汽车行驶阻力分析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
汽车行驶阻力分析
2.2.2.1滚动阻力
轮胎滚动时,与支承地面的接触区产生法向和切向相互作用力,并使接触区的轮胎和地面发生相应的变形。这种变形取决于轮胎和地面的相对刚度。轮胎在硬路面上滚动时,轮胎变形是变形的主要成份;而当轮胎在松软地面滚动时,主要变形为地面的沉陷变形。
轮胎在滚动过程中,轮胎的各个组成部分间摩擦以及橡胶元、帘线等分子之间的摩擦,产生摩擦热而耗散,这种损失称为弹性元件的迟滞损失。图2-7中的右图为简化的轮胎模型。它将充气轮胎视为由无数弹簧-阻尼器单元组成的弹性轮。当每个单元进入印迹时,弹簧-阻尼器组成的轮胎单元首先被压缩,然后松弛。由于存在阻尼消耗压缩能量,轮胎内部阻尼摩擦产生迟滞损失,这种迟滞损失表现为阻碍车轮运动的阻力偶。
图2-7中的左图所示为轮胎的弹性特性。图中的C曲线为压缩过程(加载)曲线,而D 曲线为松弛过程(卸载)曲线。两条曲线所包围的面积及为阻尼的迟滞能量损失。
图2-7右图的阴影表示为轮胎接触区受力情况。
汽车静止时,车轮与地面接触区法向反作用力分布是前后对称的,其合力垂直接触面指向轮心(经接触面的车轮中心垂线n-n');当车轮滚动时,以从动轮等速滚动为例,接触区法向反作用力的分布前后不对称,合法向反作用力F Z1向前偏移了一段距离a,见图2-8。这是因为轮胎与地面接触区的前端处于压缩行程,而后端处于松弛行程,因而接触面前端法向力大于后端法向力。如果将合法向反作用力后移距离a至车轮中心的垂线n-n',则有阻碍车轮滚动的阻力偶矩F f1。
从动轮等速转动时,受力平衡方程为
(2-23) 式中:W1为重力;F p1为水平推力。
要使从动轮在刚性路面上等速滚动,必须在轮心上作用水平推力F p1,与接触面的切向反作用力构成力偶矩来克服滚动阻力偶矩T f1。即
(2-24) 令f=α/r ,则
(2-25)
或
(2-26) 这样,人们在分析汽车行驶阻力时,不必考虑车轮所受到的滚动阻力偶矩T f,而只要知
道滚动阻力系数就可求出滚动阻力F f。注意:滚动阻力F f是无法在受力图上表现出来,只
是为了便于计算分析,而引进的一个在数值上等于轮缘地面切向反作用力F x的值,这将有
利于动力学分析。
图2-9是驱动轮在刚性平直路面上等速行驶时的受力分析图。图中F x2 是车轮驱动力矩T t 对支承路面作用力在轮缘上的切向反作用力,W2为重力,F p2是车轴对轮胎中心的水平作用力。则驱动轮受力平衡方程为
(2-27)
由式(3-27),可导出
T t/r=F x2+αF z2/r (2-28) 其中,则
F x2=F t-F f2 (2-29)
将图2-2和图2-9比较可发现,前者未考虑车轮滚动阻力而求得车轮驱动力F t。实际上作用在驱动轮上驱动汽车前进的力是地面切向反作用力F x2。它在数值上等于驱动力F t减去滚动阻力F f2。
滚动阻力与路面的类型与路况、行驶车速以及轮胎的结构、材料、充气压力、磨损情况等有关。
有人对轿车轮胎试验发现,车速低于100km/h,滚动阻力逐渐增加,但变化不大;当车
速超过140km/h时,滚动阻力增加很快;当车速达到某一临界车速(200km/h),滚动阻力
迅速增加,见图2-10。此时,轮胎发生驻波现象,轮胎轮缘呈现明显的波浪状。除了阻力快
速增加,轮胎温度也很快增加100℃以上,胎面与帘布层脱落,数分钟后就会出现爆胎。这是高速行驶车辆的一种很危险工况。
轮胎的结构、材料、帘线对f的影响也很大。子午线轮胎f小,天然橡胶f低。
轮胎充气压力对滚动阻力系数f影响也较大,见图2-11。轮胎充气压力降低时,轮胎变形增大,迟滞损失增加,而使滚动阻力f增加。据德国奥迪试验表明,轮胎气压比规定压力增加10%,可有较好的节油效果。且不降低轮胎的适用寿命。但是,轮胎充气压力不可过高,否则就会降低轮胎寿命和增加道路早期损坏。
驱动轮的轮胎大于从动轮的滚动阻力。这是因为在驱动力矩作用下,胎面与接触地面存在一定的滑动,增加能量损耗。驱动力越大,滚动阻力系数越大。
汽车转弯行驶时,轮胎发生侧偏现象,滚动阻力增加。例如,通用公司DFW1100型34.5吨半挂车汽车在半径33m的圆周行驶试验表明,转弯行驶的滚动阻力比直线行驶时增加50%~100%。
通常,滚动阻力系数通过试验确定。试验方法有室内底盘测功机、道路滑行试验以及汽车牵引负荷车试验等滚动阻力系数测试方法。道路设计和施工部门也有利用势能与摩擦功守恒的原理,采用摆式摩擦系数测试仪测试轮胎滑动阻力系数。
汽车动力性分析的实际中,人们通常根据经验直接选用滚动阻力系数。表2-5给出了汽车在不同路面上以中、低车速行驶时,滚动阻力系数的大致数值。
表2-5 车轮滚动阻力系数
行车速度对滚动阻力系数影响很大。低速行驶时,滚动阻力近似与车速成正比显得线性关系;高速时滚动阻力近似与车速成平方关系。表2-6是一些常见的轮胎滚动阻力系数经验公式。
表2-6 轮胎滚动阻力系数近似公式
与硬路面相比,车轮在柔性路面(土路、草地、砂土、雪地)上运动时,还需要克服附加滚动阻力。附加阻力包括接触面材料被压缩和移动行程的车辙阻力和轮辙与轮胎之间的摩擦力(见图2-12)。
柔性路面的附加滚动阻力与轮胎对地面的压强有关(见图2-13)。在柔性路面行驶时,降低轮胎充气压力对降低滚动阻力有利。
在积水硬路面运动的车轮与路面之间存在三个区域:水膜区、过渡区和接触区,见图2-14。在过渡区轮胎已有变形,与道路有局部接触;而在接触区轮胎与路面之间才完全接触传递力。
轮胎排挤水层就行程了排水阻力F s,即
(2-30) 式中:h为水膜厚度;b轮胎被水膜覆盖部分的宽度;P水的密度;u轮胎排水速度。
图2-15为排水阻力系数f s(f s=F s/F x)随水层的厚度和速度变化的关系。当水层厚度较大时,速度超过一定值后,将出现水滑现象(Hydroplanning),使轮胎完全被水层浮起,使f s值为定值,而与速度u无关。此时,汽车基本丧失转向、制动能力。
如果车轮也受到侧向力F y的作用,例如转弯或变更车道行驶,车轮运动方向不垂直其轴线,而是车轮平面与运动方向成某一角度,即侧偏角。此时,滚动阻力将增加。
如图2-16所示,当侧偏角为α时,滚动阻力F f为
F f = F f0cosα+ F y sinα
(2-31)