混沌现象研究

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

混沌现象研究

实验二十九混沌现象研究

长期以来,人们在认识和描述运动时,大多只局限于线性动力学描述方法,即确定的运动有一个完美确定的解析解。但是自然界在相当多情况下,非线性现

象却起着很大的作用。1963年美国气象学家Lorenz在分析天气预报模型时,首

先发现空气动力学中的混沌现象,该现象只能用非线性动力学来解释。于是,1975年混沌作为一个新的科学名词首次出现在科学文献中。从此,非线性动力学迅速

发展,并成为有丰富内容的研究领域。该学科涉及非常广泛的科学范围,从电子

学到物理学,从气象学到生态学,从数学到经济学等。混沌通常相应于不规则或

非周期性,这是由非线性系统本质产生的。本实验将引导学生自己建立一个非线

性电路,该电路包括有源非线性负阻、LC振荡器和RC移相器三部分;采用物理实验方法研究LC振荡器产生的正弦波与经过RC移相器移相的正弦波合成的相图(李萨如图),观测振动周期发生的分岔及混沌现象;测量非线性单元电路

的电流—电压特性,从而对非线性电路及混沌现象有一深刻了解;学会自己制作

和测量一个实用带铁磁材料介质的电感器以及测量非线性器件伏安特性的方法。

1、非线性电路与非线性动力学

实验电路如图30-1所示,图30-1中只有一个非线性元件R,它是一个有源非线性负阻器件。电感器L和电容器C2组成一个损耗可以忽略的谐振回路;可变电阻R和电容器C串联将振荡器产生的正弦信号移相输出。本实验所用的非01

线性元件R是一个五段分段线性元件。图30-2所示的是该电阻的伏安特性曲线,

可以看出加在此非线性元件上电压与通过它的电流极性是相反的。由于加在此元

件上的电压增加时,通过它的电流却减小,因而将此元件称为非线性负阻元件。

R0 IR

C R 1C VR L 2

图29-1 非线性电路原理图

图29-2 非线性元件伏安特性

实验二十九混沌现象研究

图30-1电路的非线性动力学方程为:

dUC1C=G(U-U)-gU 1C2C1C1dt

dUC2C=G(U-U)+i30-1 2C1C2L dt

diLL=-U C2dt

式中,U、U是C、C上的电压,i是电感L上的电流,G=1/R是电、C1C212L0导,在图5中,g为U的函数,如果R是线性的,g是常数,电路就是一般的振荡

电路,得到的解是正弦函数,电阻R的作用是调节C和C的位相差,把、012C和C 两端的电压分别输入到示波器的x,y轴,则显示的图形是椭圆。如果R12 是非线性的,会看到什么现象呢?

电路中的R是非线性元件,它的伏安特性如图4所示,是一个分端线性的电阻,整体呈现出非线性。gU是一个分段线性函数。由于g总体是非线性函C1 数,三元非线性方程组(1)没有解析解。若用计算机编程进行数据计算,当取

适当电路参数时,可在显示屏上观察到模拟实验的混沌现象[见参考资料(6)]。

除了计算机数学模拟方法之外,更直接的方法是用示波器来观察混沌现象,实验电路如图5所示,图5中,非线性电阻是电路的关键,它是通过一个双运算

放大器和六个电阻组合来实现的。电路中,LC并联构成振荡电路,R的作用是0分相,使J1和J2两处输入示波器的信号产生位相差,可得到x,y两个信号的合成图形,双运放LF353的前级和后级正、负反馈同时存在,正反馈的强弱与比值R/R,R/R有关,负反馈的强弱与比值R/R,R/R有关。当正反馈大于负30602155反馈时,振荡电路才能维持振荡。若调节R,正反馈就发生变化,LF353处于0

振荡状态,表现出非线性,从C,D两点看,LF353与六个电阻等效一个非线性电阻,它的伏安特性大致如图30-4所示。

I

R3 R6 8 3 6 + + 7 1 LF353 LF353 2 5 - - R5 0 U 4 R2

R4 R1

图29-4 双运放非线性元件的伏安特性图29-3 有源非线性器件

2、有源非线性负阻元件的实现

实验二十九混沌现象研究

有源非线性负阻元件实现的方法有多种,这里使用的是一种较简单的电路

采用两个运算放大器(一个双运放LF353)和六个配制电阻来实现,其电路如图

3所示,它的伏安特性曲线如图4所示,实验所要研究的是该非线性元件对整个

电路的影响,而非线性负阻元件的作用是使振动周期产生分岔和混沌等一系列非

线性现象。实际非线性混沌实验电路如图30-5所示

J(CH) J(CH) 2211scope x-y

C y x

R0 R6 R3 8 6 3 + + 1 7 LF353 LF353 5 2 - - C C 12L R5 4 R2

R1 R4

图29-5 非线性电路混沌实验电路 3、名词解释

本名词解释引自参考资料2中的附录3 “简明词汇”。这些定义是描述性的,并非是标准数学定义,但有助于初学者对这些词汇的理解。这些词汇定义多数是按相空间作出的。

分岔:在一族系统中,当一个参数值达到某一临界值以上时,系统长期行

为的一个突然变化。

混沌:?表征一个动力系统的特征,在该系统中大多数轨道显示敏感依赖

性,即完全混沌。 ?有限混沌;表征一个动力系统的特征,在该系统中某些特殊轨道是非周期的,但大多数轨道是周期或准周期的。

实验用仪器如图6所示。非线性电路混沌实验仪由四位半电压表(量程0~

19.999V,分辩率1mV)、-15V~0~+15V稳压电源和非线性电路混沌实验线路板三

部分组成。观察倍周期分岔和混沌现象用双踪示波器。一、必做内容

1、测量有源非线性电阻的伏安特性并画出伏安特性图

(1)由于非线性电阻是含源的,测量时不用电源,用电阻箱调节,伏安表实验二十九混沌现象研究

并联在非线性电阻两端,再和电阻箱串联在一起构成回路。

(2) 尽量多测数据点。

图29-6 实验装置

2、倍周期现象、周期性窗口、单吸引子和双吸引子的观察、记录和描述

将电容C和C上的电压输入到示波器的X,Y轴,先把R调到最小,示波120器上可以观察到一条直线,调节R,直线变成椭圆,到某一位置,图形缩成一点。0

增大示波器的倍率,反向微调R,可见曲线作倍周期变化,曲线由一周期增为二0

周期,由二周期增为四周期……直至一系列难以计数的无首尾的环状曲线,这是

相关文档
最新文档