量; ET:上纤维方向的压缩模量。 弯曲复合材料在弯曲试验中受力状态比较复杂,拉、压、剪、挤压等力同时对试样作用,因而对成型工艺配方,试验条件等因素的敏感性较大。用弯曲试验作为筛选试验是简单易行的方法。 复合材料的弯曲试验一般采用三点加载简支梁法,即将标准试样放在两支点上,在中间施加载荷,使试样变形直至破坏。材料的弯曲强度σ f为: 式中P为破坏载荷,N(或挠度为1.5倍试样厚度时的载荷);l为跨度,mm;b,h分别为试样的宽度和厚度,mm。 弯曲弹性模量Ef是指比例极限内应力与应变的比值,可按下式计算: 式中△P为载荷,N(或挠度曲线上使直线段产生弯曲的载荷增量);△f为与△P对应的试样跨距中点处的挠度增量。 剪切复合材料的特点之一是层间剪切强度低,并且层问剪切形式复杂,因此剪切试验对于复合材料的质量控制特别重要。层问剪切强度测试方法有直接剪切法和短梁弯曲法等。 (1)直接剪切法。试样的形式和尺寸如图,对试样的A、C面以一定的加载速度施加剪切,直至试样破坏。试样破坏时单位面积上所承受的载荷值为层间剪切强度τs。 式中Pb为破坏载荷,N;b,h分别为受剪面的宽度和高度,mm。

硬质合金牌号及性能

硬质合金牌号及性能 硬质合金牌号及性能 1、如何合理选择硬质合金牌号 硬质合金冷镦模在承受冲击或强冲击的耐磨工作条件下,其共性是要求硬质合金有较好的抗冲击韧性、断裂韧性、疲劳强度、抗弯强度以及良好的耐磨性。通常选用中、高钴和中、粗晶粒合金牌号,常见的如YG15C、YG20C、YL60 、YG25C等。 一般来说,硬质合金的耐磨性,韧性两者关系是矛盾的:耐磨性的提高将导致韧性降低,而韧性的提高又必然导致耐磨性的降低。因此在选用合金牌号时,需根据加工对象及加工工作条件,来满足特定使用要求。 若所选用的牌号在使用中容易产生早期崩裂而损坏,宜选用韧性较高的牌号;若选用的牌号在使用中容易产生早期磨损而损坏,宜选用硬度较高,耐磨性更好的牌号。以下牌号:YG15C、YG18C、YG20C、YL60 、YG22C、YG25C 从左至右,硬度降低、耐磨性降低、韧性提高;反之,则相反。 2、硬质合金冷镦模对设备的要求。 冷镦模在使用过程中应注意:冲压机械应处于良好的工作状态;模具支架的配合座不应有碰伤或倾斜;阴模和冲头的工作端面应保持平衡;在调整设备时,不得用冲头空击硬质合金阴模;冷镦模或挤压模工作时,最好应采用适当的润滑剂。 3、硬质合金冷镦模对被加工零件的要求 被加工材料表面应光滑,无氧化皮、裂纹、划伤等缺陷。表面质量高的材料,

冷镦成型时不易破裂,不容易擦伤模具,零件表面质量好。 4、硬质合金冷镦模制造过程中的注意事项 ①在运输过程中,应避免使硬质合金制品互相碰撞或受到冲击,从而使硬质合金掉边角或产生微裂纹。 ②在磨削加工时,推荐选用树脂结合剂。硬度等级为中软、浓度75%的金刚石砂轮进行加工;加工时进给量不能过大,推荐:粗磨不大于0.02mm,精磨不大于0.01mm;同时应注意充分冷却,,以避免产生加工时应力集中或磨削裂纹。推荐在加工后进行必要的时效处理。 ③不允许对硬质合金制品做冲击性的紧压。 ④经高温镶焊后的硬质合金制品,应缓慢(保温)冷却,不应急(空)冷。 ⑤制造模具过程中,在形状设计上应尽量避免急骤的棱角,因硬质合金对应力集中很敏感,在应力作用下,棱角部位最容易破裂;镶套材料应进行锻造,使材料晶粒细化,组织均匀,以提高镶套的机械性能;在模具材料强度允许的情况下,应尽量采用较大的压配合过盈量.保证硬质合金凹模部分有足够的预应力;同时,在设计硬质合金模的配合过盈量时,要充分考虑到模具工作过程中的发热大小,由于硬质合金材料的膨胀系数小,钢套的线膨胀系数大,模具发热后,原有的压力过盈量可能发生变化,导致硬质合金模的预应力降低,从而产生裂纹。 5、硬质合金冷镦模制造过程中的产生废品的主要原因 ①模坯与模套的固定不够牢固,使用过程中产生松弛。 ②模孔表面抛光质量不佳,冲压金属就会粘附于孔壁上,从而引起冷镦模的早期报废。 ③阴模与冲头的间隙误差大及中心不正,会造成阴模断裂和冲头磨损严重。 ④磨削进给量过大,砂轮硬度过大。引起磨削表面产生裂纹和硬质合金剥落。 ⑤硬质合金凹模不应存在急骤的棱角,因硬质合金对应力集中的敏感性很强,在变形力的作用下,棱角部分最容易产生早期破裂。 ⑥镶套材料未进行锻造,引起组织不均匀,机械性能不好,在热装冷却后,镶套容易开裂。 ⑦上下端面的磨削,在最后一道工序进行时,最好采用电解磨削加工,而不要用导电磨削或机械磨削,因为压配合的镶套内部压力很大,如用导电磨削或机械磨削,粗糙的磨削表面和刀痕处,极易引起应力集中,造成磨削端面的镶套崩裂。 牌号及其力学性能

玻璃钢复合材料的性能对比

复合材料聚合物的性能对比 聚合物复合材料的性能解释 1. 1 拉伸性能 拉伸性能包括拉伸强度,弹性模量、泊松比、断裂伸长率等。对于如高压容器、高压管、叶片等产品,必须要测出聚合物复合材料的拉伸性能,才能进行产品设计及检验。 对于不同的聚合物复合材料,拉伸性能试验方法是不同。对于普通的,用国标 GB/T1447 进行测试;对于缠绕成型的,用国标 GB/T1458 进行测试;对于定向纤维增强的,用国标 GB/T33541 进行测试;对于拉挤成型的,用国标GB/T13096-1 进行测试。使用最多的是 GB/T1447 。 国标 GB/T1447 ,对于不同成型工艺复合材料,又规定不同形状的拉伸试样,有带 R 型、直条型及哑铃型。使用拉伸试验机或万能试验按规定的加载速度对试样施加拉伸载荷直到试样破坏。用破坏载荷除以试样横截面面积则为拉伸强度。从测出的应力--------------------------- 应变曲线的直线段的斜率则为弹性模量,试样横向应变 与纵向应变比为泊松比。破坏时的应变称为断裂伸长率。 单位面积上的力,称为应力,通常用 MPa (兆帕)表示, 1MPa 相当于 1N/mm2 的应力。应变是单位长度的伸长量,是没有量刚(单位)的。 不同的现代复合材料其拉伸性能大不一样,以玻璃纤维增强的玻璃钢为例:1:1 玻璃钢,拉伸强度为(200-250 )MPa ,弹性模量为(10-16 )GPa;4:1 玻璃钢,拉伸强度为(250-350 )MPa ,弹性模量为(15-22 )GPa ;单向纤维的玻璃钢(如缠绕),拉伸强度大于800MPa ,弹性模量大于 24GPa ; SMC 材料,拉伸强度为( 40-80 ) MPa ,弹性模量为( 5-8 )GPa ;DMC 材料,拉伸强度为( 20-60 ) MPa ,弹性模量为( 4-6 )GPa。 1.2 弯曲性能 一般产品普遍存在弯曲载荷,弯曲性能是很重要的,同时,往往用弯曲性能来进行原材料,成型工艺参数,产品使用条件因素等的选择。 弯曲性能,一般采用国标 GB/T1449 进行测试;对于拉挤材料,用国标 GB/T13096.2 进行测试;对于单向纤维增强的,用国标 GB/T3356 进行测试。测试弯曲性能的试样一般是矩形截面积的长条,简称为矩形梁。采用当中加载的三点弯曲法。梁的横截面的上表面承压缩应力,梁下表面承受拉伸应力,横截面积上还要承受剪切应力,中性层剪应力最大,因此梁所承受弯曲时,其应力状态是很复杂的,破坏形式也是多种的。原材料品种、性能及成型工艺参数对弯曲性能很敏感,试验方法和试样尺寸同样也很敏感,为了达到材料弯曲破坏,国标对试样的跨(跨度或支距)高(试样厚度)比( l/h )有一定要求,一般要求 l/h >16,对于单向纤维增强的材料,要求l/h >32。 由于弯曲性能的复杂性及对各因素的敏感性,对于上述不同材料的弯曲性能,或大于 1.1 节中拉伸性能,或小于 1.1 节中的拉伸性能。在正常成型工艺情况下,一般弯曲强度略大于拉伸强度,弯曲弹性模量略小于拉伸弹性模量。 1. 3 压缩性能

低合金钢发展历史

低合金钢发展历史 早期低合金钢的发展 低合金钢的出现可以追溯到19世纪的1870年,一种碳含量0.64~0.9%和铬含量0.54~0.68%、抗拉强度685MPa、弹性极限410MPa钢,第一次被采用于工程结构,建造了跨度158.5m的拱形桥梁。但这种钢不理想也是十分明显的,需要轧后热处理,难以机械加工,耐蚀性又不好。随后一个多世纪里,世界各国不断探索,早期低合金钢的发展有三个标志: 1)由单一元素合金化向多元素合金化发展。 1895年曾采用0.4~0.56%C和3.5%Ni的钢建造了俄国的“鹰”级驱逐舰,该钢的加工性比初期的铬钢要好得多,屈服强度在355MPa。20世纪初还用8000多吨含镍的钢建造了跨度为442m的桥梁,美中不足的是这种钢的合金资源有限,成本又高。此后开发了1.25%Si的低合金钢,建造了横渡大西洋的船舶和跨度110m的桥梁,俄国利用铁铜混生矿源,曾开发了0.7~1.1%Cu的低合金钢用于造船、建桥,这种钢导电性好,抗腐蚀性优良。 长达30多年的生产和应用经验的积累,发现多元合金化的低合金钢综合性能更佳,经济上更划算,开发了二元合金化的Ni-Cr、Cr-Mn、Mn-V低合金钢,和三元复合合金化的Cr-Mn-V、Cr-Mn-Si、Mn-Cu-P等低合金钢。用途上也扩大到了锅炉、容器、建筑和铁塔等方面。20世纪20年代全世界的低合金钢产量达到200万吨。 2)赋予低合金钢的第一特征:低碳、可焊接。 在工程结构广泛采用焊接技术之后,给低合金钢发展带来深远的影响。为减小焊接热影响区硬化和开裂、焊接接头延性恶化,把低合金钢的碳含量由0.6%降到0.4%,随后又降至0.2%,至60年代末再降至0.18%,提出了焊接碳当量的可焊性判据。为了获得高强度钢不断增高的强度需求,出现了两条发展途径,一个是提高合金含量,另一个是热处理手段,各有利弊,至今屈服强度高于600MPa的钢仍采用热处理,E级和F级船板仍规定正火状态使用,再如铁路钢轨仍有合金化轨和全长淬火轨的两种生产方式。 3)注意到钢的冷脆性和时效敏感性。 二战期间大量“自由”轮在运行中断裂及许多锅炉、容器的失效,注意到了钢冷脆倾向与钢的粗晶结构和有害元素P、S的含量有关,而钢的时效倾向是由钢中N所致,从而采取了降硫、铝细晶化合控制终轧温度等优化工艺。为了钢结构的安全使用和寿命,同时还开发了低温夏氏V型缺口冲击、温度梯度双重拉伸、零塑性转折落锤及BDWTT落锤撕裂等试验方法及制订了相应的断裂韧性判据。 我国低合金钢的发展

第五章、低合金钢与合金钢

课程金属工艺授课班级任课教师万玉吉序号15 授课日期编制日期 课型理论节次教具 课题第一节合金元素在钢中的作用 第二节低合金钢和合金钢的分类与牌号 目的要求1.了解合金元素对钢的影响; 2.掌握合金钢的分类与牌号; 重点难点重点:掌握合金钢的分类与牌号;难点:合金钢牌号与应用的关系 课程 导入 讲授教学法 教法设计列举生活与生产中应用所讲钢种,分析其应用,增强感性认识。 作业 思考 P72 课后 记事 第五章低合金钢和合金钢 ?为了改善钢的某些性能,在炼钢时有意加入的元素,称为合金元素。 ?含有一种或数种有意添加的合金元素的钢,称为合金钢。 钢中加入的合金元素主要有:硅(Si)、锰(Mn)、铬(Cr)、镍(Ni)、钨(W)、钼(Mo)、钒(V)、钛(Ti)、铌(Nb)、钴(Co)、铝(Al)、硼(B)及稀土元素(Re)等。 第一节合金元素在钢中的作用 一、合金元素在钢中的存在形式及作用 合金元素在钢中的存在形式:一是溶入铁素体中形成合金铁素体;另一种是与碳化合形成合金碳化物。 (一)合金铁素体

大多数合金元素都能不同程度地溶入铁素体中。使铁素体晶格发生不同程度的畸变,使铁素体的强度、硬度提高,当合金元素超过一定的质量分数后,铁素体的韧性和塑性会显著降低。 (二)合金碳化物 按合金元素与碳之间的相互作用,可分为碳化物形成元素和非碳化物形成元素两类合金元素。 1.非碳化物形成合金元素,如Si、Al、Ni及Co等,它们只以原子状态存在于铁素体或奥氏体中,它们对钢的力学性能影响较小。 2.碳化物形成元素:如TiC、NbC、VC、WC、Cr 7C 3 、(Fe,Cr) 3 C及(Fe,Mn) 3 C 等,合金碳化物的存在提高了钢的强度、硬度和耐磨性。 二、合金元素对钢的热处理和力学性能的影响 (一)合金元素对钢加热转变的影响 由于合金元素的扩散速度较慢,加之合金碳化物比较稳定,不易溶入奥氏体中,减缓了奥氏体的形成过程。为了获得均匀的奥氏体,大多数合金钢需加热到更高的温度,并保温更长的时间。 (二)合金元素对回火转变的影响 合金元素主要是提高钢的耐回火性,有些合金元素还造成二次硬化现象和产生钢的回火脆性。 1.提高钢的耐回火性 ?淬火钢件在回火时抵抗软化的能力,称为耐回火性(或回火稳定性)。 合金钢都有较好的耐回火性。若在相同硬度下,合金钢的回火温度则要高于非合金钢的回火温度。 2.产生二次硬化 ?某些含有较多W、Mo、V、Cr、Ti元素的合金钢,在500℃~600℃高温回 火时,高硬度的特殊碳化物(W 2C、Mo 2 C、VC、Cr 7 C 3 、TiC等)以弥散的小颗粒状 态析出,使钢的硬度升高,这些铁碳合金在一次或多次回火后提高其硬度的现象称为二次硬化。 高速工具钢和高铬钢在回火时都会产生二次硬化现象,这对于提高它们的热硬性具有重要作用。 综上所述:合金钢的力学性能比非合金钢好,但由于合金元素的作用,大多数要通过热处理才能发挥出来。 第二节低合金钢和合金钢的分类与牌号

硬质合金牌号性能及用途

硬质合金 合金牌号 物理机械性能 推荐用途 相当于 ISO 相当于 国内密度g/cm2 抗弯强度不 低于N/cm2 硬度不低于 HRA YG3X 14.6-15.2 1320 92 适于铸铁、有色金属及合金淬火钢合金钢小 切削断面高速精加工。 K01 YG3X YG6A 14.6-15.0 1370 91.5 适于硬铸铁,有色金属及其合金的半精加 工,亦适于高锰钢、淬火钢、合金钢的半精 加工及精加工。 K05 YG6A YG6X 14.6-15.0 1420 91 经生产使用证明,该合金加工冷硬合金铸铁 与耐热合金钢可获得良好的效果,也适于普 通铸铁的精加工。 K10 YG6X YK15 14.2-14.6 2100 91 适于加工整体合金钻、铣、铰等刀具。具有 较高的耐磨性及韧性。 K15 K20 YK15 YG6 14.5-14.9 1380 89 适于用铸铁、有色金属及合金非金属材料中 等切削速度下半精加工。 K20 YG6 YG6X-1 14.6-15.0 1500 90 适于铸铁,有色金属及其合金非金属材料连 续切削时的精车,间断切削时的半精车、精 车、小断面精车、粗车螺纹、连续断面的半 精铣与精铣,孔的粗扩与精扩。 K20 YG6X-1 YG8N 14.5-14.8 2000 90 适于铸铁、白口铸铁、球墨铸铁以及铬、镍 不锈钢等合金材料的高速切削。 K30 YG8N YG8 14.5-14.9 1600 89.5 适于铸铁、有色金属及其合金与非金属材料 加工中,不平整断面和间断切削时的粗车、 粗刨、粗铣,一般孔和深孔的钻孔、扩孔。 K30 YG8 YG10X 14.3-14.7 2200 89.5 适于制造细径微钻、立铣刀、旋转锉刀等。K35 YG10X YS2T 14.4-14.6 2200 91.5 属超细颗粒合金,适于低速粗车,铣削耐热 合金及钛合金,作切断刀及丝锥、锯片铣刀 尤佳。 K30 YS2T YL10.1 14.9 1900 91.5 具有较好的耐磨性和抗弯强度,主要用为生 产挤压棒材,适合做一般钻头、刀具等耐磨 件。 K15-K25 YL10.1 YL10.2 14.5 2200 91.5 具有很好的耐磨性和抗弯强度,主要用来生 产挤压棒材,制作小直径微型钻头、钟表加 工用刀具,整体铰刀等其它刃具和耐磨零 件。 K25-K35 YL10.2 YG15 13.9-14.2 2100 87 适于高压缩率下钢棒和钢管拉伸,在较大应 力下工作的顶锻、穿孔及冲压工具。 YG15 YG20 13.4-13.7 2500 85 适于制作冲压模具,如冲压手表零件、乐器 弹簧片等;冲制电池壳、牙膏皮的模具;小 尺寸钢球、螺钉、螺帽等的冲压模具;热轧 麻花钻头的压板。 YG20 YG20C 13.4-13.7 2200 82 适于制作标准件、轴承、工具等行业用的冷 镦、冷冲、冷压模具;弹头对弹壳的冲压模 YG20C

碳素钢、低合金钢常见金相组织形态及硬度

碳素钢、低合金钢常见金相组织形态及硬度1.铁素体(F)—原系外来语(Ferrite)译名,台湾文献译为肥粒铁。铁素体系碳溶于体心立方晶格的α-Fe中所形成的间隙固溶体[α-Fe(C)]。以4%硝酸酒精溶液腐蚀,在光学显微镜下观察,铁素体呈明亮的等轴多边形。由于各晶粒位向不同,受腐蚀程度略有差别,故稍显明暗不同。铁素体在不同处理状态亦可呈块状、月牙状、网络状等形态,硬度在100HB左右。 2.渗碳体(θ相)—原系外来语(Cementite)译名,台湾文献译为雪明碳铁。渗碳体系铁和碳的化合物,含碳量为6.69%,分子式为Fe C,在合金钢中,渗碳体中的Fe原子可以为其他合金元素 3 C]。渗碳体是一种具有原子所置换,形成合金渗碳体[(Fe,Me) 3 复杂晶格结构的间隙化合物。渗碳体硬度很高(800~1000 HV),而塑性及冲击韧度几乎为零,脆性很大。其显微组织形态很多,不受硝酸酒精试剂腐蚀(染色),在光学显微镜下呈白亮色,在碱性苦味酸钠腐蚀下,被染成黑色。渗碳体是钢中的主要强化相,有片状、粒状、网络状、半网络状等形态,其形态与分布对钢的力学性能有很大影响。 3.珠光体(P)—原系外来语(Pearlite)译名,台湾文献译为 C),是铁波莱铁。珠光体是铁碳合金相图中的共析转变产物(F+Fe 3 素体和渗碳体的机械混合物,因具有这种组织的样品抛光蚀刻后有珠母贝的光泽而得名。有片(层)状和球(粒)状等不同形态和分布方 C交界处腐蚀较深,在式。珠光体用4%硝酸酒精溶液腐蚀,F和Fe 3 直射光照射下变成黑色线条,可清晰看到层状,粒状等形态和分布情

况。 4.奥氏体(A)—因这种组织的发现人Austen而得名,台湾文献译为沃斯田铁。奥氏体系碳溶于面心立方晶格γ-Fe中所形成的固溶体[γ-Fe(c)],常以符号A表示。奥氏体中的碳也是存在于γ-Fe 晶体的间隙固溶体。奥氏体存在于727~1495℃的温度区间,是一种高温相,不易腐蚀,呈白色,若先用4%硝酸酒精溶液腐蚀,再用10%过硫酸铵溶液腐蚀,则奥氏体可染成黑色。高温下奥氏体显微组织为:晶粒呈多边形,与铁素体的显微组织相近似,但晶界较铁素体平直,且晶粒内常有孪晶带出现。 5.魏氏组织(W)—原系外来语(Widmanstatten)译名,台湾文献译为费德曼。亚(过)共析钢在锻造、轧制、热处理时,如果加热温度过高,形成了粗晶A,同时冷却速度又较快,这时除了使F C)沿晶界呈网状析出外,还有一部分按切变机制从晶界并排向(Fe 3 晶粒内部生长,或在晶粒内部独自析出,呈针片状,针片状铁素体(F)C)分布在珠光体(P)基体上的组织(形态)称为魏或渗碳体(Fe 3 氏组织。魏氏组织是由于过热而造成的一种组织缺陷,它使钢的强度降低而脆性增加。经过铸造、锻造、焊接的中低碳钢,晶粒往往粗大,空冷时最易出现魏氏组织,缓冷则不易出现。钢中一旦出现魏氏组织,一般可通过正火或退火加以消除。 魏氏组织是沿原奥氏体特定晶面而形成的具有几何学特征的冷却转变组织,经抛光和硝酸酒精溶液腐蚀后,可在显微组织中看到白色的铁素体和黑色的珠光体,铁素体呈针状,具有该组织的钢材性脆

相关文档
最新文档