高炉炉顶均压放散工艺方案优化分析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高炉炉顶均压放散工艺方案优化分析

王小伟,唐恩,范小刚,周强,李菊艳

(中冶南方工程技术有限公司,武汉,430223)

摘要:针对当前高炉炼铁均压放散时,煤气直接对空排放的现状,为了减少煤气排放,降低环境污染,提出了气囊法、引射法和气体替代法等新型炉顶煤气均压放散工艺。以上三种新工艺操作简单,自动化程度高,均能实现煤气的回收利用。但气囊法占地面积大,运行维护成本高,当煤气与通入气囊气体单价比值大于4时,才能获得经济效益;引射法可实现煤气与粉尘的完全回收,具有很好的经济和环保效益,由于需要增加除尘设施和引射器,比较适用于新建高炉;气体替换法可回收绝大部分煤气,却无法避免粉尘的排放,但与传统均压放散工艺相比,仍能获得巨大的经济和环保效益,且固定投资少,操作灵活,不仅适用于新建高炉,也适用于现有高炉。

关键词:均压放散;气囊法;引射法;气体替换法

引言

目前,世界范围内的料罐均压放散工艺基本均采用传统的均压放散技术,即采用半净煤气或净煤气一次均压,氮气二次均压,放散时含粉尘的荒煤气直接对空排放。平均吨铁的荒煤气放散量约为7—9Nm3/tFe,粉尘量为280~400g/tFe。按照我国目前年产铁水6亿吨计算,年煤气排放量高达42~54亿m3,粉尘排放量达16.8~24万吨,除了对环境产生巨大的污染外,还造成大量的资源浪费,是一笔巨大的经济损失,不符合我国钢铁行业节能减排,发展低碳经济的要求。

因此,若能开发出一种新的均压放散技术,杜绝均压放散煤气直接对空放散,既能减轻环境污染,有利于建立环境友好型钢厂,又能回收大量的煤气资源,获得良好的经济效益,具有广阔的市场前景。

2 国内外研究现状

在上世纪七八十年代,前苏联、日本等国即有对均压放散工艺优化的尝试,并投入工业生产[1]。其中,由日本石川岛播磨重工业公司研制成功,在鹿岛厂1号高炉投入使用的均压回收设备,更是获得了日本1980年节能设备优秀项目奖。在国内,上世纪九十年代,当时的重庆钢铁设计院公开了一种利用引射器、文氏管除尘器和脱水器构成的湿法煤气回收系统的专利[2],鞍山亨通高炉设备工程技术有限公司2010年也公开了一种利用布袋除尘器净化炉顶煤气并回收进入净煤气管网的专利方法[3]。以上国内外各方法虽有不同,但核心思想均为通过一定的方式,将炉顶料罐内的煤气引入净煤气管网,实现煤气的回收。然而,由于各方法均存在一定的缺陷,有的直接将炉顶煤气排入净煤气管网对净煤气造成污染,有的仅局限于湿法除尘,有的无法实现煤气短时间内有效回收,最终均没有推广使用。

本文针对已知各技术存在的特点,提出了气囊法、引射法和气体替换法,对高炉炉顶称量料罐放散的煤气进行有效回收,实现节能减排的目标。

3 方案分析

3.1 气囊法

3.1.1 方案介绍

气囊法是通过将称量料罐内的煤气排入一个钢制密封罐内,达到煤气回收与循环利用之目的,其工艺示意图如图1所示。密封罐内有一个气囊装置,均压时,打开氮气切断阀和均压放散阀,通过氮气罐向密封气囊内输送高压氮气,使密封气囊膨胀,将密封罐内的均压煤气压入炉顶称量料罐,当料罐内压力与高炉内压力一致时,均压完毕。放散时,打开均压放散阀和氮气放散阀,气囊内的氮气通过氮气放散阀排入大气,气囊体积收缩,称量料罐内放散的煤气进入密封罐内,当料罐内的煤气放散至常压时,放散完毕。紧急状况下,可打开事故放散阀,放散煤气。充入密封气囊的气体也可使用不对密封罐造成安全隐患的其它气体。

本文中结合钢铁厂实际以及叙述方便,采用氮气作为充入密封气囊的气体。

气囊法的工艺原理是假定煤气在均压放散过程中无温度变化,根据波义耳定律,料罐中的煤气放散时,等温膨胀进入密封罐内;均压时,往气囊中充入氮气,占据之前放散煤气的体积,从而将煤气再等温压缩进入料罐中。如此,即可实现料罐的均压放散和料罐煤气的回收和循环利用,避免直接排入大气造成污染和资源浪费。

为了确定均压时氮气的用量,须计算出气囊和密封罐的大小。各参数的定义如下:P g:料罐压力;P:大气压力;V g:料罐体积;V n:气囊体积;V h:回收体积;V d:消耗氮气体积;

则根据波义耳定律,有:

P g·V g=P·(V g+V h) (1)

P g·V h=P·V d(2)

由方程(2)知,

V d=P g/P·V h(3)

一般情况下,称量料罐内表压为0.25MPa,即实际压力为0.35MPa,则代入方程(3)中,可知

V d=3.5V h

即每次回收过程中,消耗的氮气体积是煤气放散体积的3.5倍。实际上,由于密封罐上部和下部以及回收管路上有一定的体积空间,该部分的气体也需在均压时,被气囊压至与料罐内压力一致,实际所需的气囊体积V n>V h,故V g>3.5V h,实际设计中,每次消耗的氮气体积至少为回收的煤气体积的4倍。

3.1.2方案评估

由于消耗的氮气量较多,因此运行费用也较高,采用该技术的实际运行费用取决于钢铁厂内的介质结算价格,同样的工艺对有的企业是盈利的,对于有的企业也许就是亏损的。总之,当煤气与通入气囊的气体单价比大于4时,采用该工艺即可实现盈利。

由于称量料罐放散的煤气均进入了密封罐,因此密封罐的体积较大,对于一个有效容积30m3的料罐,回收煤气所需的密封罐尺寸为直径4.2m,高8m,导致体积过大,不适宜置于炉顶平台,除需增加额外的占地面积外,还增加了固定投资。此外,气囊作为易耗品,每次更换也比较麻烦,增加工人作业量。

3.2 引射法

3.2.1 方案介绍

引射法回收煤气的核心思想,也是将称量料罐煤气通过一定的方式引入净煤气管网中,实现煤气的回收利用。该法中,为了使净煤气管网中的净煤气不受料罐煤气的污染,料罐煤气在进入净煤气管网之前,采用布袋除尘器(或电除尘器)除尘;而为了在规定的的时间内将煤气回收完毕,经过除尘的煤气通过引射器的作用,使其快速回收入净煤气管网,达到放散至常压的目的。

该方法的具体回收流程见图2所示,均压放散连接的布袋除尘器与高炉炉顶煤气布袋除尘器系统是并联的。布袋除尘器后串联引射器,引射器入口段包含两个入口,分别为工作管和引射管。工作管通过管道和工作气体连接,引射管通过管道和引射器切断阀与布袋除尘器相连接以接入布袋除尘后的净煤气。

1―高炉本体;2―下料闸;3―称量料罐;4―均压放散管道;5―均压放散切断阀;6―旋风除尘器;7―旋风除尘放散阀;8―半净煤气充压阀;9―氮气充压阀;10―布袋切断阀;11―净煤气放散阀;12―清灰阀;13―布袋除尘器;14―引射器切断阀;15―工作流体切断阀;16―引射器;17―切断阀;18―净煤气管网称量料罐的均压过程与目前传统的均压过程一致,而煤气放散回收过程则分为自然回收和强制回收两步进行。放散时,料罐内的煤气经旋风除尘器粗除尘后,进入布袋除尘器精除尘,由于开始放散时,料罐内的压力相对净煤气管网较高,能自动进入净煤气管网而进行自然回收。当料罐内压力降至50~100kPa时,由于料罐和净煤气管网的压力差减小及阻损等原因,煤气进入净煤气管网的速度减慢,为了在规定的时间内将料罐内煤气降至常压,此时,采取强制回收措施,打开引射器的工作流体切断阀,启动引射器,在高压工作流体的引射作用下,剩余的煤气被快速引射入净煤气管网。当料罐内压力降至常压时,停止引射,结束放散过程。

3.2.2方案评估

该法操作简单,能实现炉顶均压放散煤气的完全回收,带来良好的环保效益。在运行费用方面,由于仅在回收后期采用强制回收,消耗的工作气体较少,运行成本较低,具有良好的经济效益。工作气体可以是高压氮气,高压水蒸汽,也可以是经过净化且未经减压的高炉净煤气。若采用高压氮气或水蒸汽作为引射器工作气源,每次放散过程回收的煤气经济价值要远高于工作气体消耗的支出价值,若采用高压的高炉净煤气作为工作气体,可进一步降低运行费用,获得更大的经济效益。但由于高压净煤气的压力小于高压氮气或水蒸汽,引射所需的时间比采用氮气或水蒸汽等气源要长,因而会延长整个放散过程回收时间。氮气与水蒸汽相比,水蒸汽价格较低,但由于煤气中含有氯离子,会对引射器等造成腐蚀。因此,高压净煤气、氮气、水蒸汽三者各有优劣,厂家结合实际可综合考虑后选择合适的引射器工作气源。

相关文档
最新文档