重载铁路大跨度钢桁梁桥面系选择及分析

重载铁路大跨度钢桁梁桥面系选择及分析
重载铁路大跨度钢桁梁桥面系选择及分析

浅析大跨度钢桁梁架设关键技术

浅析大跨度钢桁梁架设关键技术 发表时间:2018-05-03T12:14:14.567Z 来源:《防护工程》2017年第36期作者:李广赐 [导读] 随着我国社会经济的快速发展,我国的交通行业也得到了迅速的发展,公路、铁路桥梁工程的建设也越来越多。 东莞市城建工程管理局广东东莞 523000 摘要:本文结合某工程实例,对大跨度钢桁梁的架设方案进行了分析,对大跨度钢桁梁架设关键技术展开了研究,并从塔区梁段、标准梁段及合龙段的施工技术三方面详细介绍了大跨度钢桁梁架设技术,旨在为类似工程施工提供参考借鉴。 关键词:钢桁梁;架设;关键技术 0 引言 随着我国社会经济的快速发展,我国的交通行业也得到了迅速的发展,公路、铁路桥梁工程的建设也越来越多。在桥梁工程建设中,钢桁梁作为一种跨越能力大、安装速度快、便于运输、维护修复简单等优点,得到了广泛的应用。且随着钢桁梁跨度的不断增大,其施工技术也取得了巨大的进步。因此,对大跨度钢桁梁架设施工技术展开研究具有重要的理论价值和实际意义。 1 工程概况 某大桥工程主跨400米,钢桁梁桥长达760米,主桥上部结构为钢桁梁,由中心间距26米,桁高6米的两片“N”形主桁,横梁,平联及桥面系结构等组成。主桥桥面系为钢-混组合梁,其中钢纵横梁与钢桁梁通过钢桁梁顶部连续支座结合,桥面系纵向连续,联长760米。南北岸引桥上构为预应力混凝土梁。全桥钢桁梁共划分为65个节段,其中6个塔区梁段(南北岸合计),2个边跨合龙段,1个中跨合龙段,其余为标准梁段。 2 钢桁梁架设方案分析 2.1 国内外常见方案 目前国内外架设斜拉桥钢桁梁,常用的架设方法分为桥面起重机双悬臂架设法、单悬臂支架架设法及顶推法等。就3种方案简要对比如下。 (1)双悬臂架设法优点为利用塔-索-梁三者施工过程整体平衡不需搭设临时辅助墩结构优势,架设工作面多出1倍,逐节段架设梁段并挂设张拉斜拉索便于控制线型等;缺点为桥面起重机数量投入多,初始工作面难以展开等。 (2)单悬臂架设法优点为可从边跨处拼装,与主塔施工并行(但前提是边跨上构已完成且有大型拼装场地条件)此为最大优势,桥面起重机等大型设备投入少,易形成连续作业等;缺点是临时墩数量多,对地形要求很高,施工监控难度大等。 (3)顶推法优点与单悬臂架设法相近,设备主要为顶推装置等;缺点为临时墩等结构数量大,线形控制困难,且钢桁梁为杆件组成结构,受力转换频繁,需对弦杆加强处理等。 2.2 架设方案分析 (1)架设总体方案 大桥所处地形复杂,极端恶劣地形处(南岸主墩)陡坡达80°,与过渡墩之间地势剧烈起伏,临时墩高度高,且搭设临时墩等结构需单独建立施工便道,对山体进行大范围爆破开挖处理,施工投入很大,安全性极难保证。故此种施工环境下单悬臂法与顶推法并不适用。 (2)施工大型设备 悬臂架设采用桥面起重机,该设备优点为:机械化程度高,可根据起重机起吊能力采用组件吊装或整体吊装。通过桥面轨道运输系统,钢桁梁和桥面系均可采用同一台起重机流水作业施工,施工场地紧凑,工作效率较高。 (3)架设单元 钢桁梁为杆件通过精确对位的高强螺栓连接结构,精确度要求很高。单根杆件从吊至桥面直到空中安装功效极低,设备起吊能力不能充分利用,高空频繁起吊安全性大大降低,桥下施工场地十分有限,不宜作零散杆件的堆存场;整体节段又较重,需更大能力的起吊设备,风险高、效率低。综合考虑,钢桁梁可按桁片方式组拼,且桁片单元更为适中:质量满足设备起吊能力,吊运方向可转向调节适应各种情况,综合效益最高。 (4)材料运输 由于桥面距河面超过300m,河流不通航且河流宽度范围有限,常规水上桥梁采用的水上航运梁段,垂直提升的方案无法实现,只能陆路运输。将梁段杆件散运至塔底,利用塔身桥面处的设备提升至桥面,运至悬臂端安装。 综上所述,双悬臂架设法尽管需桥面起重机数量多,但不需拼装场门式起重机等设备,施工中采用以桁片为单元的桥面起重机双悬拼架设法,通过塔底运输至桥面,对称运输至悬臂端安装等方案符合本桥施工实际情况。 3 钢桁梁架设关键技术 3.1 塔区梁段施工技术 3.1.1 方案选定 塔区梁段安装前,桥面起重机无法站位锚固,且受塔区梁段上方的主墩上横梁影响塔式起重机与桁吊吊装范围受限,无法直接吊装梁段就位,因此及安装方案取拖拉法,安装设备考虑使用附着式桥式起重机。下横梁施工空间有限,距塔底较高(143m),需安装空中拼装支架。 3.1.2 拼装支架设计 桥拼装支架的主要组成结构为:横梁两侧对称布置8片I56焊接的三脚架,其中外侧的三脚架因需安装滑移轨道及直接承受上部钢桁梁的质量,结构有所加强,三脚架顶部纵梁设有与钢桁梁平行的纵坡。三脚架上部通过精轧螺纹钢两两对拉,下部通过插入预埋于下横梁钢套件的牛腿固结。三脚架上部铺设I25作为拼装平台分配梁,分配梁上部安装顺桥向3拼工45滑道梁及顶部滑板作为钢桁梁拖拉时的滑移轨道。支架的主跨端部安装牛腿及千斤顶结构并在千斤顶内穿入精轧螺纹钢用以连接钢桁梁拖拉点。提前在滑移轨道上将滑块及顶升千斤顶

钢桁梁桥综述

浅谈铁路钢桁梁桥 摘要:本文通过查阅整理国内外相关资料,总结阐述了钢桁梁桥的特点、发展情况、施工方法及未来发展趋势,并对现今用在钢桁梁桥中的整体式节点和正交异性板进行了探索。 关键字:铁路钢桁梁桥发展情况整体式节点正交异性板 一、前言 钢桥由于其材料高强度、高弹性模量而构件相对较轻, 施工比预应力混凝土桥轻盈和方便等特点,大量使用在大中跨度的桥梁上。其中,钢桁梁桥由桁架杆件组成,尽管整体上看钢桁梁桥以受弯和受剪为主,但具体到每根桁架杆件则主要承受轴向力。与实腹梁相比是用稀疏的腹杆代替整体的腹板,从而节省钢材和减轻结构自重,又由于腹杆钢材用量比实腹梁的腹板有所减少,钢桁梁可做成较大高度,从而具有较大的刚度及更大的跨越能力。本文通过查阅整理国内外相关资料,总结阐述了钢桁梁桥的特点、发展情况、施工方法及未来发展趋势,并对现今用在钢桁梁桥中的整体式节点和正交异性板进行了探索。 二、钢桁梁桥的特点 钢桁梁桥综合了钢材和桁架结构的特点: (1)跨越能力大。由于钢材强度大,在相同的承载能力条件下,与混凝土桥梁相比,钢桥构件的截面较小,所以钢桥自重轻,加大桥梁的跨越能力。 (2)易于修复和更换。 (3)钢桁梁的杆件和节点较多,构造较为复杂,制造较为费工。 (4)钢材易锈蚀,需要定期检查和维护,故养护费用高。 (5)造价较高。 (6)抗压能力强,整体性好。 三、钢桁梁桥的发展情况 1894年,我国第一次主持修建钢桁梁桥——滦河大桥,由我国工程师詹天佑主持完成。其上部结构由多孔钢桁梁和钢板梁组成。建国以前所建的钢桁梁桥跨度较小,所用的钢材都是进口的,结构都采用铆钉,工艺简陋,建国后,钢桁梁桥技术发展很快。20世纪60年代中期,为加快铁路建设,在成昆铁路修建中,系统地研究了栓焊钢桁梁桥新技术,一举建成各种不同结构型式的栓焊钢桁梁桥四十几座,结束了在我国使用了近100年的铆接钢桁梁桥的历史,这在我国钢桁梁桥发展史上是一个很大的进步。其中1966年建成的饮水河大桥主跨112米,为中国第一座栓焊钢桥。 1995年建成通车的孙口黄河大桥位于京九铁路线上,是一座跨越黄河的双线铁路桥,正桥为下承式连续钢桁梁桥,主桁采用三角形钢桁架,标准节间常12m,桁高13.6m,桁宽10m;上、下弦杆和支点处斜杆采用箱型截面,其余腹杆为工字型截面;主桁与节点板焊接成整体在预制厂进行,该桥系中国首次采用整体节点构造。在建成孙口黄河大桥的基础上,与1999年在长东铁路一桥上游(南)30m处,平行建成了长东铁路二桥,该桥采用三角桁架整体节点栓焊结构,从设计和建造技术上较一桥都有很大改进。 2000年竣工通车的芜湖长江大桥为公铁两用桁架低塔斜拉桥,其主梁首次

我认识的钢桁梁桥

我认识的钢桁梁桥 摘要介绍钢桁梁桥的组成、构造、计算等内容,以及本人对钢桁梁桥的浅见 1 概述 钢桁梁桥可以看作是将实腹的钢板梁桥按照一定规则空腹化的结构形式,结构整体上为梁的受力方式,即主要承受弯矩和剪力的结构。 1.1基本组成 钢桁梁桥可以看作是将实腹的钢板梁桥按照一定规则空腹化的结构形式,结构整体上为梁的受力方式,即主要承受弯矩和剪力的结构。下图1.1-1为下承式钢桁梁桥的基本组成情况。 图1下承式钢桁梁桥的基本组成情况 1.主桁 主桁是钢桁梁桥的主要承重结构,最常采用的是平面桁架,在竖向荷载作用下其受力实质是格构式的梁。主桁由上弦杆、下弦杆和腹杆组成。 2.联结系 1)分类:纵向联结系和横向联结系 2)作用:联结主桁架,使桥跨结构成为稳定的空间结构,能承受各种横向 荷载 3)纵向联结系分上部水平纵向联结系和下部水平纵向联结系;主要作用为 承受作用于桥跨结构上的横向水平荷载、横向风力、车上横向摇摆力及 离心力。另外是横向支撑弦杆,减少其平面以外的自由长度。 4)横向联结系分桥门架和中横联;主要作用为是增加钢桁梁的抗扭刚度。 适当调节两片主桁或两片纵联的受力不均。 3.桥面系

1)组成:由纵梁、横梁及纵梁之间的联结系 2)传力途径:荷载先作用于纵梁,再由纵梁传至横梁,然后由横梁传至主 桁架节点。 4.制动联结系 制动联结系也称为制动撑架,设置在于桥面系相邻的平纵联的中部,通常由四根杆件组成。作用是将纵梁上的纵向水平制动力传至主桁,以减小制动力对横梁的不利影响。 5.桥面、支座及墩台与其它桥梁相似。 1.2 主桁架的图式及特点 1.主桁架的常用类型 2 2)节间长度 铁路钢桥:中、小跨径的桁架,上承式桁架的节间长度一般为3~6m,下承式桁架的节间长度一般为6~10m,跨径较大的下承式桁架节间可达12~15m。公路钢桥:节间长度可适当增大。

30T轴重重载铁路1-80m钢桁梁拖拉施工技术

334 30T 轴重重载铁路1-80m 钢桁梁拖拉施工技术研究 杨巍 廉则哲 中交二公局第四工程有限公司 摘 要:本文重点就使用贝雷梁作为拖拉平台,卷扬机作为拖拉力进行反向拖拉施工30T轴重重载铁路钢桁梁的施工工艺进行研究。为以后使用贝雷梁作为拖拉滑道进行拖拉施工积累经验。 1 工程概况 上跨济广高速公路大桥位于山东省东平县,全长为426.21m ,桥型布置为1-80m 钢桁梁,10跨混凝土简支T 梁。钢桁梁在5#、6#墩处跨越济广高速公路。采用反向拖拉方式施工,施工难度大。 钢桁梁主桁结构图(单位:cm ) 2 整体施工方案 济广高速公路是国家主干线公路,路面宽28m ,车流量大。施工期间要保证高速公路正常运营,施工期间不能长期占用高速公路,且要最大限度的减少因施工对高速公路的影响。因此采用于设计桥位外拼装拖拉就位架设方法。2.1 拼装 拼装采用支架法,即:于桥位3~6号墩间搭设临时支墩,上搭设贝雷梁,做为钢桁梁滑道,钢桁梁杆件拼装吊装使用汽车吊进行钢桁梁各个杆件。2.2 拖拉 80m 钢梁在线路3#-5#间的支架上拼装完成后,采用两组滑轮组配合2台20T 慢速卷扬机组成拖拉牵引系统反向拖拉钢梁就位至5-6#墩间。 3 拖拉平台设计 3.1 拖拉平台临时支架设计 钢桁梁在3#-5#墩间拼装,结合主桁弦杆的长度和保证在主桁大节点受支承的原则,全桥共设置11组计22个拼装临时支墩。在拼装部位的临时支墩均设置在下弦杆大节点位置处,间距为12m ,与主桁宽度相同,在大节点起支撑作用的支墩。采用落地式钢管支架,每个支墩由4根钢管柱组成, 钢管立柱采用Φ530×10mm 钢管。3.2 拖拉平台上部结构设计 钢管桩柱头顶用36a 工字钢分配梁,采用焊接方式固定。分配梁上布设321型贝雷梁。贝雷梁之间的间距22.5cm ,采用端头连接架进行连接固定。贝雷梁顶布置间距25cm[]10a 型钢作为轨枕,其余贝雷梁上均布置间距50cm[]20a 轨枕。轨枕与贝雷梁之间用U 型扣进行固定。轨枕上布置拖拉轨道梁。轨 道梁采用HW200×200型钢,其两侧采用1cm 钢板焊满。在轨道梁上焊接下滑道,采用 【25槽钢。上滑道设置在钢桁梁底部,按等高的平直直线通长设置,上滑道采用CRM100移运器。在钢桁梁每个大节点下设置一组移运器,每组2个,对等分布在节点两侧。18个节点,设置18组移运器。 4 钢桁梁拼装 4.1 预拱度的设置 钢桁梁拼装前需根据设计预设预拱度。钢桁梁直接在上滑道(CRM100移运器)上拼装。钢梁的预拱度通过在节点上滑道(CRM100移运器)顶的垫铁进行预设。 首先精确测量每个上滑道的顶高程,根据设计高程计算调整高度,然后支垫相应高度的调节垫板。支垫好后再进行一次复测,满足设计要求后,开始进行钢梁的架设。4.2 钢桁梁拼装 用全站仪在下滑道上放出下弦杆中心线以及梁端线。精确放样后,开始架设钢桁梁。拼装时严格按照中心线进行拼装定位。 平面的拼装顺序为:下弦、横梁、纵梁、桥面板;立面的拼装顺序为:下弦、腹杆、上弦、桥门架、上平联。按以上顺序将钢梁进行每一个节间的闭合,保证结构的稳定性和预拱度。 5 钢桁梁拖拉施工 5.1 拖拉力的计算 1-80m 钢桁梁自重为1481.2T ,拖拉的安全系数考虑为1.25,则钢桁梁的自重为Q=1.25×1481.2≈1851.5。钢桁梁的水平牵引力的计算公式如下式5-1所示: ( 5-1) 式中:T ——水平牵引力,(N); G ——钢桁梁及人群荷载竖向总和,(cm ); θ——坡道与水平线夹角,(°);μ——钢与钢的摩擦系数; n ——走到坡度,上坡取正下坡去负。 滑道设置为水平,根据《机械工程师电子手册》可知,钢与钢在涂油状态下动摩擦系数为0.05。根据公式5-1可知: 在6#墩大里程侧安装一门定滑轮组,在钢桁梁 E0′处安装一门动滑轮组,在钢桁梁E4处安装卷扬机。根据《路桥计算手册》表,卷扬机绕出绳的拉力计算公式如下式5-2所示。 (5-2) (下转第337页)

铁路大跨度简支钢桁梁连续悬拼架设主梁受力分析

铁路大跨度简支钢桁梁连续悬拼架设主梁受力分析 摘要:简支钢桁梁采用悬臂架设施工,其受力模型在施工阶段是悬臂或连续梁桥,而在后期成桥阶段是简支梁桥,主梁杆件的内力会发生很大的变化,关键构件甚至会发生拉压逆转,且施工过程中临时荷载种类多,存在可变性及多种结构体系之间的转换,施工阶段主梁杆件受力复杂,确保架设过程中主梁结构安全及后续运营使用安全是关键。 关键词:钢桁梁;连续悬拼;主梁受力分析; 1.前言 太和安宁河双线特大桥起止里程DK426+727-DK429+598,全长2871.197米,全桥孔跨布置形式为51×32m+4×80m钢桁梁+5×32m+1×80m钢桁梁 +2×24m+12×32m,其中51号墩~55号墩采用4×80m钢桁梁跨越安宁河,桥轴线与安宁河斜交角约为34度。 80米双线下承式钢桁结合梁主跨80.0米,全长82.0米,主桁采用三角形无竖杆桁架,节间10.0米,桁高11.5米,桁宽13.8米;桥面系采用密横梁与混凝土桥面板结合体系,横梁间距为2.5米。主桁构件采用Q370qE钢材,桥面系横梁采用Q345qE钢材,桥门架、中间横联及上平纵向连接系采用Q345qD钢材,用钢量6625吨。 图1-1 太和安宁河双线特大桥4×80m钢桁梁立面图 2.工程施工重点、难点 针对该桥的结构形式,采用连续悬臂架设的施工方法,具有以下特点: (1)钢桁梁采用悬臂施工,其受力模型在施工阶段是悬臂或连续梁桥,而在后期成桥阶段是简支梁桥,桁架中杆件的内力会发生很大的变化,关键构件甚至会发生拉压逆转,施工阶段桁梁杆件受力复杂,确保桥梁结构总体受力和成桥线型是关键。 (2)施工过程中临时荷载种类多,存在可变性及多种结构体系之间的转换,悬臂拼装架设过程中风荷载、运梁小车荷载、温度沿横桥向的梯度差异等因素影响,施工过程不易控制。 3.架设施工方案 针对钢桁梁的结构特点及现场施工环境,通过充分比选和专家论证,确定“大跨度多孔三角形无竖杆铁路简支钢桁梁连续悬臂架设”施工工艺。在首孔55-54号墩设置提梁平台,墩间设置临时支墩、龙门吊走行支墩及轨道梁,利用50t跨墩龙门吊进行首孔55-54号墩膺架法架设。利用首孔梁作为40t全回转吊机占位平台及悬臂拼装配重梁,焊接梁间临时杆件,悬臂拼装架设54-51号墩间钢桁梁,直至架设完成。 图3-1 太和安宁河双线特大桥4×80m钢桁梁方案图示 3.1膺架法架设方案 首孔钢桁梁拼装支架位于54#~55#墩之间,拼装支架采用打入钢管桩基础+桩顶分配梁+铸钢垫块结构,拼装支架与门吊走道支架一体设计,门吊走道支架采用打入钢管桩基础+桩顶纵梁+钢轨 3.2悬拼法架设方案 首孔钢桁梁在拼装支架上拼装完毕后,采用汽车吊将40t全回转架梁吊机拼

西南交通大学-桥梁工程概论-07-第六章-简支钢板梁和钢桁梁桥

第六章简支钢板梁和钢桁梁桥2008年11月2日1

第一节钢桥概述 一般地,将桥跨结构用钢制成,无论其墩台用什么材料建造,均可称之为钢桥。 与常用的其它建筑材料相比,钢材是一种抗拉、抗压和抗剪强度均较高的匀质材料,而其重量则相对较轻。因此,钢桥具有很大的跨越能力。 当要建造的桥梁跨度特别大,荷载特别重,采用其它建筑材料来建造桥梁有困难时,一般常采用钢桥。 钢桥的基本特点: ①构件特别适合用工业化方法来制造,便于运输,工地的安装速度也快,因而钢桥的施工工期较短; ②钢桥在受到破坏后,易于修复和更换; ③耐候性差、易锈蚀,铁路钢桥采用明桥面时噪声大,维护费用高。本节所讨论的钢桥主要以铁路钢桥为主。 2008年11月2日2

一、钢桥所用的材料 z钢种-碳素钢(含碳量为0.03~0.25%的钢)、低合金钢(各种合金元素总含量不超过3%的钢)、高性能钢(高强、具备耐候和防断裂性能) z钢材形状-工字钢、角钢、槽钢、管钢,方钢,T形钢(型材)和钢板(板材)线材——用于混凝土结构 z桥梁钢与结构钢前者引用自前苏联,后者用于美、日、欧盟 z钢号-碳素钢(A3,A3q等),现标准:GB700-88 Q+数字+质量等级符号+脱氧方法符号如Q235 低合金钢(16Mnq, 15MnVN 等),现标准:GB/T714-2000 国家标准《钢铁产品牌号表示方法》GB221-2000 z钢的工艺要求和使用要求-对钢的化学成分和力学性能的要求–化学成分-合金元素:碳、锰、硅等,微量元素铬、镍、钒等,有害杂质:硫、磷等,表6-1,对钢的可焊性的一种评估 –力学(机械)性能 z拉伸试验(弹性极限、屈服点、极限强度、延伸率、断面收缩) z冷弯试验:检查工艺和质量的指标 z冲击试验:夏比(V形缺口)试件,钢材韧性和低温抗脆断性能 z疲劳试验(与材料和构造有关) 2008年11月2日3

钢桁梁桥综述

钢桁梁桥综述

浅谈铁路钢桁梁桥 摘要:本文通过查阅整理国内外相关资料,总结阐述了钢桁梁桥的特点、发展情况、施工方法及未来发展趋势,并对现今用在钢桁梁桥中的整体式节点和正交异性板进行了探索。 关键字:铁路钢桁梁桥发展情况整体式节点正交异性板 一、前言 钢桥由于其材料高强度、高弹性模量而构件相对较轻, 施工比预应力混凝土桥轻盈和方便等特点,大量使用在大中跨度的桥梁上。其中,钢桁梁桥由桁架杆件组成,尽管整体上看钢桁梁桥以受弯和受剪为主,但具体到每根桁架杆件则主要承受轴向力。与实腹梁相比是用稀疏的腹杆代替整体的腹板,从而节省钢材和减轻结构自重,又由于腹杆钢材用量比实腹梁的腹板有所减少,钢桁梁可做成较大高度,从而具有较大的刚度及更大的跨越能力。本文通过查阅整理国内外相关资料,总结阐述了钢桁梁桥的特点、发展情况、施工方法及未来发展趋势,并对现今用在钢桁梁桥中的整体式节点和正交异性板进行了探索。 二、钢桁梁桥的特点 钢桁梁桥综合了钢材和桁架结构的特点: (1)跨越能力大。由于钢材强度大,在相同的承载能力条件下,与混凝土桥梁相比,钢桥构件的截面较小,所以钢桥自重轻,加大桥梁的跨越能力。 (2)易于修复和更换。 (3)钢桁梁的杆件和节点较多,构造较为复杂,制造较为费工。 (4)钢材易锈蚀,需要定期检查和维护,故养护费用高。 (5)造价较高。 (6)抗压能力强,整体性好。 三、钢桁梁桥的发展情况 1894年,我国第一次主持修建钢桁梁桥——滦河大桥,由我国工程师詹天佑主持完成。其上部结构由多孔钢桁梁和钢板梁组成。建国以前所建的钢桁梁桥跨度较小,所用的钢材都是进口的,结构都采用铆钉,工艺简陋,建国后,钢桁梁桥技术发展很快。20世纪60年代中期,为加快铁路建设,在成昆铁路修建中,系统地研究了栓焊钢桁梁桥新技术,一举建成各种不同结构型式的栓焊钢桁梁桥四十几座,结束了在我国使用了近100年的铆接钢桁梁桥的历史,这在我国钢桁梁桥发展史上是一个很大的进步。其中1966年建成的饮水河大桥主跨112米,为中国第一座栓焊钢桥。 1995年建成通车的孙口黄河大桥位于京九铁路线上,是一座跨越黄河的双线铁路桥,正桥为下承式连续钢桁梁桥,主桁采用三角形钢桁架,标准节间常12m,桁高13.6m,桁宽10m;上、下弦杆和支点处斜杆采用箱型截面,其余腹杆为工字型截面;主桁与节点板焊接成整体在预制厂进行,该桥系中国首次采用整体节点构造。在建成孙口黄河大桥的基础上,与1999年在长东铁路一桥上游(南)30m处,平行建成了长东铁路二桥,该桥采用三角桁架整体节点栓焊结构,从设计和建造技术上较一桥都有很大改进。 2000年竣工通车的芜湖长江大桥为公铁两用桁架低塔斜拉桥,其主梁首次

钢桁梁施工合同(正式版本)

钢桁梁制造、运输及安装施工格式合同 甲方:中交二航局深茂铁路JMZQ-6标工程指挥部 乙方:中交二航局结构工程有限公司 甲方因施工实际需要,确定将承建的新建深圳至茂名铁路江门至茂名段DK133+223~DK388+868.29JMZQ-6标工程项目(以下简称本项目)钢桁梁制造、运输及安装施工交由乙方实施,乙方在全面接受本项目业主招标文件及其修改补遗和甲方与业主签订的总承包合同、承诺的前提下,愿意实施上述施工任务,按《中华人民共和国合同法》等有关规定,为明确双方权利、义务和责任,经双方协商一致,同意签订本合同以资共同遵守。 第一条工程名称、地点、范围及内容 1、工程名称:新建深圳至茂名铁路江门至茂名段JMZQ-6标; 2、工程地点:广东省阳江市境内; 3、工程范围:新建深圳至茂名铁路江门至茂名段JMZQ-6标钢桁梁制造、涂装、运输、工地连接(包括焊接或栓接)、配合吊装(不含顶推,平台、支架等)等 4、工作内容 乙方根据铁四院设计出版的《134m双线有砟简支钢桁梁》施工图设计,完成本合同钢桁梁制造、涂装、运输与配合安装(含检查车、检查车轨道安装),包括但不限于以下工作: (1)钢结构制造、运输、安装 (2) 本项目钢桁梁制作的钢材接收、卸车、钢材预处理、下料,钢桁梁单元

件制作 (含零配件 ),钢桁梁节段的制作、拼装、保管,在甲方规定时间内将钢桁梁节段及临时匹配件在制造厂吊装并运输到桥位监理工程师及甲方指定的位置;配合甲方按监理工程师及设计要求进行钢桁梁吊装就位;梁段吊装就位后负责逐节连接(焊接或栓接,包括高强螺栓连接、施拧、配合检测及焊缝修补等工作),检查车的安装配合,施工措施用临时约束、临时匹配件、临时吊点、吊耳等的加工、制作。 本项目钢结构构件加工场内装船(车)、运输、现场配合卸货、拼装接长,安装配合及缺陷修补等; 实施本项目钢结构制作、运输及安装工作所需的遮雨棚等临时设施制安拆及与此相关的工作内容; 本项目检修车的配合安装及随车电缆的布设、行走动力系统的安装等为完成施工设计图纸要求的所有相关工作内容。 (2)附属设施 本项目附属设施 (防撞钢护栏底座板、检修道栏杆底座板、灯柱底座板、泄水管、路缘石、后期工程预留件等)的材料接收、卸车、下料,制造、运输、安装等; 本项目钢桁梁上的所有预留钢构件的制造及焊接(包括永久钢构件如支座预留钢构件、伸缩装置预留钢构件、阻尼器预留钢构件等及经监理工程师批准的临时预留钢构件); (3)涂装 钢桁梁(含检查车轨道)、桥面系钢构件及钢桁梁特殊部位自加工工厂内生产直至在工地现场安装完毕(包括最终涂装)的所有防腐涂装工作;

钢桁梁

1.1.1.钢桁梁施工方法及工艺 本线路为跨越东海河设臵南畔中桥,孔跨布臵为1-64m单线道砟桥面简支钢桁梁。根据实际情况钢桁梁采用拖拉法架设就位进行施工。 钢桁梁拖拉法施工主要工序为搭设拼装及拖拉支架、钢梁拼装、拖拉就位后调整落梁及桥面砼施工等,工艺流程见图2-2.2-18。 拆除支架、附属工程施工 图2-2.2-18 钢桁梁拖拉法施工工艺流程图 1.1.1.1.施工准备 1.1.1.1.1.施工场地准备 杆件装卸、场内移位以及膺架搭设吊装采用一台QY25,杆件拼装采用一台QY50汽车吊,用一台加长运输车转运杆件,在杆件吊装

和转运过程中要对杆件进行护角保护,防止损伤杆件。 根据现场实际情况,在大里程桥台后路基上选择约3500m2的场地可作为架梁场地,在架梁场地内应合理布臵杆件堆放厂、预拼场、场内道路及高强度螺栓存放库、小型机具零星材料库、试验室、配电房、管理房等生产临时设施。 ⑴杆件存放库 杆件从工厂运到工地时要临时存放,存放场要根据杆件规格、数量、存放时间、卸装机具、确定其面积。按经验每吨按2~3m2考虑。场地需平整、压实,填料应用石渣,且排水设施完善。 ⑵杆件预拼场 为减少桥上拼装工作,降低拼装难度,提高拼装精度和加快拼装速度,杆件在上桥拼装前要先按节点长度预拼成构架单元,预拼场内按钢梁节点位臵、纵横梁、上下平纵联、桥门架、横联等设臵拼装台座,预拼场要用混凝土硬化。 ⑶喷砂场 杆件栓合板面或板钣面损坏,或摩擦系数检查不合格,则需要在工地进行补喷处理。喷砂场配套设臵空压机房和喷砂设臵。喷砂场应设在下风边缘位臵。 ⑷油漆存放库 杆件预拼完和桥上装拼完成后要进行钢梁油漆喷涂,场内布臵存放各种油漆的房屋。 ⑸临时生产房屋

大跨度简支钢桁梁膺架法施工及线形控制-2019年精选文档

大跨度简支钢桁梁膺架法施工及线形控制 : combined with the general ferry 74#-75# the Yellow River bridge across Di steel truss pre-fight, transportation, erection and concrete engineering linear control practice, focusing on the large span steel truss formwork is assembled construction technology key points and linear control measures, in order to provide guidance for the reader. Keywords: steel truss gantry linear construction control technology 1 、工程概况 将军渡黄河特大桥是新建山西中南部铁路通道控制性工程, 设计为国铁I级双线重载铁路,设计轴重30t,设计时速120km/h。桥址位于河南省与山东省交界处台前县至梁山县黄河 上,自西北向东南跨越黄河。将军渡黄河特大桥是一座横跨黄河 的特大型桥梁,桥跨布置为74-32m简支T梁+1-128m钢桁梁+7-48m 简支箱梁+1-99.05m钢桁梁+10-128m钢桁梁+50-48m简支 箱梁+1-128m钢桁梁+81-32m简支T梁+3-24m简支T梁+7-32m简支T 梁。 跨黄河北大堤74#-75#跨为单跨128m双线下承式道砟桥面简支钢桁梁,采用无竖杆整体节点平行弦三角桁架体系,计算跨 度128m 全长129.5m,桁高16m主桁中心距12.8m,节间长度 16n。主桁上、下弦杆均为焊接箱型断面。斜杆截面形式主要采 用箱型,部分截面采用工型,上下弦内高分别为 1.6m,内宽为 1.0m。腹杆除端斜杆采用对接拼装外,其余均采用插入式与主桁整体节点连接,对接式腹杆内宽与弦杆内宽相同,插入式腹杆外宽采用

单线铁路下承式栓焊简支钢桁梁桥

单线铁路下承式栓焊简支钢桁梁桥 课程设计 姓名:侯泽群 学号:20090112800106 班级:09桥梁5班

指导老师:涂斌 设计时间:2012年5月至6月

目录 第一章设计资料-------------------------------------------------------1 第一节基本资料------------------------------------------------1 第二节设计内容------------------------------------------------2 第三节设计要求------------------------------------------------2 第二章主桁杠件内力计算-----------------------------------------------4 第一节主力作用下主桁杆件内力计算------------------------------4 第二节横向风力作用下的主桁杆件附加内力计算--------------------9 第三节制动力作用下的主桁杆件附加内力计算----------------------11 第四节疲劳内力计算--------------------------------------------12 第五节主桁杆件内力组合----------------------------------------15 第三章主桁杠件截面设计-----------------------------------------------17 第一节下弦杆截面设计------------------------------------------17 第二节上弦杆截面设计------------------------------------------19 第三节端斜杆截面设计------------------------------------------20 第四节中间斜杆截面设计----------------------------------------21 第五节吊杆截面设计--------------------------------------------22 第六节腹杆高强螺栓数量计算------------------------------------25 第四章弦杆拼接计算和下弦端节点设计 ------------------------------------26 第一节 E2 节点弦杆拼接计算-------------------------------------26 第二节 E0 节点弦杆拼接计算-------------------------------------27 第三节下弦端节点设计------------------------------------------28 第五章挠度计算及预拱度设计 --------------------------------------------29 第一节挠度计算------------------------------------------------29 第二节预拱度设计-----------------------------------------------30 下弦端节点设计图------------------------------------------------35

48米下承式简支栓焊钢桁梁桥课程设计讲解

现代钢桥课程设计 学院:土木工程学院 班级:1210 姓名:罗勇平 学号:1208121326 指导教师:周智辉 时间:2015年9月19日

目录 第一章设计说明 .............................................. 错误!未定义书签。第二章主桁杆件内力计算 . (5) 第三章主桁杆件截面设计与检算 (14) 第四章节点设计与检算 (23)

第一章 设计说明 一、设计题目 单线铁路下承式简支栓焊钢桁梁设计 二、设计依据 1. 设计规范 铁道部《铁路桥涵设计基本规范》(TB10002.1-2005) 铁道部《铁路桥梁钢结构设计规范》(TB10002.2-2005) 2. 结构基本尺寸 计算跨度L=48m ;桥跨全长L=49.10m ;节间长度d=8.00m ;主桁 节间数n=6;主桁中心距B=5.75m ;平纵联宽度B 0=5.30m ;主桁高度H=11.00m ;纵梁高度h=1.45m ;纵梁中心距b=2.00m ;主桁斜角倾角?=973.53θ,809.0sin =θ,588.0cos =θ。 3. 钢材及基本容许应力 杆件及构件用Q370qD ;高强度螺栓用20MnTiB 钢;精制螺栓用 BL3;螺母及垫圈用45号优质碳素钢;铸件用ZG25Ⅱ;辊轴用锻钢35。钢材的基本容许应力参照《铁路桥梁钢结构设计规范》。 4. 结构的连接方式及连接尺寸 连接方式:桁梁杆件及构件采用工厂焊接,工地高强度螺栓连接; 人行道托架采用精制螺栓连接。 连接尺寸:焊缝的最小焊脚尺寸参照《桥规》;高强度螺栓和精 制螺栓的杆径为22φ,孔径为mm d 23=。 5. 设计活载等级 标准中—活载。 6. 设计恒载 主桁m kN p /70.123=;联结系m kN p /80.24=;桥面系m kN p /50.62=; 高强度螺栓%3)(4326?++=p p p p ;检查设备m kN p /00.15=;桥面m kN p /00.101=;焊缝%5.1)(4327?++=p p p p 。 计算主桁恒载时,按桥面全宽恒载7654321p p p p p p p p ++++++=。 三、设计内容 1. 确定主桁型式及主要参数; 2. 主桁杆件内力计算(全部),并将结果汇制于2号图上; 3. 交汇于E 2、A 3节点(要求是两个大节点)的所有杆件截面设计与 检算;

某铁路通道钢桁梁桥位涂装施工方案(doc 17页)

某铁路通道钢桁梁桥位涂装施工方案(doc 17页)

山西中南部铁路通道钢桁梁桥位 涂装施工方案

中铁宝桥集团有限公司2012年04月 目录

一、工程概况 1.1编制依据 依据《山西中南部铁路通道钢桁梁制造规则》、《山西中南部铁路通道钢桁梁招标文件》及相应的标准编制本涂装施工方案。 编制引用以下标准: 序号标准号名称 1 GB8923 -1988 涂装前钢材表面锈蚀等级和除锈等级 2 GB/T13 312-91 钢铁件涂装前除油程度检验方法(验油试纸法) 3 GB7692 -99 涂装作业安全规程涂漆前处理工艺安全及其通风净化 4 GB6514 -95 涂装作业安全规程涂漆工艺安全及其通风净化 5 GB4956 -85 磁性金属基体上非磁性覆盖层厚度测量磁性方法 6 GB6062 -85 轮廓法触针式表面粗糙度测量仪轮廓记录仪及中线轮廓计 7 GB9286 -98 色漆和清漆漆膜的划格试验 8 GB/T52 10 涂层附着力的测定法,拉开法 9 TB/T15铁路钢桥保护涂装 本工程为山西中南部铁路通道钢桁梁现场单孔架设完成后对工地焊缝及栓接点外露面进行涂装,并进行全桥现场涂层损伤处修补以及最后一道面漆涂装。 1.3山西中南部铁路通道钢桁梁涂装体系 涂装体系如下:

部位防护方 案 厚度 (微 米) 构件外表面焊缝、损伤面补涂 打磨至St3.0级 特制环氧富锌防锈 底漆 80 环氧云铁中间漆80 氟碳面漆35 桥面外表面焊缝、损伤面补涂 打磨至St3.0级 特制环氧富锌防锈 底漆 80 环氧云铁中间漆90 氟碳面漆35 非封闭内表面损 伤补涂打磨至St3.0级 环氧富锌底漆80 环氧云铁中间漆80 聚氨酯面漆2×35 全桥最后一道面 漆清除表面污物,整 体拉毛 氟碳面漆35 注:(1)高强螺栓连接部位补涂装见下表: 序 号 工序要求备注 1 表面净化螺栓应除油,螺母和垫片水

钢桁梁明桥面施工标准工艺

钢桁梁明桥面施工标准工艺 7.1.1工艺概述 钢桁梁桥明桥面是支承钢轨的桥枕直接放置在梁体上的桥面系,一般由钢轨、枕木、护轨等 几个部分组成。本工艺适用于钢桁梁桥明桥面施工。 7.1.2作业内容 本工艺作业内容包括桥枕、护木、护轨安装,和轨道中心步行板安装。 7.1.3质量标准及检验方法 《铁路钢桥制造规范》(TB10212-2009) 《铁路桥涵工程施工质量验收标准》(TB10415—2003) 7.1.4工艺流程图 7.1.5工艺步骤及质量控制 一、桥枕安装 桥枕应采用油质防腐枕木,规格、质量应符合国家有关标准和设计要求。轨枕铺设应符合设 计要求,设计无要求时应符合下列规定: 1.桥枕净距为 100-180mm(横梁处除外),专用线可放宽到 210mm。 2.桥枕不能铺设在横梁上,与横梁翼缘边应留出 15mm 及以上缝隙。横梁两侧桥枕间净距在300mm 以上且桥枕顶面高出横梁顶面 50mm 以上时,应在横梁上垫短枕承托,短枕与护枕应联结牢固,与基本轨底应留出 5-10mm 空隙。 3.桥枕不容许压在钢梁联结系杆件、节点板或螺栓上,在行车情况下应留有 3mm 空隙。 4.每根桥枕应用两根经过防锈处理的 M22mm 标准型钩螺栓(应配有相应的铁、木或胶垫圈)与钢梁钩紧。在自动闭塞区间,钩螺栓铁垫圈与钢轨扣件间应有不小于 15mm 的间隙,以防止轨道电路短路。 二、护木安装 护木铺设方式(Ⅰ式或Ⅱ式)应符合设计要求,铺设标准和铺设方法设计无要求时应符合下 列规定: 1.护木的断面尺寸为150mm×150mm,材质为一级松(杉)木。 2.护木接头应采用半木搭接设在桥枕上,并用 M20-22mm 螺栓串联牢固。护木与桥枕联结处应 将护木挖深 20-30mm 的槽口仅扣在桥枕上。 3.护木与桥枕的联结螺栓顶端不应超过基本轨顶面 20mm。 4.护木内侧与基本轨头部外部的距离,应符合明桥面布置图的规定。护木应安装顺直,在钢 梁活动端处必须断开并留出空隙。 三、护轨安装 明桥面小桥的全桥范围内,钢梁端部前后各 2 米范围内,设有温度调节器的钢梁的温度跨度范围内以及在钢梁的横梁上均不得有钢轨接头,否则应将其焊接或冻接。 当机车车辆在桥头或桥上脱轨时,道心上如果没有障碍物阻挡,对上承钢梁而言,脱轨车辆将翻于桥下,对于下承钢梁而言车辆将会撞上主桁,造成车翻桥毁的严重后果,为此在正轨内侧头部间距220±10mm处铺设两股护轨,以满足脱轨车辆 140 毫米的车轮能顺利地在其间滚动。护轨的顶面不得高于正轨的顶面,也不得低于正轨顶面 25 毫米,以免脱轨车轮有爬上护轨的可能,当护轨的

大跨度钢箱桁梁斜拉桥步履式顶推施工关键技术

大跨度钢箱桁梁斜拉桥步履式顶推施工关键技术 摘要:项目依托背景为商合杭铁路裕溪河特大桥(60+120+324+120+60)m双塔 钢箱桁梁斜拉桥,该桥边跨钢箱桁梁架设采用顶推法施工,顶推设备采用新型的 步履式顶推器,在钢梁顶推施工过程中,顶推临时支墩结构设计、集成式步履式 顶推器同步控制、顶推及落梁纠偏控制,是步履式顶推施工的关键技术。 关键词:大跨度钢箱桁梁斜拉桥、顶推施工技术、步履式设备。 商合杭铁路裕溪河特大桥(60+120+324+120+60)m双塔钢箱桁梁斜拉桥施工过程中, 钢梁架设技术是工程的难点和重点,与传统的悬拼架设、拖拉式顶推架设相比,采用步履式 顶推架设施工能更好的缩短工期、节约成本,有利于梁体线型的准确控制。 一、工程概况 商合杭铁路裕溪河特大桥(60+120+324+120+60)m双塔钢箱桁梁斜拉桥,主梁为钢箱梁桁梁结构,主塔为钢筋混凝土结构,斜拉索为空间双索面,立面上每塔两侧共13条对索, 全桥104根斜拉索。主梁在所有桥墩上均设竖向和横向约束,主塔与梁间使用带限位功能的 无泄漏阻尼器,其立面布置图见图1-1。 2、集成式步履式顶推器同步控制 钢梁顶推采用步履式顶推器单向多点顶推方案,步履式顶推器为集成设备,集竖向起顶、纵向位移及横向纠偏功能为一体,采用计算机同步控制技术,保持各个设备的同步性。 当顶升千斤顶活塞伸出将钢梁顶起后,顶推千斤顶活塞伸出将梁顶推前移,此过程需进 行位移同步控制、压力均衡控制、横向调节控制。主控台除了控制所有墩上顶推千斤顶的统 一动作之外,还必须保证所有顶推千斤顶每行程的同步。其控制策略为:同一墩上的水平顶 推千斤顶中以其中一台顶为主动点,以一定速度伸缸,其余水平顶为随动点并与其比较,每 台顶与其的位移量差控制在设定值以内,若哪台顶伸缸较快,则减小相应的比例阀的流量, 反之,则增大相应比例阀的流量。不同墩上水平顶推千斤顶的同步控制方式为:以某一墩上 的其中一台顶为主动点,其余墩的同一纵轴线上的顶与之比较,若哪台顶伸缸较快,则减小 相应的比例阀的流量,反之,则增大相应比例阀的流量,从而实现所有水平顶推顶的同步。 此过程同步精度各墩之间可控制在5mm之内,同墩两侧可控制在1mm之内。 由于每台顶推千斤顶上安装一个用于监视载荷变化压力变送器,通过现场控制器或主控 台上的面板可设定每台顶的最高压力及同一墩上几台顶的最大压差,计算机通过监测每台顶 的载荷变化情况,准确地协调整个系统的载荷分配。如果某台顶的载荷达到设定的最高压力 或同一墩上几台顶的最大压差大于设定值时,系统会自动停机,并报警示意。 3、顶推及落梁过程纠偏控制 ①竖向顶升控制 当竖向顶升千斤顶活塞伸出时顶推楔块和钢梁顶起,此过程主控台除了控制集群顶升千 斤顶的统一动作之外,还要通过安装在滑道和滑箱之间的位移传感器检测顶升的高度,保证 两侧顶升千斤顶的同步。控制策略为以其中一侧为基准,两侧位移差控制在设定范围内,若 跟随侧顶升高度较大,则减小该侧比例阀的流量,反之,则增大该侧比例阀的流量。此过程 同步精度可控制在4mm之内。 当竖向顶升千斤顶回缩时顶推楔块和钢梁下降并再次落到两侧垫梁上。此过程主控台除 了控制集群顶升千斤顶的统一动作之外,还要通过安装在滑道和滑箱之间的位移变送器检测 顶升的高度,保证两侧顶升千斤顶的同步。控制策略为以其中一侧为基准,两侧位移差控制 在设定范围内,若跟随侧顶升高度较大,则增大该侧比例阀的流量,反之,则减小该侧比例 阀的流量。斤顶每行程的同步。此过程同步精度可控制在4mm之内。 由于每个受力点(4台竖向顶升千斤顶)上安装1个压力传感器用于监控每个受力点的 荷载。通过现场控制器或主控台上的面板可设定每个受力点的最高压力及同一墩上各受力点 之间的最大压差,计算机通过监测各受力点的载荷变化情况,准确地协调整个系统的载荷分配。如果某个受力点的载荷达到设定的最高压力或同一墩上各受力点之间的最大压差大于设 定值时,系统会自动停机,并报警示意。

铁路桥梁钢桁梁明桥面施工工艺工艺

钢桁梁明桥面施工工艺 7.5.1 工艺概述 钢桁梁桥明桥面是支承钢轨的桥枕直接放置在梁体上的桥面系,一般由钢轨、枕木、护轨等几个部分组成。本工艺适用于钢桁梁桥明桥面施工。 7.5.2 作业内容 本工艺作业内容包括桥枕、护木、护轨安装,和轨道中心步行板安装。 7.5.3 质量标准及检验方法 《铁路钢桥制造规范》(TB10212-2009) 《铁路桥涵工程施工质量验收标准》(TB10415—2003) 7.5.4 工艺流程图 7.5.5 工艺步骤及质量控制 一、桥枕安装 桥枕应采用油质防腐枕木,规格、质量应符合国家有关标准和设计要求。轨枕铺设应符合设计要求,设计无要求时应符合下列规定: 1.桥枕净距为100-180mm(横梁处除外),专用线可放宽到210mm。 2.桥枕不能铺设在横梁上,与横梁翼缘边应留出15mm 及以上缝隙。横梁两侧桥枕间净距在300mm 以上且桥枕顶面高出横梁顶面50mm 以上时,应在横梁上垫短枕承托,短枕与护枕应联结牢固,与基本轨底应留出5-10mm 空隙。

3.桥枕不容许压在钢梁联结系杆件、节点板或螺栓上,在行车情况下应留有3mm 空隙。 4.每根桥枕应用两根经过防锈处理的M22mm 标准型钩螺栓(应配有相应的铁、木或胶垫圈)与钢梁钩紧。在自动闭塞区间,钩螺栓铁垫圈与钢轨扣件间应有不小于15mm 的间隙,以防止轨道电路短路。 二、护木安装 护木铺设方式(Ⅰ式或Ⅱ式)应符合设计要求,铺设标准和铺设方法设计无要求时应符合下列规定: 1.护木的断面尺寸为150mm×150mm,材质为一级松(杉)木。 2.护木接头应采用半木搭接设在桥枕上,并用M20-22mm 螺栓串联牢固。护木与桥枕联结处应将护木挖深20-30mm 的槽口仅扣在桥枕上。 3.护木与桥枕的联结螺栓顶端不应超过基本轨顶面20mm。 4.护木内侧与基本轨头部外部的距离,应符合明桥面布置图的规定。护木应安装顺直,在钢梁活动端处必须断开并留出空隙。 三、护轨安装 明桥面小桥的全桥范围内,钢梁端部前后各 2 米范围内,设有温度调节器的钢梁的温度跨度范围内以及在钢梁的横梁上均不得有钢轨接头,否则应将其焊接或冻接。 当机车车辆在桥头或桥上脱轨时,道心上如果没有障碍物阻挡,对上承钢梁而言,脱轨车辆将翻于桥下,对于下承钢梁而言车辆将会撞上主桁,造成车翻桥毁的严重后果,为此在正轨内侧头部间距220±10mm 处铺设两股护轨,以满足脱轨车辆140 毫米的车轮能顺利地在其间滚动。护轨的顶面不得高于正轨的顶面,也不得低于正轨顶面25 毫米,以免脱轨车轮有爬上护轨的可能,当护轨的高度无法满足上述的要求时,护轨下容许加垫厚度小于30

相关文档
最新文档