遥感影像解译不确定性的评估与表达
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
遥感影像解译不确定性的评估与表达
摘自《遥感数据的不确定性问题》
承继成郭华东史文中等编著
遥感数据的精度评估研究是从 1975 年开始的 (1973 年发射第一个遥感卫星 )。
最早 Hord 和Brooner(1976),Van Genderen 和Lock(1977)及Ginevan(1979) 曾提出了建立测试评估地图的标准和技术的建议。
Roslnfield(1982),Congalton(1983),Aronoff(1985)对遥感数据精度的评估标准和技术进行了较深入的研究,以后又有更多的人参与了该项研究工作。
误差矩阵是主要的方法,它能很好地表达专题图的精度,已经成为普遍采用的方法。
一、遥感影像解译不确定性评估综述
遥感解译有人工目视判读和计算机自动分类处理。
在本章中我们主要指计算机自动分类。
造成遥感影像解译不确定性的原因有遥感数据固有的不确定性和遥感数据获取、处理、传输、分类过程造成的误差。
因此遥感数据解译过程中的不确定性是客观存在、不可避免的。
任何解译的成果图件在不同程度上都存在着一定的不确定性,符合“任何人工模拟产品与客观真实世界之间总是存在一定差异”的原理。
遥感影像数据的不确定性是普遍存在的。
一些遥感影像的分辨率很低,经过各种处理影像分类的可信度尽管有所
提高但仍然存在不确定性( 表1),一些地物的可信度仍很低。
表 1 遥感影像分类的可信度 (%)( 据吴连喜 ,20XX)
地类城镇建筑农村居民点裸地大棚耕地园地林地水体道路 TM影像 Marr融合影像 Brovey融合影像 HIS融合影像7510 PCA融合影像 5839 5487 遥感数据分类的不确定性度量方法通常用误差矩阵来度量。
从误差矩阵中可
以计算出分类精度的指标,如“正确分类比”。
另一种指标是Cohen 提出来的Kappa系数,后来经Foody(1992) 修正后称为 Tau 系数。
遥感数据分类的专题不确定性是指专题值与其真值的接近程度,其度量随专题
数据类型的不同而不同。
专题数据的类型有两种:分类专题数据 (categorical thematic data) 和连续专题数据(continuous thematic data), 也有将其分为定性数据(qualitative data) 和定量数据的 (quantitative data)。
连续数据的不确定性度量指标与位置不确定性的度量指标相类似,如方差等(Lanter and Veregin,1992;Heuvelink,1993;Goodchild et al,1992)。
遥感数据不确定性的度量一般采用基于像元的分类结果评估,其不确定性度量评估流程如图1。
图 1 基于像元的遥感数据不确定性评估流程图 ( 据Lunetta et al,1991)
二、基于采样的检验方法
总结现有的文献主要有三种基于实验的检验方法:
(1) 对于某一类或全集正确量测的百分比(Rosenfield,1986);
(2) 某一置信水平下某一类或全集正确量测的百分比(Aronoff,1985;Hord and Brooner,1976);
(3)基于某些参数的某一类或全集正确量测的百分比(Greenland et al,1985;Rosenfield and Fitzpatrick-Lins,1986)。
以上三种方法适用于各种非连续属性值的精度评估。
非连续属性数据的评估可以通过对一组分类结果的评价得以实现。
地面真实数据有时也称之为参考数据,通过将量测数据与参考数据的比较我们可以建立一个误差矩阵。
该矩阵可以描述某一类别的分类精度或整体分类精度。
基于这一矩阵可以对分类精度进行进一步地讨论。
本节将
集中讨论遥感分类影像的精度评估问题。
1. 参考数据的采样
在基于采样数据的属性不确定性评估方法中,采样数据作为误差矩阵或其他统计分析的输入部分,在这个过程中选择适当的采样数据是非常重要的。
有两个因素影响着采样数
据的选择:采样样本的大小及采样数据分布模式。
在评估分类遥感影像的分类精度时,采样点的数量是十分重要的。
获取地面采样数据是昂贵的,因此采样点的个数应尽可能减少。
另一方面,为了在统计上有意义,采样点的数目应尽可能大,至少大于某一给定数目,例如 30个。
人们在采样点个数方面进行了许多探讨(Van Genderen and Lock,1977;Rosenfield,1982;Congalton,1988;Fukunaga and Hayes,1989)。
另一个重要因素是采样模型。
选择适当的采样点分布方式,使所选择的样本可以代表全部分类的影像是十分重要的。
一个较差的采样可能导致精度评估的偏重,使得对精度的估计过高或过低。
通常使用的采样模式有五种:简单随机采样 (Cochran,1977);集群采样(Kish,1965);分类随机采样(Barrett and Nutt,1979);系统采样 (Barreff and Nutt, 1979)以及分类系统非一致采样(Berry and Baker,1968)。
Congalton(1988)对不同地区进行了采样模拟,并总结出在各种情况下简单随机采样与分类随机采样提供最佳采样结果的规律。
当采样个数与模式确定之后,即可实施采样,进而生成误差矩阵,依此进一步进行有关的属性精度评估。
2. 误差矩阵
误差矩阵,有时也称为混淆矩阵,是一个用于表示分为某一类别的像素个数与地
面检验为该类别数的比较阵列。
一个误差矩阵的实例见表2。
表2中的列通常表示参考数据,而行表示遥感分类的结果。
误差矩阵通常用于表示分类的精度,因为它可用于指出某一类的或整体分类的精度。
此外,用误差矩阵还可以表示出包含与丢失两种误差。
在表2 中,A、B、C是三类待分类的类别名称。
第一行的数目,如总数“52”表示为A 的像素中根据实地检查有45个被分为类别“A”,2个像素被分为类别“B”,5个像素被分为“C”。
表2 误差矩阵实例
分类数据 A B C 列总和 A 45 3 2 50 地面真实数据 B 2 63 7 70 行总数 C 5 5 70 80 52 71 79 200 根据误差矩阵可以导出若干关于总体分类或对于某一类别分类的精度描述指标。
分类的总体精度是用误差距阵内对角线元素之和除以总的采样个数来表示的。
例如,在表2的例子中,该值为(45+63+70)/200=89%,即总体分类精度为89%。
为描述对某一类别的分类精度,我们定义了用户精度和生产者精度 (Story and Congalton,1986)。
对于类别A的生产者精度是用下列公式计算的,即类别A的正确分类个数除以对于类别A的总采样个数,即A的列总和。
例如在以上的例子中,生产者精度为:45/50= 90%。
该指标指出了一个地面采样点被正确地分类的概率。
事实上,它是对丢失误差的一个量度,该误差指出了该采样数据中没有被正确分类的百分比。
丢失误差是该类所在列中非对角线元素之和除以该列总和而得。
例如在以上的例子中,丢失误差为:
(3+2)/50=10%。
因此,有:
生产者精度 + 丢失误差 =100%
另一方面,类别A的用户精度定义为:正确分类为A的个数除以分为类别A的总和 (即A所在行的总和)。
在以上例子中,该值为 45/52=%。
事实上,该指标指出一个采样分类点表示实际地面真实情况的百分比。
用户精度表示了包含误差,A类的包含误差用A所在行的非对角线元素之和除以该行的总和。
在以上的实例中,该值为:(2+5)/52=%。
用户精度与包含误差有以下关系:
用户精度 + 包含误差 =100%
Chrisman(1986)指出,输入GIS中数据应附有一个误差矩阵。
这应以原始的误差矩阵形式表示,而非该矩阵导出的一系列参数。
只有这个原始矩阵才能表示出每一类别的各种精度与误差,用户可根据其自己的要求从中导出新的参数。
系数
两个最常用的属性精度量测量是二维正态概率和Kappa 系数。
于二维正态概率是基于“正确百分率”,因而
不能统计出包含与丢失误差。
另一方面,Kappa 系数提供两幅图观测协议的不同量度,而协议是几率形成的(Congalton and Mead,1983;Cangalton et al,1983)。
Kappa系数定义为:
K=(P0-Pe)/(1-Pe)
式中,P0是观测精度估计,而Pe是期望精度估计。
一个的 Kappa系数可以解释为该分类以80%的程度优于随机地给像素赋类别值。
Kappa系数的优点在于它已经包含了丢失误差和包含误差。
一个条件 Kappa 系数可以表示对于某一类别的分类精度。
建议Kappa参数成为表示总体属性不确定性的一个标准指数,而条件Kappa参数则成为某一类别精度描述的指标。
误差矩阵是一个常用的遥感影像分类不确定性描述模型。
为使对分类精度的描述具有代表性,样本大小及采样模式是两个重要的考虑因素。
基于误差矩阵,一系列的误差指标可以被导出,如用户精度、生产者精度、包含误差、丢失误差等。
这些参数可用于描述某一类或整体分类的精度。
然而,在某些情况下需要知道每一个像素的不确定性。
以上的误差描述指标不能满足此要求。
4. 内部与外部检验
确定属性数据的统计质量方法有三种:即演绎法推论、内部检验和外部检验 (Kennedy Smith,1986)。
通常用演绎
法推断属性数据质量是利用具有内部或外部检验导出的属性质量的量测值。
内部检验方法是通过比较若干相互独立的重复观测量,其平均值被视为“真值”。
在质量控制中,内部检验的结果是准确性。
另一方面,外部检验是通过将量测值与“真值”或可以写作“真值”的量进行比较。
外部检验的结果可以满足用户的需求 (Kennedy Smith,1986),但这种检验不能区分开各种误差源或过程的误差影响,其结果包含了各种误差的影响。
在利用外部检验确定属性的数据质量时,首先要选定一定检查点,可以选择随机抽样点。
为确使每一类别内均有一定的点被选中为检查点,人们通常建议使用分类随机采样方式。
Hay(1979)建议对总体至少应选择50~100个采样点,而对于每一类至少应选择30个采样点。
使用外部检验法确定属性数据质量的过程描述如下:
(1) 定义一置信水平(例如%), 从正态分布表中查出此表所对应的值,即
zα=。
(2) 确定采样个数(N),例如 N=200 。
(3) 计算检查点正确分类的百分比(P), 例如 P=89% 。
(4) 利用以下不等式确定检验精度 (Drummond,1991):
x2+x-NP > 0
对于N = 200以及 zα =,有:
< x <
因此可以说在%的置信水平、对200个点采样精度为89%的情况下分类精度为81%~95%。
很明显,如果减少检查点的个数或升高置信水平,确定的分类区间宽度将加大。
该方法的一个缺点是整体分类精度有可能被拒绝,尽管对某一类的分类精度是可以接受的。
遥感分类结果对于某些应用应具有一个最小的正确分类百分比。
在该种情况下假设检验最为适合。
预先确定精度的假设检验是一个经常使用的质量控制方法,接受性采样是质量控制的一个重要分支。
关于统计质量控制的详细讨论见Grant与Leaven Worth (1988) 论述。
类别属性数据外的另一种数据是连续属性数据。
以下讨论连续属性数据不确定性的处理方法。
三、误差矩阵的内容与表达
遥感影像解释成果的可信度或不确定性问题往往是采用误差矩阵方法进行检验。
这是公认的科学方法。
北京国土资源遥感公司 20XX 年在《长江三峡库区移民工程遥感动态监测》报告中,介绍了土地利用的遥感监测精度,不同的分类方法具有不同的精度(表3~表 6)。
其中生产者精度是遥感影像分类的结果与训练样方比
较所得的精度,指地表检验样本被正确分类出的百分数。
即在用来检验如100个随机抽样的样本中经与地面实况核对数的判对率,如a11/a
用户精度是遥感影像分类的结果与客观真实世界(实况)比较所得的精度,指分类图上样本类别与地表真实类别符合的百分数,如a11/Aij
表 3 土地利用遥感监测精度的几个参数定义
地遥感类型 A B C a11 b11 c11 a a12 b12 c12 b a13 b13 c13 c a11/Aij a11/Bij a11/Cij 面类型 a b c 表4 最大似然分类精度评价表
类别耕地草地林地开发用地水稻田滩涂城镇用地生产者精度用户精度平均精度水域总精度 Kappa 系数
表5 神经网络的辅助数据参与分类结果
类别耕地草地林地开发用地水稻田滩涂城镇用地水域生产者精度用户精度平均精度总精度 Kappa 系数
表 6 纹理与TM分类结果
类别耕地草地林地开发用地水稻田滩涂城镇用地水域生产者精度用户精度平均精度总精度Kappa 系数
北京国土资源遥感公司在同一地区还进行了遥感影像
的公路解译及其长度的量测,并与 GPS 方法实测的结果时行了对比,见表7:
表7 北京某地区遥感影像公路解译及其长度的量测数据(北京国土资源遥感公司)
GPS测量长度/m 宽度/m 25 占地Am12 长度/m RS 解译量算宽度/m 占地4m2 神女大道
集仙中路集仙东路、平湖路其他主干道合计20 18 12 12~25
即使同一类地物的不同个体在物体特征方面也不可能完全一致,而只可能十分相似。
人工模拟产品与客观世界之间的不确定性是于测量标准本身存在着不确定性,如常用作测量标准的有:
GPS 测量与数据处理的精度
第一种:单机定位方法,定位精度为 15m 左右;第二种:码差分数据后处理,定位精度为1~2m;第三种:相位差分数据后处理,定位精度 <1m;
第四种:RTK实时差分数据处理,定位精度~(5~10cm)。
国家测绘水准点是国家级大地测量、测绘的基准点,四级测绘点的精度为
5cm。
地形图的成图标准,按国家规程:
1:1 万地形图:山区点位中误差 <10m;
平原区点位中误差 <5m。
北京市第二次土地资源详查产生的土地利用图精度很高但仍然存在着误差 , 不过是属于许可范围内的误差。
中国农业大学信息学院对第二次详查成果的点位精度进行了测试。
测试是用精度较高的20XX年电子版(1:1万)为基准,测量了共个点位,在确认GPS 测量精度的基础上对同名地物的平原区 46 个和山区 23 个点位进行测量,其结果如下(表 8~表11):
地形图为基准的结果:平原为,山区为; GPS 为基准的结果:平原为,山区为。
表 8 以 1999 年地形图为基准的量测精度检验结果(平原)(单位:m)
统计项最大值最小值中值平均值中误差遥感影像误差_X 误差_Y 误差_X 二次详查图误差_Y 表 9 以 1999 年地形图为基准的量测精度检验结果(山区)(单位:m)
统计项最大值最小值中值平均值中误差遥感影像误差_X 误差_Y 误差_X 二次详查图误差_Y 表 10 以GPS为基准的量测精度检验结果(平原)(单位:m)
统计项最大值最小值中值平均值中误差遥感影像误差X 误差Y 1999年地形图误差X 误差-Y
1983年地形图误差-x 误差Y 二次详查图误差X 误差Y 表 11 以GPS为基准的量测精度检验结果(山区)(单位:m)
统计项最大值最小值·中值平均值中误差遥感影像误差X 误差一Y 1999年地形图误差-x 误差Y 1983年地形图误差X 误差-Y 二次详查图误差X 误差Y
另外,即使对于同一个地物,如某一地区的海岸线的长度如果采用不同的长度标准来量测,如采用以公里、米、厘米(分米)为单位和以毫米为单位量测的结果肯定是不一样的。
用来量测的单位长度越小,所得的测量结果的长度越大,这是复杂性和不确定性的另一种表现方式。
参见表12 误差矩阵。
地类: 1. 牧草
2. 长势旺盛的马尾松 ( 阳坡 )
3. 长势旺盛的马尾松( 阴坡 )
4. 长势差的马尾松 ( 阳坡 )
5. 长势差的马尾松 ( 阴坡 )
6. 荒山 ( 阳坡 )
表12 误差矩阵
序号 1 2 3 4 5 6 7 8 9 10 11 12 UNC 1 2 3 4 5 6 7 8 9 10 11 12 7. 荒山 ( 阴坡 ) 8. 灌木 9. 杂木 10. 水体 11. 水田
12. 杉树林 ( 阴坡 )。