关于车载激光雷达的知识清单

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

关于车载激光雷达的知识清单

•2017年6月28日

•国际电子商情

本篇知识清单分享给你,助你快速了解车载激光雷达产业。

在无人驾驶架构中,传感层被比作为汽车的“眼睛”,包括车载摄像头等视觉系传感器和车载毫米波雷达、车载激光雷达和车载超声波雷达等雷达系传感器。其中激光雷达已经被大部分人认为是实现自动驾驶的必要基础,毕竟传统雷达无法识别物体细节,而摄像头在暗光或逆光条件下识别效率明显降低。

也正得益于无人驾驶汽车市场规模的爆发,预计2030年全球激光雷达市场可达到360亿美元的规模,将成为新的蓝海。本篇知识清单分享给你,助你快速了解车载激光雷达产业。

内容导读:

1.车载激光雷达的技术原理

2.激光雷达在自动驾驶应用中有何优缺点?

3.车载激光雷达有哪些应用?

4.如何降低自激光雷达的成本?

5.国内外最全激光雷达企业介绍

一、车载激光雷达的技术原理

激光雷达是以发射激光束探测目标的位置、速度等特征量的雷达系统,最初是军事用途。其工作原理是向目标发射探测信号(激光束),然后将接收到的从目标反射回来的信号(目标回波)与发射信号进行比较,作适当处理后,就可获得目标的有关信息,如目标距离、方位、高度、速度、姿态、甚至形状等参数,从而对飞机、导弹等目标进行探测、跟踪和识别。

这里详细介绍一下车载激光雷达的工作原理及实现方式。第一种是较为传统的扫描式激光雷达,这种设备被架在汽车的车顶上,能够用多束激光脉冲绕轴旋转360°对周围环境进行距离检测,并结合软件绘制3D图,从而为自动驾驶汽车提供足够多的环境信息。

这种激光雷达最初是在11年前的Darpa无人车挑战赛上,由美国Velodyne公司开发并被参赛团队使用(当时采用的是64线的激光雷达方案)。由于那时的成本

高达7万美元,未被市场接受。后来为了降低成本,有公司推出了32线、16线的激光雷达。但是成本的降低带来的是分辨率的下降,这就容易在车辆驾驶过程中检测障碍物时产生盲点,带来安全隐患。

在今年CES 2017 上,Quanergy 公司发布了号称全球第一款固态激光雷达传感器。该雷达在技术上另辟蹊径,抛弃了360度机械扫描的方式,而是采用了基于电子部件进行数据读写的方案,去除了机械旋转部件,采用集成电路上的感应晶片扫描各个方向,然后输出车辆周围的3D 图像。

固态激光雷达有几大优势,扫描速度快、精度高,而且该雷达的线数降低到了8线,从而缩小了成品体积。最重要的一点是,固态激光雷达能够像生产芯片一样快速,同时极大地降低了成本。该公司称如果订货量在一万台,每台激光雷达的成本有望控制在100 美元以下。但目前技术并不成熟,例如远距离成像问题,信号强度问题等等,离产品市场化还有一段距离。还有一点,“固态”就意味着激光雷达不能进行360 度旋转,只能探测前方,貌似又回到了传统激光雷达的老路。

如果要形象地对比扫描激光雷达和固态激光雷达的区别,下图或许对你理解有些帮助。

二、车载激光雷达的优缺点

1、优点

相比于摄像头,激光雷达的最大优势在于使用环境限制较小,不管在白天或者夜晚都能正常使用。而相比于超声波雷达及毫米波雷达,激光雷达的测量精度大大提升。原因在于电磁波只能探测到比它的波长大的物体,像毫米波雷达就探测不到直径很小的线状目标。而用于雷达系统的激光波长一般只有微米的量级,因而它能够探测非常微小的目标。据了解,目前最好的激光雷达能够识别出100米外厘米级物体的细节。

2、缺点

①成本高

激光雷达造价昂贵,动辄几千甚至上万美元一台。更有甚者,当初谷歌自动驾驶汽车采用的由Velodyne 开发的64 线激光雷达,售价高达7.5 万美元。此外,目前多数测试车都使用了不止一个激光雷达。

②体积大

从目前自动驾驶测试车的外观上看,激光雷达体积较大,安装在测试车上显得较为笨重。这也是Waymo的测试车采用了黑色巨大弧形车顶的原因。而丰田和优步的测试车顶上则像顶了个咖啡罐。

③产能低

尽管激光雷达厂商努力提高产能以跟上市场需求,但汽车厂商还是不得不等上六个月才能买得到一台全新的激光雷达产品。虽然目前测试车的数量还非常稀少,但是对激光雷达的需求是呈上升趋势的。

④工作时受天气和大气影响大

激光雷达在大雨大雪等恶劣天气中使用效果会受到影响,比如谷歌无人驾驶汽车从未在大雨大雪等恶劣条件下测试。原因在于激光在大雨、浓烟、浓雾等坏天气里,衰减急剧加大,传播距离大受影响。如工作波长为10.6μm的co2激光,是所有激光中大气传输性能较好的,在坏天气的衰减是晴天的6倍。而且,大气环流还会使激光光束发生畸变、抖动,直接影响激光雷达的测量精度。

三、车载激光雷达的应用

3D 激光雷达在无人驾驶运用中拥有两个核心作用。第一,3D 建模进行环境感知。通过激光扫描可以得到汽车周围环境的3D 模型,运用相关算法比对上一帧和下一帧环境的变化可以较为容易的探测出周围的车辆和行人。第二,SLAM 加强定位。3D 激光雷达另一大特性是同步建图(SLAM),实时得到的全局地图通过和高精度地图中特征物的比对,可以实现导航及加强车辆的定位精度。

四、如何降低车载激光雷达的成本

激光雷达的成本都花在哪去了呢?有研究表明,激光雷达主要成本是花在GPS/IMU 和2D 激光扫描仪,约占总成本的80%。其一,车载激光雷达系统的优劣主要取决于2D 激光扫描仪的性能。激光发射器线束的越多,每秒采集的云点就越多。然而线束越多也就代表着激光雷达的造价就更加昂贵,以Velodyne 的产品为例,64 线束的激光雷达价格是16 线束的10 倍。其二,对于较高要求标准的IMU,是基于光纤陀螺的技术制造的。其价格昂贵,大约在150 万元左右。对于较低要求的IMU,有许多厂家的设备可以选择,价格根据型号变化,在10 万元到50 万元之间。

这还是激光雷达本身的成本,其实扫描激光雷达的成本可以做到很低,但是配套很贵。例如Velodyne的激光雷达输出的是原始数据,需要经过二次处理。64线激光雷达每秒的点云数据量是130万,这需要桌面级显卡支持才能流畅工作。而桌面级显卡自然需要昂贵的显存和散热设计。

相关文档
最新文档