微生物生长曲线测定

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验七 测定细菌生长曲线
一、
实验目的
1. 了解细菌生长曲线特征,测定细菌繁殖的代时;
2. 学习液体培养基的配制以及接种方法;
3. 反复练习无菌操作技术;
4. 了解不同细菌,不同接种方法在同一培养基上生长速度的不同;
5. 掌握利用细菌悬液混浊度间接测定细菌生长的方法
二、 实验原理
将一定量的细菌接种在液体培养基内,在一定条件下培养,可观察到细菌的生长繁殖有一定的规律性,如以细菌的活菌数的对数作纵坐标,以培养时间作横坐标,可绘成一条曲线,成为生长曲线(如图一)。

图一 微生物生长曲线示意图
单细胞微生物的发酵具有四个阶段,即Ⅰ调整期(延滞期)、Ⅱ对数期(生长旺盛期)、Ⅲ平衡期(稳定期)、Ⅳ死亡期(衰亡期)。

生长曲线可表示细菌从开始生长到死亡的全过程的动态。

不同的微生物有不同的生长曲线,同一种微生物在不同的培养条件下,其生长曲线也不一样。

因此,测定微生物的生长曲线对于了解和掌握微生物的生长规律是很有帮助的。

测定微生物生长曲线的方法很多,有血球计数板法、平板菌落计数法、称重法和比浊法等。

本实验采用比浊法测定,由于细菌悬液的浓度与混浊度成正比,因此,可利用分光光度计测定细菌悬液的光密度来推知菌液的浓度。

将所测得的光密度值(OD600)与其对应的培养时间作图,即可绘出该菌在一定条件下的生长曲线。

注意,由于光密度表示的是培养液中的总菌数,包括活菌与死菌,因此所测定的生长曲线的衰亡期不明显。

从生长曲线我们可以算出细胞每分裂一次所需要的时间,即代时,以G 表示。

其计算公式为:
2
lg /)lg (lg 121
2W W t t G --=
式中t1和t2为所取对数期两点的时间;
W1和W2分别为相应时间测得的细胞含量(g/L )或OD 。

三、 实验仪器、材料和用具
1. 实验材料:大肠杆菌,枯草杆菌菌液及平板;
2. 培养基:牛肉膏蛋白胨葡萄糖培养基
3.实验仪器:取液器(5000ul, 1000ul 各一支);培养箱, 摇床,722s分光光度计;
4.实验用具:无菌1000ul吸头80个;无菌5000ul吸头2个;比色皿9个+共用参比杯一个.
四、实验步骤
1.准备菌种:将细菌接种到牛肉膏蛋白胨葡萄糖三角瓶培养基中,37℃振荡培养18h,另
外准备单菌落平板各1块
2.分为三个小组:
第(1)小组
取1.0ml大肠杆菌菌液接种到100ml培养基, 37 ℃200rpm
取3.0ml大肠杆菌菌液接种到100ml培养基,37 ℃200rpm
取5.0ml大肠杆菌菌液接种到100ml培养基,37 ℃200rpm
第(2)小组
取一个大肠杆菌菌落接种到100ml培养基,37 ℃200rpm
取1.0ml大肠杆菌菌液接种到100ml培养基,37 ℃110rpm
取1.0ml大肠杆菌接种到100ml培养基,30 ℃200rpm
第(3)小组
取1.0ml枯草杆菌接种到100ml培养基,37 ℃200rpm
取1.0ml枯草杆菌接种到100ml培养基,30 ℃200rpm
取1.0ml枯草杆菌接种到100ml培养基,37 ℃110rpm
每培养一小时取样一次(2.5h,3.5h加测1次). 对照组测量起始pH,所有瓶子测量发酵
9h结束测pH.
3.测量:选用600nm波长,以蒸馏水作为参比,开始培养前测定每组培养液的OD值
作为起始点。

开始培养后,每小时吸取测定一次OD值。

五、实验结果及分析
1.实验数据:
表一三个小组时间-OD数据
开始取样时间10:55 12:01 12:39 13:17 13:53 结束取样时间9:55 11:01 12:09 12:47 13:23 13:59 发酵时间0 1 2 2.5 3 3.5
ODt 大肠
杆菌
单菌落0.004 0.024 0.027 0.027 0.025 0.036 37℃110rpm -0.010 0.049 0.164 0.255 0.312 0.327 30℃200rpm -0.010 0.043 0.088 0.158 0.242 0.361
1.0mL 0.010 0.070 0.158 0.266 0.372 0.436
3.0mL 0.039 0.096 0.257 0.373 0.420 0.451
5.0mL 0.067 0.134 0.302 0.361 0.334 0.456 枯草
杆菌
37℃200rpm 0.008 0.023 0.076 0.132 0.184 0.254 30℃200rpm 0.013 0.032 0.052 0.088 0.091 0.125 37℃110rpm 0.007 0.017 0.098 0.130 0.230 0.253
OD=ODt-OD0 大肠
杆菌
单菌落0.004 0.020 0.023 0.023 0.021 0.032 37℃110rpm -0.010 0.059 0.174 0.265 0.322 0.337 30℃200rpm -0.010 0.053 0.098 0.168 0.252 0.371
1.0mL 0.010 0.060 0.148 0.256 0.362 0.426
3.0mL 0.039 0.057 0.218 0.334 0.381 0.412
5.0mL 0.067 0.067 0.235 0.294 0.267 0.389
开始取样时间 14:29 15:35 16:43 17:50 18:57 19:07 20:12
结束取样时间 14:35 15:43 16:50 17:57 19:09 20:07 21:12 发酵时间 4
5 6 7 8 9 10 ODt 大肠杆菌 单菌落
0.065 0.267 0.395 0.454 0.457
37℃110rpm 0.333
0.340 0.342 0.360 0.362
30℃200rpm 0.439
0.566 0.570 0.588 0.586
1.0mL
0.464 0.446 0.446 0.458 0.440
3.0mL
0.487 0.470 0.457 0.483 0.458
5.0mL
0.469 0.457 0.464 0.482 0.478
枯草
杆菌
37℃200rpm 0.337
0.428 0.517 0.590 0.686 0.711 0.711 30℃200rpm 0.171
0.261 0.370 0.540 0.628 0.606 0.652 37℃110rpm 0.295
0.302 0.305 0.305 0.352 0.352 0.378 OD=ODt-OD
大肠杆菌 单菌落
0.061 0.263 0.391 0.450 0.453
37℃110rpm 0.343
0.350 0.352 0.370 0.372
30℃200rpm 0.449
0.576 0.580 0.598 0.596
1.0mL
0.454 0.436 0.436 0.448 0.430
3.0mL
0.448 0.431 0.418 0.444 0.419
5.0mL
0.402 0.390 0.397 0.415 0.411
枯草
杆菌
37℃200rpm 0.329
0.420 0.509 0.582 0.678 0.703 0.703 30℃200rpm 0.158
0.248 0.357 0.527 0.615 0.593 0.639 37℃110rpm 0.288
0.295 0.298 0.298 0.345 0.345 0.371
2. 作图、简要分析及代时计算:
1) 取一个大肠杆菌菌落接种到100ml 培养基, 37 ℃ 200rpm
图一 单菌落大肠杆菌生长曲线
这条曲线属于比较标准的“S ”形曲线,很容易看出调整期和对数期,由于单菌落菌较少,而且从固体培养基转移至液体培养基环境变化较大,所以出现了长达4小时的调整期,但可以看出,调整期之后这瓶菌都生长良好。

枯草
杆菌
37℃200rpm 0.008
0.015 0.068 0.124 0.176 0.246 30℃200rpm 0.013
0.019 0.039 0.075 0.078 0.112 37℃110rpm 0.007
0.010
0.091
0.123
0.223
0.246
计算代时:取培养4小时到5小时之间的数据(对数生长期)来计算代时。

由代时计算公式,t 2-t 1=1h W 1=0.061 W 2=0.263 代时 2lg /)lg (lg 1212W W t t G --=
h h
474.02
lg /)061.0lg 263.0(lg 1=-=
2) 取1.0ml 大肠杆菌菌液接种到100ml 培养基,37 ℃ 110rpm
图二 大肠杆菌菌生长曲线(取1.0ml 大肠杆菌接种到100ml 培养基,37 ℃ 110rpm )
接种后几乎没有调整期出现,大肠杆菌很快适应了新的环境并开始呈指数增长,估计是新的培养环境和原有环境较一致,而且在培养最初的时候溶氧和酸碱度都较为适宜,但是这瓶菌是稳定期OD 最小的,估计是培养基最初分装不均产生的。

计算代时:取培养2小时到2.5小时之间的数据(对数生长期)来计算代时。

由代时计算公式,t 2-t 1=0.5h W 1=0.174 W 2=0.265 代时 2lg /)lg (lg 1212W W t t G --=
h h
824.02
lg /)174.0lg 265.0(lg 5.0=-=
3) 取1.0ml 大肠杆菌菌液接种到100ml 培养基,30 ℃ 200rpm
图三 大肠杆菌生长曲线(取1.0ml 大肠杆菌接种到100ml 培养基,30 ℃ 200rpm ) 可以看出温度对大肠杆菌适应环境产生了一定的影响,使它在调整期滞留了较长的时间,且在对数期增长较慢,应该是酶活性对细胞复制的影响所致。

计算代时:取培养2.5小时到3.5小时之间的数据(对数生长期)来计算代时。

由代时计算公式,t 2-t 1=1h W 1=0.168 W 2=0.371 代时 2lg /)lg (lg 1212W W t t G --=
h h
875.02
lg /)168.0lg 371.0(lg 1=-=
4) 取1.0ml 大肠杆菌菌液接种到100ml 培养基, 37 ℃ 200rpm
图四 大肠杆菌生长曲线(取1.0ml 大肠杆菌接种到100ml 培养基, 37 ℃ 200rpm ) 这是大肠杆菌培养的最适调节,可以看出其生长良好,调整期较短,对数期较长。

计算代时:取培养2小时到3小时之间的数据(对数生长期)来计算代时。

由代时计算公式,t 2-t 1=1h W 1=0.148 W 2=0.362
代时 2lg /)lg (lg 1212W W t t G --=
h h
775.02
lg /)148.0lg 362.0(lg 1=-=
5) 取3.0ml 大肠杆菌菌液接种到100ml 培养基,37 ℃ 200rpm
图五 大肠杆菌生长曲线(取3.0ml 大肠杆菌接种到100ml 培养基,37 ℃ 200rpm ) 接种量的增加没有产生太大的影响,生长曲线没有太大变化。

计算代时:取培养2小时到2.5小时之间的数据(对数生长期)来计算代时。

由代时计算公式,t 2-t 1=0.5h W 1=0.218 W 2=0.334 代时 2lg /)lg (lg 1212W W t t G --=
h h
812.02
lg /)218.0lg 334.0(lg 5.0=-=
6) 取5.0ml 大肠杆菌菌液接种到100ml 培养基,37 ℃ 200rpm
图六 大肠杆菌生长曲线(取5.0ml 大肠杆菌菌液接种到100ml 培养基,37 ℃
200rpm )
3小时出现了一次明显的波动,应该是测量过程中没有摇匀的结果,忽略它之后,这条生长曲线属于正常形态,比较前两天生长曲线,发现5mL 得到的最大OD 反而减小了,说明在一定量的培养基下,初始接种量对最后结果影响不大。

最大OD 应该是受到了最初添加培养基的影响。

计算代时:取培养1小时到2小时之间的数据(对数生长期)来计算代时。

由代时计算公式,t 2-t 1=1h W 1=0.067 W 2=0.235 代时 2lg /)lg (lg 1212W W t t G --=
h h
552.02
lg /)067.0lg 235.0(lg 1=-=
7) 取1.0ml 枯草杆菌接种到100ml 培养基, 37 ℃ 200rpm
图七 枯草杆菌生长曲线(取1.0ml 枯草杆菌接种到100ml 培养基, 37 ℃ 200rpm ) 枯草杆菌的生长曲线包含了调整期、对数期和很小一部分稳定期,虽然稳定期很短,但是已经可以看出停止生长的趋势,说明枯草杆菌的代时较长。

计算代时:取培养3小时到4小时之间的数据(对数生长期)来计算代时。

由代时计算公式,t 2-t 1=1h W 1=0.176 W 2=0.246 代时 2lg /)lg (lg 1212W W t t G --=
h h
108.12
lg /)176.0lg 246.0(lg 1=-=
8) 取1.0ml 枯草杆菌接种到100ml 培养基, 30 ℃ 200rpm
图八 枯草杆菌生长曲线(取1.0ml 枯草杆菌接种到100ml 培养基, 30 ℃ 200rpm ) 温度降低后,生长变得缓慢了,最后达到的最大OD 也更小了,代时加长。

计算代时:取培养4小时到5小时之间的数据(对数生长期)来计算代时。

由代时计算公式,t 2-t 1=1h W 1=0.158 W 2=0.248 代时 2lg /)lg (lg 1212W W t t G --=
h h
537.12
lg /)158.0lg 248.0(lg 1=-=
9) 取1.0ml 枯草杆菌接种到100ml 培养基, 37 ℃ 110rpm
图九 枯草杆菌生长曲线(取1.0ml 枯草杆菌接种到100ml 培养基, 37 ℃ 110rpm ) 4小时时,似乎由对数期进入了稳定期,但是对比前两组数据,此时的OD 值明显偏小,所以分析,可能此时突然有外因影响,使细胞进入了调整期,可以看到后来7、8小时左右细菌又有增长趋势。

计算代时:取培养2.5小时到3小时之间的数据(对数生长期)来计算代时。

由代时计算公式,t 2-t 1=1h W 1=0.123 W 2=0.223
代时 2lg /)lg (lg 1212W W t t G --=
h h
582.02
lg /)123.0lg 223.0(lg 5.0=-=
3. 发酵结束pH 对照组pH=7.5
实验结束后所有瓶pH 均小于6.4
pH 全部降低,说明大肠杆菌和枯草杆菌发酵均产生了酸。

4. 分析
表二 不同环境和菌种生长比较 培养菌
接种量
培养温度/ ℃
摇床转速/rpm
生长曲线状态
代时/min 调整期/h
对数
期/h
稳定期OD(取8小时OD ) 大肠杆菌
单菌落 37 200 4 3 0.453 28.5 1.0mL 37 110 1 3 0.372 49.4 1.0mL 30 200 2 3 0.596 52.5 1.0mL 37 200 1 3 0.430 46.5 3.0mL 37 200 1 2 0.419 48.7 5.0mL 37 200 1 2 0.411 33.1 枯草杆菌
1.0mL
37 200 2 6 0.678 66.5 30 200 3 5 0.615 92.2 37 110 1 3 0.345
34.9
1) 接种量对微生物的影响:
预期:接种量大,调整期缩短,对数期增长,稳定期OD 增大,代时缩短。

原因:接种量大的细胞基数大,因而更快适应环境。

实际:调整期影响不大,对数期稍有缩短,稳定期OD 减小,代时规律不明显。

分析:生长曲线受各种因素调节,这里实验结果不同于预期应该是受到培养基的限制,接种量大对氧气和原料需求更多,而且产生酸的速度也快,也许对后来的细胞生长造成了一定的影响。

2) 培养温度对微生物的影响
预期:最适温度下细胞生长应该最快,调整期最短,稳定期OD 最大,代时最短 原因:温度影响细菌内酶活力和细胞膜的通透性,进而影响新陈代谢,从而影响细菌的生长繁殖。

最适温度下,细菌酶活性最强,因而能最快适应环境,并取得生长增殖的最高效率。

实际:大肠杆菌37℃稳定期OD 最大,调整期更短,但代时更长。

枯草杆菌37℃调整期更短,对数期更长,稳定期OD 更大,代时更短。

分析:大肠杆菌代时的问题应该来自实验误差,如取样未摇匀、计算时取点不够准确,或实验过程中某些操作导致生长和理论不一致。

3) 摇床转速对微生物的影响
预期:转速高,调整期短,对数期长,稳定期OD 大,代时短 原因:转速影响溶氧,溶氧高,生长情况应该越好
实际:大肠杆菌与预期符合;枯草杆菌转速快的调整期长,代时长。

分析:原因可能有两点,一是枯草杆菌在溶氧高的环境下生长没有那么好,说明它是微好氧生物,但这与实际不符;二是其他条件限制,虽然说两个培养瓶进行对照要求其他条件一致,但是由于培养基分配及其其他各种原因,其他条件可能并不一
致而且还产生了比对照条件还要大的影响。

4)生长曲线分析
两个菌的生长曲线都包括了调整期、对数期和稳定期,实验没有进行到衰亡期因为
而没有观察到后来的OD值下降。

5)大肠杆菌和枯草杆菌比较
大肠杆菌:代时要短一些,温度对代时的影响比溶氧对代时的影响要大,估计是因
为溶液中细胞不多,所以溶氧的限制作用没有温度明显。

枯草杆菌:代时较长,溶氧比温度对代时的影响要大,但这也可能是实验操作中其
他因素影响而得出的表观结果。

六、实验小结
这是一个大组合作、小组分工的实验,每一组的结果都影响了整个大组队结果的分析,这就要求我们的合作。

和暑期实验不同,这次实验在时间上缩短了,但是在内容上却增多了,由于有很多组的平行比较,所以得到的信息量也相应加大,这些信息中又包含了这种各样的误差,所以要求我们自己在处理别人的实验结果中也加入自己的分析。

总的来说,这是个很有意思也很有意义的实验。

七、思考
1.计算出大肠杆菌和枯草芽孢杆菌在牛肉膏蛋白胨葡萄糖培养基中对数生长期中的代时
(min)(繁殖一代的时间),为什么比理论时间长好多?
代时见表二。

经查资料得:大肠杆菌理论代时为37度时18分钟,而枯草杆菌一般是给30度下的理论代时为31分钟,实验测得代时长于理论值的原因:
理论代时是在理想的培养条件下测得,糖分、氧气等营养物质供应充足,细菌生长状况良好,之前的分裂次数较少。

实际实验条件与理论值条件存在差距。

如培养过程中不补料,营养物质有限。

单纯的振荡不能保证体系中有足够的溶氧。

对培养液的pH值,氧化还原电势也未加控制,测量过程中温度不能保持稳定等等。

2.为什么可用比浊法来表示细菌的相对生长状况?
培养液的浑浊度与细菌的浓度与成正比,可以利用分光光度计测定细菌浊液的光密度来推知菌液的浓度。

浊度的变化代表体系细菌数量的变化。

其原理是:一个细胞悬浮液用肉眼观察是呈现混浊的,这是因为光线通过悬浮液是,细胞散射光线。

存在的细胞数越多,分散的光线就越多,因此悬浮液浊度就越大。

通过分光光度计可以检出没有被细胞散射的光线。

对于大肠杆菌和枯草杆菌,从理论上OD值与细胞总量成正比。

可以制备将细胞数目与浊度联系起来的标准曲线。

3.生长曲线中为什么会有稳定期和衰退期?
当细胞的繁殖速度达到高峰时,其细胞总数就不会再增加,这是由于调整期、对数生长期两阶段糖类营养物质的消耗,代谢产物乙醇的积累及培养基的pH值、氧化还原电势的改变,对细胞产生了较大的抑制性。

当死亡细胞数和繁殖细胞数接近稳定时,就出现稳定期,细胞总数处于稳定状态。

进入稳定期后,如果继续培养,由于营养物质(如糖类和氧气)的进一步消耗,代谢物的进一步积累,溶液进一步酸化,导致细胞死亡的速率提高。

当细胞死亡数超过繁殖数时,活细胞总数不再稳定,生长曲线进入衰退期。

4.什么条件下接种为宜?液体种子比固体种子有什么优越性?
接种时以分裂次数少、生长状况良好的种子为宜。

液体种子较之固体种子,迟滞期略短,对数生长期较长,代时略短,较晚进入死亡期。

因为从固体中接种到培养液后,细菌需要合成新的RNA、核糖体、酶等才能适应新的生
微生物实验
长条件,需要更长的时间适应。

5.根据实验结果,谈谈在工业上如何缩短发酵时间?
(1)保证充分的营养供应,根据细菌的特性如果是需氧的要保证充足的氧气供应,维持最适宜的温度和pH值,尽快排出代谢废物,随时观察随时监控,这样可以保证细菌的高速生长。

(2)在保证营养的前提下,可以扩大接种量,这样可以缩短调整期。

(3)选取合适的培养基、尽量是与种子生长性质相同或者相近的培养基,选取合适菌龄的种子。

八、参考文献
陈金春、陈国强编著,微生物学实验,北京,2005。

酵母菌生长曲线测定:
将 7 2 1型分光光度计波长调整到 5 6 0 n m。

预热 3 0 mi n 。

以未接种的麦芽汁培养液校正比色计的零点。

取盛有 3 0 o mL无菌麦芽汁培养液的 1 0 0 0 mL 锥形瓶 5个,各瓶中加入振荡培养 2 0 h的酵母培养液 3 0 mL, 3 0 c I = 恒温培养。

于培养后的第0、 2、 4、 6、 8、 1 0、 1 2、 1 4、 1 6、 1 8、 20、2 2、 24、 2 6、 28、 3 0、 3 2、 3 4 h 分别用无菌移液管从各瓶中吸取培养液 5 mL。


5 6 0 n m下测定 O D 5 6 0 值。

霉菌生长曲线的测定
1菌丝体生长量的测定:取木霉发酵液1 0 0 m l ,在4 0 0 0 f f m i n下离心1 5 m i n ,弃去上清液,
用蒸馏水洗涤沉淀3 次,所得菌体在6 0 ℃下烘干至恒重,精确称量并计算出每1 0 0 ml 发酵液
中菌丝体的干重( g ) ,即为菌丝体的生长量。

菌丝生长量的测定:取一定体积的发酵液8 0 0 0 r · m 离心5 mi n ,弃去上清液,用去离子水洗涤3次后,1 0 5 摄氏度烘至恒重,为菌体的干重( DCW)。

相关文档
最新文档