鲁棒稳定性鲁棒控制

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

• 加性不确定性: G(s, ) G0 (s) (s) • 乘性不确定性: G(s, ) (I (s))G0 (s)
一个例子
设汽车质量为M,路面摩擦系数为 ,汽车的力学模型如 下图所示: v f M
v
其运动方程为: M
如果考虑到汽车的质量M随车载负荷发生变化, 且也随 路面状况不同而变化,则方程的系数就具有一定的不确 定性,即,无法得到M和的精确值。假设M和的取值 范围给定如下: M 0 1 M M 0 1
Kharitonov定理: (1)中的每一个多项式均稳定当且仅当 下面的四个多项式稳定
2 4 P1 ( s) a0 a1 s a2 s a3 s 3 a4 s a5 s 5 2 4 P2 ( s) a0 a1 s a2 s a3 s 3 a4 s a5 s 5 2 4 P3 ( s) a0 a1 s a2 s a3 s 3 a4 s a5 s 5 2 3 4 5 P4 ( s) a0 a1 s a2 s a3 s a4 s a5 s
鲁棒性(Robustness)
所谓鲁棒性,是指标称系统所具有的某一种性 能品质对于具有不确定性的系统集的所有成员均成 立,如果所关心的是系统的稳定性,那么就称该系 统具有鲁棒稳定性;如果所关心的是用干扰抑制性 能或用其他性能准则来描述的品质,那么就称该系 统具有鲁棒性能。
系统的不确定性
参数不确定性,如二阶系统:

取k=1,此时闭环传递函数的分母为
s 4 r3 s 3 r2 s 2 r1s 1 s 3 2s 2 2s 1 s 4 p3 s 3 p2 s 2 p1s 2
其中
p1 [2,3], p2 [5,6], p3 [3,4]
此时上面的闭环系统稳定当且仅当下面的四个多项式 稳定
G ( s) 1 , a [ a , a ] 2 s as 1
可以代表带阻尼的弹簧装置,RLC电路等。这种不确 定性通常不会改变系统的结构和阶次。 动态不确定性 也称未建模动态 ( s) ,我们通常并不知道它的结构、 阶次,但可以通过频响实验测出其幅值界限:
( j) W ( j) , R,W ( j)为确定函数
注:定理中的四个多项式通常被称作Kharitonov顶点多 项式。Kharitonov定理的意义在于它将区间多项式中无 穷多个多项式的稳定性与四个定点的稳定性等价起来, 将无穷检验变为有限检验(顶点检验)。
考虑下图所示的闭环系统 u G(s) k 其中
m n N ( s) i i G( s, r ) , N ( s) qi s , D( s, r ) ri s , ri ri , ri D ( s, r ) i 0 i 0
在前面各章中,我们总是假设已经知道了受控对象的 模型,但由于实际中存在种种不确定因素,如:

参数变化; 未建模动态特性; 平衡点的变化; 传感器噪声; 不可预测的干扰输入;
等等,所以我们所建立的对象模型只能是实际物理系 统的不精确的表示。鲁棒系统设计的目标就是要在模 型不精确和存在其他变化因素的条件下,使系统仍能 保持预期的性能。如果模型的变化和模型的不精确不 影响系统的稳定性和其它动态性能,这样的系统我们 称它为鲁棒控制系统。
1 G0 ( s) , M 0 s 0 Ms ( s ) ( M 0 s 0 ) [(M 0 M ) s ( 0 )]
可以找到适当的界函数W ( j ),有 ( j ) W ( j )
鲁棒控制理论是分析和处理具有不确定性系统的 控制理论,包括两大类问题:鲁棒性分析及鲁棒性综 合问题。鲁棒性分析是根据给定的标称系统和不确定 性集合,找出保证系统鲁棒性所需的条件;而鲁棒性 综合(鲁棒控制器设计问题)就是根据给定的标称模 型和不确定性集合,基于鲁棒性分析得到的结果来设 计一个控制器,使得闭环系统满足期望的性能要求。 主要的鲁棒控制理论有: Kharitonov区间理论; H控制理论; 结构奇异值理论(理论); 等。
Kharitonov定理
具有不确定参数的系统
假设系统的特征多项式为
f (s) an s n an1s n1 a1s a0 (1)
其系数满足
ai ai ai , i 0,1,, n,0 [ai , ai ]
我们称(1)为区间多项式,为了判定系统的稳定性,应该 研究所有可能的参数组合,这是个无穷检验问题。 前苏联数学家 Kharitonov于1978年给出了关于判断区 间多项式族鲁棒稳定性的四多项式定理,为研究参数不 确定系统的鲁棒性分析奠定了基础。
y


闭环传递函数为
G ( s, r ) GCL ( s, r ) 1 kG( s, r )
Gcl(s)的分母为 D( s, r ) kN ( s)
例:
s 3 2s 2 2s 1 G ( s, r ) 4 s r3 s 3 r2 s 2 r1 s 1
r1 4, 5, r2 [3,4], r3 [2,3]
dv v f dt
0 2 0 2 , i为给定常数
那么实际的被控对象就可以描述为
dv (M 0+M ) ( 0 )v f , M 1 , 2 dt 如果用f 到v的传递函数来描述,则有 1 G( s) G0 ( s) ( s) ( M 0 M ) s 0 其中
相关文档
最新文档