学而思中考数学二轮复习专题——平面向量(学生版)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


A. 一次函数且是奇函数
C. 二次函数且是偶函数
,则函数 B. 一次函数但不是奇函数 D. 二次函数但不是偶函数
是( ).
16. 在平面直角坐标系 ). A.
中,向量 B.
,
,若 , , 三点构成的三角形,则(
C.
D.
2
17. 设 为 A. ,
的边
的中点, B. ,
,则 , 的值分别为( ).
C.
D.
,则下
43. 设 , 是平面上的两个单位向量,
A.
B.
44. 已知向量


,若 C.
,则
的最小值是( ). D.
.若
与 共线,则

6
45. 已知向量 与 的夹角为 ,且
,那么
的值为

46. 若三点
共线,则 的值等于

47. 已知向量

,则 与 夹角的大小为
8. 已知向量集合
( ).
A.
B.

,则
C.
D.
1
9. 设 , 为非零向量,则“存在负数 ,使得 A. 充分而不必要条件 C. 充分必要条件
”是“
”的( ).
B. 必要而不充分条件
D. 既不充分也不必要条件
10. 若 , 是非零向量,“ A. 充分而不必要条件 C. 充分必要条件
”是“函数
为一次函数”的( ). B. 必要不充分条件 D. 既不充分也不必要条件
B. 必要不充分条件
D. 既不充分也不必要条件
”的( ).
35. 如图,平面四边形
中,

,则
的值为( ).

,点 在对角线 上,
A.
B.
C.
36. 直线
与圆
交于不同的两点 , ,且
点,则实数 的取值范围是( ).
A.
B.
C.
D. ,其中 是坐标原
D.
37. 已知向量 与 不共线,且
, 满足的条件为( ).
二轮复习专题——平面向量
一、一级标题
1. 已知向量

,则
( ).
A.
B.
C.
D.
2. 若


A.
B.
,且
,则向量 与 的夹角为( ).
C.
D.
3. 已知向量

A.
且 与 同向 B.


,如果
,那么( ).
且 与 反向 C.
且 与 同向 D.
且与 反

4. 已知 是 A.
所在平面内一点, 为 B.
边中点,且 C.
A.
B.
, C.
,若 , , 三点共线,则实数 D.
38. 将一圆的八个等分点分成相间的两组,连接每组的四个点得到两个正方形.去掉两个正方形内部的八条线
段后可以形成一正八角星,如图所示.设正八角星的中心为 ,并且

.若将点 到正八角
星 个顶点的向量,都写成为
,,
的形式,则
的最大值为( ).
5
A.
B.
同向”的(
4
C. 充分必要条件
D. 既不充分也不必要条件
33. 已知 , 是两个非零向量,则“ A. 充分而不必要条件 C. 充分必要条件
”是“

”的( ).
B. 必要而不充分条件
D. 既不充分也不必要条件
34. 已知向量 , 满足 A. 充分不必要条件 C. 充分必要条件
,且其夹角为 ,则“
”是“
C.
39. 已知向量 , 和 在正方形网格中的位置如图所示,若
D. ,则
( ).
A.
B.
C.
D.
40. 已知平面上三点 , , ,满足

( ).
A.
B.
, C.
,则 D.
41. 设向量 A.
, B.
.则与
垂直的向量可以是( ).
C.
D.
42. 已知向量
列说法不正确的是( ).
A.
B.
,将向量
绕坐标原点 逆时针旋转 角得到向量
,则有( ). D.
5. 设 A.
是单位向量,且 B.
,则
的最小值为( ).
C.
D.
6. 若 与 都是非零向量,则“ A. 充分而不必要条件 C. 充分必要条件
”是“
”的( ).
B. 必要而不充分条件
D. 既不充分也不必要条件
7. 已知向量 A. ,


B. ,
,且 C. ,
,则 , 的值分别为( ). D. ,
D. 点 在 的延长线上
3
25. 已知平面向量

A. 充分不必要条件
C. 充要条件
26. 已知点 在圆 :
误的是( ).
A.
的取值范围为
C.
的取值范围为

,则
是 与 是同向的( ).
B. 必要不充分条件
D. 既不充分也不必要条件
上,点 在圆 :
上,则下列说法错
B. D. 若
的取值范围为 ,则实数 的取值范围为
21. 已知 是正方形 A.
的中心.若 B.
,其中 , C.
,则 ( ). D.
22. 已知平面上不重合的四点 , , , 满足
值为( ).
A.
B.
C.

,那么实数 的
D.
23. 向量 A.

,若 与
B.
的夹角等于 ,则 的最大值为( ).
C.
D.
24. 在
中,点 满足
,则( ).
A. 点 不在直线 上 B. 点 在 的延长线上 C. 点 在线段 上
13. 设 , 是非零向量,“ A. 充分而不必要条件 C. 充分必要条件
”是“
”的( ). B. 必要而不充分条件 D. 既不充分也不必要条件
14. 设 , 是向量,则“ A. 充分而不必要ຫໍສະໝຸດ Baidu件 C. 充分必要条件
”是“
”的( ) . B. 必要而不充分条件 D. 既不充分也不必要条件
15. 若 , 是非零向量,且
11. 设点 , , 不共线,则“ 与 的夹角为锐角”是“
”的( ).
A. 充分而不必要条件 C. 充分必要条件
B. 必要而不充分条件 D. 既不充分也不必要条件
12. 设 , 均为单位向量,则“ A. 充分而不必要条件 C. 充分必要条件
”是“
”的( ).
B. 必要而不充分条件
D. 既不充分也不必要条件
”是“
B. 必要不充分条件
D. 既不充分也不必要条件
”的( ).
31. 已知非零平面向量 A. 充分而不必要条件 C. 充分必要条件
,“
”是“ ”的( ). B. 必要而不充分条件 D. 既不充分也不必要条件
32. 已知平面向量 ). A. 充分而不必要条件
均为非零向量,则“
”是“向量 B. 必要而不充分条件
27. 已知 , 是单位向量,
A.
B.
,则 C.
的最小值为( ). D.
28. 在平面直角坐标系中, 为坐标原点,已知两点

,则
( ).
A.
B.
C.
,且
.设 D.
29. 已知点 为圆
).
A.
B.
上一点,

,则
的最大值为(
C.
D.
30. 向量 , ,满足 A. 充分不必要条件 C. 充分必要条件
,且其夹角为 ,则“
C. ,
D. ,
18. 如图,在 的方格纸中,若起点和终点均在格点的向量 ( ).
满足
,则
A.
B.
C.
D.
19. 已知 是 A.
所在平面内一点, 为 B.
边中点,且 C.
,那么( ). D.
20. 设 , 分别是正方形
的边 , 上的点,且

( , 为实数),那么
的值为( ).
A.
B.
C.
,如果 D.
相关文档
最新文档