内蒙古鄂尔多斯市第一中学圆周运动检测题(WORD版含答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、第六章 圆周运动易错题培优(难)
1.如图所示,水平圆盘可绕竖直轴转动,圆盘上放有小物体A 、B 、C ,质量分别为m 、2m 、3m ,A 叠放在B 上,C 、B 离圆心O 距离分别为2r 、3r 。

C 、B 之间用细线相连,圆盘静止时细线刚好伸直无张力。

已知C 、B 与圆盘间动摩擦因数为μ,A 、B 间摩擦因数为3μ,设最大静摩擦力等于滑动摩擦力,重力加速度为g ,现让圆盘从静止缓慢加速,则( )
A .当23g
r
μω=时,A 、B 即将开始滑动 B .当2g
r
μω=32
mg
μ C .当g
r
μω=C 受到圆盘的摩擦力为0
D .当25g
r
μω=C 将做离心运动 【答案】BC 【解析】 【详解】
A. 当A 开始滑动时有:
2033A f mg m r μω==⋅⋅
解得:
0g
r
μω=
当23g
g
r
r
μμω=<AB 未发生相对滑动,选项A 错误;
B. 当2g
g
r
r
μμω=
<
时,以AB 为整体,根据2
F mr ω向
=可知 29
332
F m r mg ωμ⋅⋅=
向= B 与转盘之间的最大静摩擦力为:
23Bm f m m g mg μμ=+=()
所以有:
Bm F f >向
此时细线有张力,设细线的拉力为T , 对AB 有:
2333mg T m r μω+=⋅⋅
对C 有:
232C f T m r ω+=⋅⋅
解得
32mg T μ=
,32
C mg
f μ= 选项B 正确;
C. 当ω=
时,
AB 需要的向心力为:
2339AB Bm F m r mg T f ωμ'⋅⋅=+==
解得此时细线的拉力96Bm T mg f mg μμ'-== C 需要的向心力为:
2326C F m r mg ωμ⋅⋅==
C 受到细线的拉力恰好等于需要的向心力,所以圆盘对C 的摩擦力一定等于0,选项C 正确;
D. 当ω=
C 有: 212
325
C f T m r mg ωμ+=⋅⋅=
剪断细线,则
12
35
C Cm f mg f mg μμ=
<= 所以C 与转盘之间的静摩擦力大于需要的向心力,则C 仍然做匀速圆周运动。

选项D 错误。

故选BC 。

2.如图所示,一个竖直放置半径为R 的光滑圆管,圆管内径很小,有一小球在圆管内做圆周运动,下列叙述中正确的是( )
A.小球在最高点时速度v的最小值为gR
B.小球在最高点时速度v由零逐渐增大,圆管壁对小球的弹力先逐渐减小,后逐渐增大C.当小球在水平直径上方运动时,小球对圆管内壁一定有压力
D.当小球在水平直径下方运动时,小球对圆管外壁一定有压力
【答案】BD
【解析】
【分析】
【详解】
A.小球恰好通过最高点时,小球在最高点的速度为零,选项A错误;
<,轨道对小球的作用力方向向上,有
B.在最高点时,若v gR
2
v
-=
mg N m
R
可知速度越大,管壁对球的作用力越小;
>,轨道对小球的作用力方向向下,有
若v gR
2
v
+=
N mg m
R
可知速度越大,管壁对球的弹力越大。

选项B正确;
C.当小球在水平直径上方运动,恰好通过最高点时,小球对圆管内外壁均无作用力,选项C错误;
D.当小球在水平直径下方运动时,小球受竖直向下的重力,要有指向圆心的向心力,则小球对圆管外壁一定有压力作用,选项D正确。

故选BD。

3.荡秋千是小朋友们喜爱的一种户外活动,大人在推动小孩后让小孩自由晃动。

若将此模型简化为一用绳子悬挂的物体,并忽略空气阻力,已知O点为最低点,a、b两点分别为最高点,则小孩在运动过程中()
A.从a到O的运动过程中重力的瞬时功率在先增大后减小
B .从a 到O 的运动过程中,重力与绳子拉力的合力就是向心力
C .从a 到O 的运动过程中,重力与绳子拉力做的总功等于小球在此过程中获得的动能
D .从a 到O 的运动过程中,拉力向上有分量,位移向下有分量,所以绳子拉力做了负功 【答案】AC 【解析】 【分析】 【详解】
A .由题可知,a 、b 两点分别为最高点,所以在a 、b 两点人是速度是0,所以此时重力的瞬时功率为0;在最低点O 时,速度方向与重力方向垂直,所以此时重力的瞬时功率为0,所以从a 到O 的运动过程中重力的瞬时功率在先增大后减小,故A 正确;
B .从a 到O 的运动过程中,将重力分解为速度方向的分力和背离半径方向的分力,所以提供向心力的是重力背离半径方向的分力和绳子的拉力的合力共同提供的,故B 错误;
C .根据动能定理可知,从a 到O 的运动过程中,重力与绳子拉力做的总功等于小球在此过程中获得的动能,故C 正确;
D .从a 到O 的运动过程中,绳子的拉力与人运动的速度方向垂直,所以拉力不做功,故D 错误。

故选AC 。

4.如图所示,两个水平放置的轮盘靠摩擦力传动,其中O 、O ′分别为两轮盘的轴心,已知两个轮盘的半径比r 甲∶r 乙=3∶1,且在正常工作时两轮盘不打滑。

两个同种材料制成的完全相同的滑块A 、B 放置在轮盘上,两滑块与轮盘间的动摩擦因数相同,两滑块距离轴心O 、O ′的间距R A =2R B ,两滑块的质量之比为m A ∶m B =9∶2.若轮盘乙由静止开始缓慢地转动起来,且转速逐渐增加,则下列叙述正确的是( )
A .滑块A 和
B 在与轮盘相对静止时,线速度之比v A ∶v B =2∶3 B .滑块A 和B 在与轮盘相对静止时,向心加速度的比值a A ∶a B =2∶9
C .转速增加后滑块B 先发生滑动
D .转速增加后两滑块一起发生滑动 【答案】ABC 【解析】 【分析】 【详解】
A .假设轮盘乙的半径为r ,因r 甲∶r 乙=3∶1,所以轮盘甲的半径为3r 。

由题意可知两轮盘边缘的线速度v 大小相等,由v =ωr 可得
:3:1ωω=甲乙
滑块A 和B 在与轮盘相对静止时,线速度之比
::2:3A B v v R R ωω==A B 甲乙
选项A 正确;
B .滑块A 和B 在与轮盘相对静止时,根据2a R ω=得A 、B 的向心加速度之比为
22:29A B A B a a R R ωω==甲乙::
选项B 正确;
CD .根据题意可得物块的最大静摩擦力分别为
A A f m g μ=
B B f m g μ=
最大静摩擦力之比为
A B A B f f m m =::
转动中所受的静摩擦力之比为
4.5A B A A B B A B f f m a m a m m ''==:::
综上分析可得滑块B 先达到最大静摩擦力,先开始滑动,选项C 正确,D 错误。

故选ABC 。

5.如图所示,匀速转动的水平圆盘上放有质量分别为2kg 和3kg 的小物体A 、B ,A 、B 间用细线沿半径方向相连。

它们到转轴的距离分别为R A =0.2m 、R B =0.3m 。

A 、B 与盘面间的最大静摩擦力均为重力的0.4倍。

g 取10m/s 2,现极其缓慢地增大圆盘的角速度,则下列说法正确的是( )
A .小物体A 达到最大静摩擦力时,
B 受到的摩擦力大小为12N B .当A 恰好达到最大静摩擦力时,圆盘的角速度为4rad/s
C 230
D .当A 恰好达到最大静摩擦力时,剪断细线,A 将做向心运动,B 将做离心运动 【答案】AC 【解析】 【分析】 【详解】
A .当增大原盘的角速度,
B 先达到最大静摩擦力,所以A 达到最大静摩擦力时,B 受摩擦力也最大,大小为
f B=km B
g =0.4⨯3⨯10N=12N
故A 正确;
B .当A 恰好达到最大静摩擦力时,圆盘的角速度为ω,此时细线上的拉力为T ,由牛顿第
二定律,对A
2A A A k T R m g m ω-=
对B
2B B B T km g m R ω+=
联立可解得
s 13
102
rad/ω=
故B 错误;
C. 当细线上开始有弹力时,此时B 物体受到最大摩擦力,由牛顿第二定律,有
2B B 1B k m R m g ω=
可得
1230
rad/s 3
ω=
故C 正确;
D. 当A 恰好达到最大静摩擦力时,剪断细线,A 物体摩擦力减小,随圆盘继续做圆周运动,而B 不再受细线拉力,最大摩擦力不足以提供向心力,做离心运动,故D 错误。

故选AC 。

6.一小球质量为m ,用长为L 的悬绳(不可伸长,质量不计)固定于O 点,在O 点正下方
2
L
处钉有一颗钉子.如图所示,将悬线沿水平方向拉直无初速度释放后,当悬线碰到钉子后的瞬间,则( )
A .小球的角速度突然增大
B .小球的线速度突然减小到零
C .小球的向心加速度突然增大
D .小球的向心加速度不变 【答案】AC 【解析】 【分析】 【详解】
由于悬线与钉子接触时小球在水平方向上不受力,故小球的线速度不能发生突变,由于做圆周运动的半径变为原来的一半,由v =ωr 知,角速度变为原来的两倍,A 正确,B 错
误;由a =
2T
π
知,小球的向心加速度变为原来的两倍,C 正确,D 错误.
7.如图所示,叠放在水平转台上的物体A 、B 、C 能随转台一起以角速度ω匀速转动,A 、B 、C 的质量分别为3m 、2m 、m ,A 与B 、B 和C 与转台间的动摩擦因数都为μ,A 和B 、C 离转台中心的距离分别为r 、1.5r 。

设本题中的最大静摩擦力等于滑动摩擦力。

以下说法正确的是( )
A .
B 对A 的摩擦力一定为3μmg B .B 对A 的摩擦力一定为3mω2r
C 3g
r μD g
r
μ【答案】BC 【解析】 【分析】 【详解】
AB .对A 受力分析,受重力、支持力以及B 对A 的静摩擦力,静摩擦力提供向心力,有
2(3)(3)f m r m g ωμ=
故A 错误,B 正确;
CD .由于A 、AB 整体、C 受到的静摩擦力均提供向心力,故对A 有
2(3)(3)m r m g ωμ
对AB 整体有
()()23232m m r m m g ωμ+≤+
对物体C 有
()21.5m r mg ωμ≤
解得
23g
r
μω≤
故C 正确,D 错误。

故选BC 。

8.如图所示,足够大的水平圆台中央固定一光滑竖直细杆,原长为L 的轻质弹簧套在竖直杆上,质量均为m 的光滑小球A 、B 用长为L 的轻杆及光滑铰链相连,小球A 穿过竖直杆置于弹簧上。

让小球B 以不同的角速度ω绕竖直杆匀速转动,当转动的角速度为ω0时,小球B 刚好离开台面。

弹簧始终在弹性限度内,劲度系数为k ,重力加速度为g ,则
A .小球均静止时,弹簧的长度为L -
mg
k
B .角速度ω=ω0时,小球A 对弹簧的压力为mg
C .角速度ω02kg
kL mg
-D .角速度从ω0继续增大的过程中,小球A 对弹簧的压力不变 【答案】ACD 【解析】 【详解】
A .若两球静止时,均受力平衡,对
B 球分析可知杆的弹力为零,
B N mg =;
设弹簧的压缩量为x ,再对A 球分析可得:
1mg kx =,
故弹簧的长度为:
11mg
L L x L k
=-=-
, 故A 项正确;
BC .当转动的角速度为ω0时,小球B 刚好离开台面,即0B
N '=,设杆与转盘的夹角为θ,由牛顿第二定律可知:
2
0cos tan mg m L ωθθ
=⋅⋅ sin F mg θ⋅=杆
而对A 球依然处于平衡,有:
2sin k F mg F kx θ+==杆
而由几何关系:
1
sin L x L
θ-=
联立四式解得:
2k F mg =,
02kg
kL mg
ω=
-
则弹簧对A 球的弹力为2mg ,由牛顿第三定律可知A 球队弹簧的压力为2mg ,故B 错误,C 正确;
D .当角速度从ω0继续增大,B 球将飘起来,杆与水平方向的夹角θ变小,对A 与B 的系统,在竖直方向始终处于平衡,有:
2k F mg mg mg =+=
则弹簧对A 球的弹力是2mg ,由牛顿第三定律可知A 球队弹簧的压力依然为2mg ,故D 正确; 故选ACD 。

9.如图,半径为R 的半球形容器固定在水平转台上,转台绕过容器球心O 的竖直轴线以角速度ω匀速转动.质量相等的小物块A 、B 随容器转动且相对器壁静止.A 、B 和球心O 点连线与竖直方向的夹角分别为α、β,α>β,则下列说法正确的是( )
A .A 的向心力等于
B 的向心力 B .A 、B 受到的摩擦力可能同时为0
C .若ω缓慢增大,则A 、B 受到的摩擦力一定都增大
D .若A 不受摩擦力,则B 受沿容器壁向下的摩擦力 【答案】D 【解析】 【分析】 【详解】
A .A 物体受到的向心力
2A sin F m R ωα=
B 物体受到的向心力
2B sin F m R ωβ=
由于
α>β
因此 A 的向心力大于B 的向心力,A 错误;
B .假设A 、B 两物体所受摩擦力同时为零,对A 物体进行受力分析可知
NA cos F mg α= NA A
sin F F α'=
整理得
A
tan F mg α'=① 同理可得
B
tan F mg β'= 与A 中结果比较,可知
A B A
B ::F F F F ''≠ 因此两个摩擦力不可能同时为0,B 错误;
C .当角速度ω很小时,摩擦力沿球形容器面向上,当角速度ω缓慢增大时,摩擦力先减小到零,再反向增大,C 错误;
D .若A 不受摩擦力,由①式可知
2tan sin mg m R αωα=
可得
2=
cos g
R ωα
此时B 受到的向心力大小为
B sin tan cos mg F mg β
βα
=
>
也就是说B 若不受摩擦力,仅靠支持力的水平分力不足以提供向心力,因此B 受到的摩擦力沿容器壁向下,D 正确。

故选D 。

10.如图所示,转台上固定有一长为4L 的水平光滑细杆,两个中心有孔的小球A 、B 从细杆穿过并用原长为L 的轻弹簧连接起来,小球A 、B 的质量分别为3m 、2m 。

竖直转轴处于转台及细杆的中心轴线上,当转台绕转轴匀速转动时( )
A .小球A 、
B 受到的向心力之比为3:2
B .当轻弹簧长度变为2L 时,小球A 做圆周运动的半径为1.5L
C .当轻弹簧长度变为3L 时,转台转动的角速度为ω,则弹簧的劲度系数为1.8mω²
D .如果角速度逐渐增大,小球A 先接触转台边沿 【答案】C 【解析】 【分析】 【详解】
A .由于弹簧的拉力提供小球做圆周运动的向心力,弹簧对两个小球的拉力相等,因此两个小球的向心力相等,A 错误;
B .由于向心力相等,因此
221232m r m r ωω=
而轻弹簧长度变为2L 时
122r r L +=
可得
10.8r L =,2 1.2r L =
当轻弹簧长度变为2L 时,小球A 做圆周运动的半径为0.8L ,B 错误;
C .当长度为3L 时,即
123r r L ''+=
可得
1 1.2r L '=
此时弹簧的弹力提供A 球做圆周运动的向心力,则
2(3)3 1.2k L L m L ω-=⨯
整理得
21.8k m ω=
C 正确;
D .由于B 球的轨道半径总比A 球的大,因此B 球先接触转台边沿,D 错误。

故选C 。

11.如图1所示,轻杆的一端固定一小球(视为质点)另一端套在光滑的水平轴O 上,O 轴的正上方有一速度传感器,可以测量小球通过最高点时的速度大小v ;O 轴处有力传感器,可以测量小球通过最高点时O 轴受到杆的作用力F ,若竖直向下为力的正方向,小球在最低点时给不同的初速度,得到F –v 2图像如图2所示,取g=10 m/s 2,则( )
A .小球恰好通过最高点时的速度大小为5m/s
B .小球以2m/s 的速度通过最高点时,杆对球的拉力大小为0.6N
C .O 轴到球心间的距离为0.5m
D .小球的质量为3kg
【答案】C
【解析】
【分析】
【详解】
A .由于是球杆模型,小球恰好通过最高点时的速度为零,A 错误;
D .当小球通过最高点的速度为零时,杆对小球的支持力恰好等于小球的重量,由图2可知,小球的重量为3N ,即质量为0.3kg ,D 错误;
C .当小球通过最高点时的速度的平方为5m 2/s 2时,恰好对杆没有作用力,此时重力提供向心力,根据
2v mg m L
= 可知杆的长度为0.5m , C 正确;
B .当小球以2m/s 的速度通过最高点时,根据
2
+v mg T m L
= 可得
0.6N T =-
此时杆对球的支持力大小为0.6N ,B 错误。

故选C 。

12.在粗糙水平桌面上,长为l=0.2m 的细绳一端系一质量为m=2kg 的小球,手握住细绳另一端O 点在水平面上做匀速圆周运动,小球也随手的运动做匀速圆周运动。

细绳始终与桌面保持水平,O 点做圆周运动的半径为r=0.15m ,小球与桌面的动摩擦因数为=0.6μ,210m/s g =。

当细绳与O 点做圆周运动的轨迹相切时,则下列说法正确的是( )
A .小球做圆周运动的向心力大小为6N
B .O 点做圆周运动的角速度为42rad/s
C .小球做圆周运动的线速度为22m/s
D .小球做圆周运动的轨道半径为
18
m 【答案】B
【解析】
【分析】
【详解】
AD .小球做圆周运动的半径如图
根据几何关系有
220.25m R r l =+=
则有
tan
r
l θ=
解得
37
θ︒
=
正交分解
sin
T mg
θμ
=
cos
T F
θ=

两式相比解得
0.6210
N16N
3
tan37
4
F
mg
μ

⨯⨯
===

故AD错误;
B.小球和O点转动的角速度相同,根据
2
F m R
ω
=

可知
16
rad/s42rad/s
20.25
m
F
R
ω===


故B正确;
C.小球做圆周运动的线速度
420.25m/s2m/s
v R
ω
==⨯=
故C错误。

故选B。

13.如图是德国物理学家史特恩设计的最早测定气体分子速率的示意图.M、N是两个共轴圆筒的横截面,外筒N的半径为R,内筒的半径比R小得多,可忽略不计.筒的两端封闭,两筒之间抽成真空,两筒以相同角速度ω绕其中心轴线匀速转动.M筒开有与转轴平行的狭缝S,且不断沿半径方向向外射出速率分别为v1和v2的分子,分子到达N筒后被吸附,如果R、v1、v2保持不变,ω取某合适值,则以下结论中正确的是()
A.当
12
2
R R
n
V V
π
ω
-≠时(n为正整数),分子落在不同的狭条上
B .当122R R n
V V πω
+=时(n 为正整数),分子落在同一个狭条上 C .只要时间足够长,N 筒上到处都落有分子
D .分子不可能落在N 筒上某两处且与S 平行的狭条上
【答案】A
【解析】
微粒从M 到N 运动时间R t v
=
,对应N 筒转过角度R t v ωθω== ,即如果以v 1射出时,转过角度:11R t v ωθω== ,如果以v 2射出时,转过角度:22R t v ωθω== ,只要θ1、θ2不是相差2π的整数倍,即当122 R R n v v πω
-≠ 时(n 为正整数),分子落在不同的两处与S 平行的狭条上,故A 正确,D 错误;若相差2π的整数倍,则落在一处,即当122 R
R n v v πω-
= 时(n 为正整数),分子落在同一个狭条上.故B 错误;若微粒运动时间为N 筒转动周期的整数倍,微粒只能到达N 筒上固定的位置,因此,故C 错误.故选A
点睛:
解答此题一定明确微粒运动的时间与N 筒转动的时间相等,在此基础上分别以v 1、v 2射出时来讨论微粒落到N 筒上的可能位置.
14.游乐园里有一种叫“飞椅”的游乐项目,简化后的示意图如图所示.已知飞椅用钢绳系着,钢绳上端的悬点固定在顶部水平转盘上的圆周上.转盘绕穿过其中心的竖直轴匀速转动.稳定后,每根钢绳(含飞椅及游客)与转轴在同一竖直平面内.图中P 、Q 两位游客悬于同一个圆周上,P 所在钢绳的长度大于Q 所在钢绳的长度,钢绳与竖直方向的夹角分别为θ1、θ2.不计钢绳的重力.下列判断正确的是( )
A .P 、Q 两个飞椅的线速度大小相同
B .无论两个游客的质量分别有多大,θ1一定大于θ2
C .如果两个游客的质量相同,则有θ1等于θ2
D .如果两个游客的质量相同,则Q 的向心力一定大于P 的向心力
【答案】B
【解析】
【详解】
BC .设钢绳延长线与转轴交点与游客所在水平面的高度为h ,对游客受力分析,由牛顿第
二定律和向心力公式可得:
2tan tan mg m h θωθ=
则:
P Q h h =
设圆盘半径为r ,绳长为L ,据几何关系可得: cos tan r h L θθ
=
+ 因为: P Q L L >
所以:
12θθ>
由上分析得:无论两个游客的质量分别有多大,θ1一定大于θ2;故B 项正确,C 项错误。

A .设游客做圆周运动的半径为R ,由几何关系可得:
sin R r L θ=+
所以:
P Q R R >
两游客转动的角速度相等,据v R ω=可得:
P Q v v >
故A 项错误。

D .对游客受力分析,游客所受向心力:
n tan F mg θ=
如果两个游客的质量相同,12θθ>,所以P 的向心力一定大于Q 的向心力,故D 项错误。

15.如图所示,A 、B 是两只相同的齿轮,A 被固定不能转动。

若B 齿轮绕A 齿轮运动半周,到达图中的C 位置,则B 齿轮上所标出的竖直向上的箭头所指的方向是( )
A .竖直向上
B .竖直向下
C .水平向左
D .水平向右
【答案】A
【解析】
【详解】 若B 齿轮逆时针绕A 齿轮转动,当B 齿轮转动14
周时,B 齿轮在A 齿轮正上方,B 齿轮上
所标出箭头所指的方向竖直向下;B齿轮继续转动1
4
周,B齿轮到达图中的C位置,B齿
轮上所标出箭头所指的方向竖直向上。

若B齿轮顺时针绕A齿轮转动,当B齿轮转动1
4
周时,B齿轮在A齿轮正下方,B齿轮上
所标出箭头所指的方向竖直向下;B齿轮继续转动1
4
周,B齿轮到达图中的C位置,B齿
轮上所标出箭头所指的方向竖直向上。

综上,BCD三项错误,A项正确。

相关文档
最新文档