电动汽车电池管理系统方案设计

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

随着能源枯竭和节能工业的发展要求,社会对于环保的呼吁,使得零排放电动汽车的研究得到了很多国家的大力支持.电动汽车的各种特性依赖于它的动力源---蓄电池.蓄电池管理可以提高电池工作效率,保证电池以最佳状态安全运行,延长电池寿命。

1.1电动汽车
目前世界上各种汽车保有量超过6亿辆,汽车的石油消耗量非常大达到每年60~70亿桶,大约可以占到世界石油产量的一半以上.长时间的现代化大规模开采,石油资源日渐枯竭。

电能来源广泛,人们对电力的使用也积累了丰富的经验,21世纪电能将会成为各种地面运输工具的主要能源,发展电动汽车是交通工业发展和汽车工业发展的必然趋势。

由于电动汽车的显著特点和优势,各国都在发展电动汽车。

中国:我国早在“九五”期间,就将EV列为重大科技产业工程项目。

在广东汕头市南奥岛设立了示范区。

清华大学、华南理工大学、粤海汽车改装厂等单位都参与了电动汽车的研发工作,并由丰田汽车公司和通用汽车公司提供样车和技术支持,在示范区进行试验。

德国:吕根岛实验基地是德国联邦教育、科学研究和技术部资助最大的EV 和HEV试验计划,有梅赛德斯-奔驰汽车公司,大众汽车公司,欧宝汽车公司,宝马汽车公司和MAN汽车公司提供的64辆EV和HEV进行试验。

法国:拉罗谢尔市成为第一个设置EV系统的城市,设置12个充电站,其中三个为快速充电站。

标志雪铁龙、雪铁龙和PSA集团都参与到了电动汽车建设中。

日本:在大阪市、大发汽车公司、日本蓄电池公司和大阪电力公司共同建立了EV和HEV试验示范区。

1.2电动汽车用蓄电池
根据汽车的使用特点,其实用的动力电池一般应具有比能量高、比功率大、自放电少、工作温度范围宽、能快速充电、使用寿命长和安全可靠等特点。

前景比较好的是镍氢蓄电池,铅酸蓄电池,锂离子电池,
1.3电池管理系统(BMS)
电池能量管理系统是保持动力电源系统正常应用、保证电动车安全和提高电池寿命的一种关键技术,它能保护电池的性能,预防个别电池早期损坏,利于电动车的运行,具有保护和警告功能。

电动汽车的充电、运行等功能与电池相关参数协调工作是通过对电池箱内电池模块的监控工作来实现的,它的功能有计算并发出指令,执行指令,提出警告。

电池能量管理系统主要包括:电池状态估计、数据采集、热管理、安全管理、能量管理和通信功能。

(1)数据采集电池管理系统的所有算法、电动车的能量控制策略等都是以采集的数据作为输入,影响电池能量管理系统性能的重要指标是采样速率、精度和前置滤波特性。

(2)电池状态估计电池状态估算包括SOC和SOH,是电动汽车进行控制和功率匹配的重要依据。

在行车过程中系统可以随时计算车辆能耗给出SOC值,供能源管理系统进行功率配置和确定控制策略,使驾驶员知道车辆的续驶里程,及时作出决定到充电地点充电防止半路抛锚,SOH告诉驾驶员电池的寿命。

(3)能量管理在能量管理中,电压、温度、电流、SOC、SOH等作为输入完成
这些功能,控制充电过程,用SOC,SOH和温度限制电源系统输入、输出功率。

(4)安全管理具体功能是监视电池电压、电流、温度是不是越过正常范围;防止单体电池过充。

(5)热量管理电池的热量管理对于大功率放电和高温条件下使用的电池非常关键。

热量管理的目的是使电池单体温度平衡并保持在一定的范围内,使高温电池降温,使低温电池温度升高。

(6)通信功能电池管理系统与车载设备设备的通信是BMS的重要功能之一,根据实际的应用需要,可以采用不同的通信接口进行数据交换,如:PWM信号、模拟信号、CAN总线或I²C串行接口CAN总线是一种可考虑高、通信速率高的现场总线。

(7)人机接口设置显示和控制按键、旋钮等来输入指令给BMS。

(8)保证充电功能电池能量管理系统实时检测电池的工作状态,特别是对煤质电池的工作状态进行监测分析,将监测的数据在充电前通知充电机即车与机的对话,告诉充电机电池组的工作状态和每只电池的技术状态,“落后”电池和“先进”电池的性能差异。

系统计算此时充电机应当采取何种充电方式给电池充电才能达到给点吃充足,性能好的电池不能过充,而性能差的电池又能充足,保证整车能量的供应。

(9)故障诊断功能能够与车辆检测仪器进行通信等,诊断系统故障,方便车辆的维修。

在电动车动力系统中,电池监控主要指的是被动的监测和评估电池的状态,但是电池管理包括处理数据并且预测电池将来的表现,甚至是主动干预和控制电池的充放电电流和电压,控制充电条件和电池工作温度等。

整车的能量管理是指动力系统中为满足驾驶员期望工况而进行的功率和能量的平衡,要完成这个任务电池管理系统要进行系统设计,算法设计,硬件、软件设计,应用与实验验证等。

管理系统(BMS)主要有以下几部分组成:数据采集单元(采集模块)、中央处理单元(主控模块)、显示单元、均衡单元检测部件(电流传感器、电压传感器、温度传感器、漏电检测)、控制部件(熔断装置、继电器)等组成。

中央处理单元由高压控制回路、主控板等组成,数据采集单元有温度采集模块、电压采集模块等组成,大部分将均衡模块与检测模块设计在一起,显示单元由显示板、液晶屏、键盘及上位机组成。

一般采用CAN现场总线技术实现相互间的信息通讯。

BMS的主要工作原理可简单归纳为:首先数据采集电路采集电池状态数据,再由电子控制单元进行数据处理和分析,再根据分析结果对系统内的相关功能模块发出控制指令,向外界传递信息。

状态计算和能量管理数据采集接口继电器安全管理热管理






路BMS
充电负载放电功率流
信号流
人机接口通信功能温度控制电压电流温度
下面介绍几种典型的电池管理系统。

(1)德国柏林大学研制的电池管理系统
系统包括:显示模块、速度调节模块、温度调节模块、上位机诊断模块,还有为电池模块配备的平衡器。

总体控制方案中,采用CAN 总线模式,微处理单元采用西门子公司的Microcontroller80C167CR 。

电流
电池模块3电池模块2电池模块1电池模块4电池模块5
电池管理系统控制模块
U1U2U3U4U5上位机诊断模块充电机显示模块速度调节模块
温度调节模块
该电池管理系统是目前国际上功能比较全、技术含量比较高的电动汽车用电池管理系统,其主要功能主要包括防止电池过放充电、电池组热管理、基于模糊专家系统的剩余电量估计、用神经元网络辨识电池。

(2)韩国大宇公司DEV5-5电动汽车用电池管理系统
该电池管理系统的主要功能有:数据采集、优化充电、SOC 估计与显示、安全管理、能量管理、电池管理和故障诊断功能。

电池管理系统有电池控制单元(BCU )、主充电器、辅助充电器、热管理系统、SOC 计算、电池报警系统、模块传感器装置和安全模块构成,其中BCU 发挥核心功能。

BCU 实时监测电池工作状态,向各子程序系统发送正确的指令以使动力电池正常工作。

(3)北京交通大学研制的电池管理系统 主控制器
显示
按键
历史记录日历时钟远程监控
输出接口
电流检测
检测
模块
检测模块检测模块检测模块电池
模块1电池模块2电池模块3电池模块n
电流环通讯网络
这个电池和管理系统是在国家“863”计划支持下由北京交通大学完成的用于动力镍氢蓄电池监测及管理的系统装置,在2002年12月科技部验收了这个电池管理系统项目。

系统装置可以监控电池的运行状态、估量电池的剩余电量、对使用过程中出现的故障进行早期的诊断和充电。

1.4本论文的主要内容
本课题是电动公交车充电管理系统的一部分,主要负责对充电进行管理和控制。

系统监测所有电池的电压,温度等工作状态,根据用户选定的充电模式发出充电电流和电压的指令给充电桩,系统通过CAN 总线与充电桩通信,具有过压、过温保护功能,要求设计相应的充电管理硬件及软件完成相应的功能。

主演内容是针对电动汽车用镍氢蓄电池组,完成系统整体方案的设计,底层电压、温度的采集方案完成了硬件的设计和调试。

电动汽车动力电池一般有多个单体电池串联组成一个电池模块,加上微控制器为核心的电池管理系统组成一个车用电池组。

本课题串联384节1.2V DC 容量为300Ah 镍氢电池,本课题实现了BMS 控制器对电池电压、电流、温度参数进行采集,根据用户选定的充电模式发出充电电流和电压的指令给充电桩,为进一步实现完整的电池管理系统提供原始数据和软硬件平台。

2电池管理系统设计
与动力电池相关的管理控制设备称为——电池管理系统(BMS ),作为一个整
体在电动汽车中发挥作用。

BMS 的作用主要可分为两个方面:保证电池安全;合理高效的使用电池储存的能量。

电池管理系统是一个监控系统,所以在研制它之前首先要对监控的对象非常熟悉。

所有的电池管理系统都是针对一种电池甚至是一个品牌一个型号的电池而言的。

蓄电池的主要性能指标
1.电压
(1)电动势:指电池正负极之间的电位差E 。

(2)额定电压:标准条件下电池在工作时达到的电压值。

(3)开路电压:开路时电池两端的电压,跟电池两端的电动势近似相等。

(4)负载电压:电池两端接上负载R 放电过程中的电压,其数值就是电动势减去电池内阻两端的电压,即U=E-I*R 。

2.能量
(1)实际能量:是指电池在一定的条件下放出来的能量,等于电池的平均电压与实际容量的乘积。

(2)标称能量:电池在规定放电条件下放出的能量,其数值等于额定电压与额定容量的乘积。

(3)能量密度:电池组的每单位体积输出的能量,单位是W h ⋅/L 。

(4)比能量:电池组单位质量输出的能量,单位是W h ⋅/kg 。

3.电池容量
(1)实际容量:一定条件下电池输出的能量,放电时间与放电电流的乘积。

(2)理论容量:按照法拉第定理根据蓄电池活性物质的物理特性计算出的最高理论值,单位用体积容量Ah/L 或质量容量Ah/kg 表示。

(3)额定容量:电池按照一定标准在放电条件下放出的最低限度容量。

(4)标称容量:鉴别电池适当的近似值。

(5)荷电状态:反映电池容量指一定放电倍率下电池剩余电量与额定容量在相同条件下的比值。

4.放电速率
电池放电时放电电流与额定电流的比例。

(1) 电流率:指电池以某种电流强度放电量是额定容量的倍数。

(2) 时间率:指电池以某种电流强度放电放完额定容量序言的放电时间。

5.自放电率
自放电率是指电池在在没有负荷条件下存放时间内电池容量损失的速度,用单位时间内下降的电池容量百分数表示。

自放电率=*100*a b a Ah Ah Ah t
-℅,式中a Ah 表示电池储存的容量,b Ah 表示一定时间后电池储存的容量,t 表示电池储存的时间。

6.电池的内阻
流过电池内部的电流受到阻力电压会降低,这个阻力就是电池内阻。

电池放电时因为电池内阻的作用端电压会低于开路电压和电动势,充电的时候充电的端电压高于开路电压和电动势。

相关文档
最新文档