分子遗传学的传承与发展@

分子遗传学的传承与发展@
分子遗传学的传承与发展@

中国科学院研究生院!《基因工程原理》课补充教材之一 (2010年9月7日) 分子遗传学的传承与发展 吴乃虎(中国科学院遗传与发育生物研究所) 黄美娟(北京大学生命科学学院细胞遗传学系)

遗传学(genetics )这个名称,最初是由英国科学家贝特森( W.Bateson )于1906年根 据拉丁文延长(Latin genetikos )之意创造的。按照不同历史时期的学术水平和工作特点, 遗传学的研究进程

大体上 可以划分为经典遗传学(classical gen etics )、生 化遗传学 (biochemical genetics )、分子遗传学 (molecular genetics )、基因工程学 (genetic engineering )、 基因

组学(genomics 、和表观遗传学(epigenetics )等数个既彼此相对独立,又前后互相交 融的不同发展阶段。 这当中,分子遗传学的地位无疑是相当重要的, 它起到了承上启下的作 用。因此讲清分子遗传学的传承与发展这一命题, 不仅对于学习与掌握分子遗传学的基本原 理是十分必要的,而且对于培养青年学子树立科学的唯物史观也是十分必要的。 1.经典遗传学

从1865年孟德尔《植物杂交实验》论文发表至 和染色体水平上研究生命有机体的遗传与变异的规律, 染色体遗传学(chromosomal genetics 、阶段。为了与后继发展的分子遗传学相区别,如今人 们也习惯地称这一阶段的遗传学为经典遗传学或传统遗传学。 鉴于经典遗传学主要研究生命

有机体上下两个世代之间基因是如何传递的,故有时也称之为传递遗传学( tran smission genetics )。 孟德尔通过豌豆杂交实验,为现代遗传学的诞生作出了划时代的杰出贡献。概括地说 主要有如下两大方面:

20世纪40年代初,遗传学主要从细胞 属于细胞遗传学(cytogenetics )或叫

第一,发现了两条遗传学的基本定律, 即遗传因子分离律和自由组合律。 孟德尔从1857 年到1864年,坚持以豌豆为材料进行植物杂交试验。他选择了 7对区别分明的性状作仔细 观察。例如,他用产生圆形种子的植株同产生皱形种子的植株杂交, 得到的几百粒杂交子

代的种子全是圆形的。第二年,他种了 253粒圆形杂交种子,并让它们自交,结果得到的

7324粒子二代种子中,有 5474粒是圆形的,1850粒是皱形的。用统计学方法计算得出,

圆皱比为3:1。据此孟德尔推导出遗传因子分离律。他还研究了具有两种彼此不同的对立性状的2个豌豆品系之间的双因子杂交试验。他选用产生黄色圆形种子的豌豆品系同产生绿

色皱形种子的豌豆品系进行杂交,所产生的杂种子一代种子,全是黄色圆形的。但在自交产生的子二代556粒种子中,不但出现了两种亲代类型,而且还出现了两种新的组合类型。

其中黄色圆形的315粒,黄色皱形的121粒,绿色圆形的108粒,绿色皱形的32粒。四

种类型比例近于9:3:3:1。这就是所谓的孟德尔遗传因子的独立分配律。

第二,提出了遗传因子假说。为了解释豌豆杂交的遗传现象,孟德尔从生殖细胞着眼,

提出了遗传因子假说。他推想生物个体的所有性状都是由遗传因子控制的,这些因子从亲本到子代,代代相传;遗传因子有显性和隐性之分,决定一对相对性状的显性因子和隐性因子,叫做等位因子(即现在所说的等位基因);在体细胞中遗传因子是成对存在的,其中一个来自父本,一个来自母本;在形成配子时,成对的遗传因子彼此分开,因此在性细胞中,它们则是成单存在的;在杂交子一代细胞中,成对的遗传因子各自独立,彼此保持纯一的状态;

由杂种形成的不同类型的配子数目相等;雌雄配子的结合是随机的,有同等的结合机会。

在孟德尔当时,学术界流行着一种"融合遗传”(ble nding in herita nee)观点,认为决定不同

亲本性状的遗传物质,在杂种后代彼此融合而逐渐消失。这好比把红颜料同蓝颜料混合之后,

会形成一种既不是红也不是蓝的紫颜色一样。孟德尔冲破这种错误观点的束缚,提出了与“融

合遗传”相对立的“颗粒遗传"(Particulate inheritanee)思想。在大量实验事实的基础上,通过

严格的统计学分析和缜密的逻辑推理,证明遗传性状是由一种独立存在的颗粒性的遗传因子决定的。

孟德尔的科学发现,为现代遗传学奠定了坚实的理论基础,后世人为纪念他的伟大的科学贡献,称这些定律为孟德尔定律,并尊称孟德尔为现代遗传学的创始人。

美国著名的遗传学家摩尔根( T.H.Morgan )对基因学说的建立作出了卓越的贡献。他

以果蝇为材料进行遗传学研究。 1910年,摩尔根和他的助手 CBBridges 、H.J.Muller 及

A.H.Sturtevant ,从红眼的果蝇群体中发现了 1只白眼的雄果蝇。因为正常的果蝇都是红眼

突变型。这些突变型跟正常的野生型果蝇,在诸多如翅长、体色、刚毛形状、复眼数目等性

状上都有差别。有了这些突变型,就能够更广泛地进行杂交实验, 也能更加深入地研究遗传 的机

理。摩尔根将白眼雄果蝇同红眼雌果蝇交配所产生的子一代不论是雄的还是雌的, 例外地都是红眼果蝇。让

这些子一代果蝇互相交配,所产生的子二代有红眼的也有白眼的, 但有趣的是所有的白眼果蝇都是雄性的。

说明这个白眼性状与性别有联系。

为了解释这种现象,需要简单地了解果蝇的染色体。果蝇只有 有1对很小呈粒状,2对呈V 形,另有1对

呈棒状的特称为 XX

个J 形的丫染色体取代,这一对叫做 XY 染色体。

摩尔根当时就已经知道性染色体的存在。因此他推想,白眼这一隐性性

状的基因( 是位于X 染色体上,而在 丫染色体上没有它的等位基因。他让子一代红眼雌果蝇(

跟亲本的白眼雄果蝇(wY )回交,结果产生的后代果蝇中有 1/4是红眼雌果蝇,

雄果蝇。这个实验说明,白眼隐性突变基因( w )确实位于X 染色体上。摩尔根称这种现象

为遗传性状的连锁定律。

摩尔根和他助手们的杰出工作,第一次将代表某一特定性状的基因同某一特定的染色体 联系了起来,创

立了遗传的染色体理论并提出了遗传的连锁定律。

从此基因有了具体的物质 内涵。随后的遗传学家们又应用基因作图技术, 构建了基因的连锁图,进一步揭示了在染色

的,叫做野生型,所以称白眼果蝇为突变型。到了

1915年,他们一共找到了 85种果蝇的 4对染色体。在雌果蝇中

染色体;在雄果蝇中,前 3

对同雌果蝇的完全一样,但没有 1对棒状的XX 染色体,它是由

1个棒状的X 染色体和1 Ww ), 1/4是白眼

体分子上基因是按线性顺序排列的,从而使学术界普遍地接受了孟德尔遗传学原理。

经典遗传学的主要研究内容可概括为遗传的孟德尔定律(Mon delia n laws of inheritanee )、遗传的染色体理论( the chromosome theory of inheritanee )、遗传重组和作图

(gen etie reeomb in ati on and mapping ) 以及重组的物理证据 (p hysieal evide nee for reeomb in ati on )等四大方面。

2. 生化遗传学

摩尔根曾经正确地指出:“种质必须由某种独立的要素组成,正是这些要素我们叫做遗 传因子,或者更简单地叫做基因”。尽管由于摩尔根及其学派的广大科学工作者的努力,使 基因学说得到了学术界的普遍的承认, 然而当时人们对基因本质的认识还相当肤浅,

道基因与蛋白质及表型之间究竟存在着什么样的内在联系。虽然说早在

1909年,英国的医

生兼生物化学家加罗德(A.Garrod )就己指出,特定酶的表达是由野生型基因控制的假说。 而且这个假说在二十世纪 30年代,经过众多遗传学家的努力已经获得了很大的发展与充实。 遗憾的是,由于当时人们掌握的酶分子结构的知识相当贫乏,

没有认识到大部份基因的编码 产物都是蛋白质,也不知道是否所有的蛋白质都是由基因编码的。

在这样的知识背景下, 要 进一步研究分析基因与蛋白质之间的内在联系,显然是难以做到的。

值得庆幸的是到了二十世纪 40年代初期,孟德尔-摩尔根学派的遗传学家便已经清醒地

认识到,如果继续沿用经典遗传学的研究方法和实验体系, 是难以有效地揭示基因控制蛋白

质合成及表型特征的遗传机理。因此他们便广泛地转而使用诸如红色面包霉(

Neuros pora erassa )和肺炎链球菌(Streptococcus pneumpniae )等微生物为研究材料,并着力从生物化 学的角度,探索基因与蛋白质及表型之间内在联系的分子本质。 所以人们称这个阶段的遗传 学为生化遗传学(biochemical gen eties ),或微生物遗传学( microbial gen eties )。

由于微生物具有个体小、细胞结构简单、 繁殖速度快、世代时间短和容易培养、便于操

作等许多优点,因此便极大地加速了生化遗传学的研究, 在短短的二三十年间就取得了丰硕

的成果,主要的有如下三项。第一, 1941年两位美国科学家比德尔(

G.Beadle )和塔特姆 (E.Tatum ),通过对红色面包霉营养突变体的研究,提出了 “一种基因一种酶”

(后来修改 为“一种基因一种多肽” )的假说。此后在 1957年,这个假说被英国科学家英格拉姆 (VMIngram )证明是正确的。从而明确了基因是通过对酶(即蛋白质)合成的控制,实现 对生命有机体性状表达的调节作用。第二,

1944年微生物学家艾弗里(O.Avery )及其同事 证明,肺炎链球菌的转化因子是 DNA 。第三,1952

年,赫尔希(A.Hershey )和蔡斯(M.Chase )

也在噬菌体感染实验中发现,转化因子的确是 至此基因的分子载体是 DNA 已是不争的事实。 奠定了坚实的理论基础。它上承经典遗传学, 发展过

程中的一个重要的过渡阶段。

3. 分子遗传学

经典遗传学虽然揭示了基因传递的一般规律,甚至还能够绘制出基因在染色体分子上的

并不知 DNA 而不是蛋白质,肯定了艾弗里的结论。 生化遗传学的发展为日后分子遗传学的诞生 下启分子遗传学,是经典遗传学向分子遗传学

排列顺序及其相对距离的遗传图,生化遗传学尽管证明了基因的载体是DNA,但它们都不

能准确地解释基因究竟是以何种机理、通过什么途径来控制个体的发育分化及表型特征的。

确切地说,直到1953年Watson-Crick DNA双螺旋模型提出之前,人们对于基因的理解仍然

停留在初步的阶段。那时的遗传学家不但没有揭示出基因的结构特征,而且也不能解释位于

细胞核中的基因,是怎样地控制在细胞质中发生的各种生化过程,以及在细胞繁殖过程中,为何基因可准确地产生自己的复制品。而诸如此类的问题便是属于分子遗传学的研究范畴。由于长期以来分子遗传学的核心主题一直是围绕着基因展开的,所以也被冠名为基因分子遗

传学(molecular genetics of the gene )。

分子遗传学的主要研究方向集中在核酸与蛋白质大分子的遗传作为上,重点是从水平探索基因的

DNA 分子结构与功能的关系,以及表达和调节的分子机理等诸多问题。特别是DNA双螺旋结构模型的建

立,为有关的科学工作者着手研究构成分子遗传学两大理论支柱,即维系遗传现象分子本质的DNA自我复制和基因与蛋白质之间的关系,提供了正确的思路,

奠定了成功的基础。因此说,1953年沃森和克里克(JamesWatson and Francis Crick ) DNA

双螺旋模型的建立,标志着遗传学研究已经跨入了分子遗传学的新阶段。它全面继承和发展

了经典遗传学和生化遗传学的科学内涵,又孕育并催生了基因工程学、基因组学和表观遗传

学等3个现代遗传学主要分支的相继问世。毫无疑义在整个遗传学的发展史上,分子遗传学

究的序幕;1957年,弗伦克尔-康拉特(H.Fraenkal-Conrat)和辛格(B-Singer)证实,烟草花叶病毒TMV的遗传

物质是RNA,进一步表明RNA同样具有重要的生物学意义;1958 年梅塞尔森和斯塔尔(M. Meselson and F.W.Stahl)发现了DNA半保留复制机理,揭示了基因之所以能够代代相传准确保留的分子本质;同年克里克提出了描述遗传信息流向的中心法

则,阐明了在基因表达过程中,遗传信息从DNA到RNA再到蛋白质的传递途径;1961年

两位法国科学家雅各布和莫洛( M.F.Jacob and J.Mo nod)建立了解释原核基因表达调节机理

的操纵子模型,说明基因不但在结构上是可分的,而且在功能上也是有分工的;自1961年

开始,经过尼伦伯格(M.W.Nirenberg )和库拉钠(H.G.Khorana)等科学家的努力,至1966 年全部64种遗传密码

子均已成功破译,从而将RNA分子上的核苷酸顺序同蛋白质多肽链

中的氨基酸顺序联系起来,它是分子遗传学发展过程中影响最为深远的科学发现之一;1970

年,美国科学家特明和巴尔帝摩(HNTemin and D.Baltimore )发现了RNA病毒及其反转录

酶,证明遗传信息也可以从RNA反向传递到DNA,这是对中心法则的重大修正;1970年,

史密斯(H.O.Smith )等人从流感嗜血菌中首先分离到n型核酸内切限制酶,它与1967年发

现的DNA连接酶,同为DNA体外重组技术的建立提供了酶学基础。正是上述这些研究发现与进展构成了分子遗传学的核心内容。

4.基因工程学

基因工程学简称基因工程,是在20世纪70年代诞生的一门崭新的生物技术科学(biotechnology )。它的创立与发展直接依赖于分子遗传学的进步,而基因工程技术的发展与应用又有力地促进了分子遗传学的深化与提高,两者之间有着密不可分的内在联系。

早期分子遗传学的研究成果,为基因工程的创立与发展奠定了坚实的理论基础。概括起

来主要的有如下三个方面:第一,在20世纪40年代确立了遗传信息的携带者,即基因的分子载体是DNA 而不是蛋白质,明确了遗传的物质基础问题;第二,在20世纪50年代揭示

了 DNA 分子的双螺旋结构模型和半保留复制机理,弄清了基因的自我复制和传递的问题; 第三,在20世纪50年代末期和60年代,相继提出了中心法则和操纵子学说,并成功地破 译了遗传密码系统,阐明了遗传信息的流向和表达问题。

由于这些问题的相继解决, 人们期 待已久的应用类似于工程技术的程序,

主动地改造生命有机体的遗传特性, 创造具有优良性 状的生物新类型的美好愿望,

从理论上讲已有可能变为现

实。

基因工程之所以会在

这并非是一种偶然的事件, 子

遗传学实验方法的进步,

和大肠杆菌转化体系、DNA 核酸序列结构分析以及核酸分子杂交和琼脂糖凝胶电泳等等。 有趣的是,这些技术差不多是同时得到发展,并被迅速地应用于 DNA 体外重组实验。于是 在20世纪70年代开展基因工程研究工作,无论在理论上还是在技术上都已经具备了条件。

首先,1972年美国斯坦福大学(Stanford University )的伯格(P.Berg )等人完成了世界 上第一例DNA 体外重组实验。接着,1973年另外两位斯坦福大学的科学家科恩( S.Cohen ) 和博耶(H.Boyer )利用大肠杆菌体系,首次成功地进行了基因克隆实验。这些工作预示着 基因工程学即将正式诞生。

简单地说,所谓基因工程是指在体外试管中,忑用

插入到载体分子构成遗传物质的重组体, 并使之转移到原先没有这类分子 (基因)的受体细 胞内,而能持续稳定地表达与增殖,进而形成转基因的克隆或

个体的实验操作过程。 义说明基因工程虽然是分子遗传学发展的必然结果, 点。

DNA (基因)转移到与其 毫无亲缘关系的新寄主细胞中进行复制与表达。 这

意味着应用基因工程技术有可能按照人们

的主观愿望和社会需求,创造出自然界原本并不存在的新的生物类型。 第二,能够使特定的 DNA 片段或目的基因在大肠杆菌寄主细胞中大量扩增。如此人们 便能够制备到大量纯化的特定 DNA 片段或目的基因,从而极大地促进了有关基因的分子遗 传学的基础研究工作。

第三,确立了反向遗传学( reverse genetics ) 研究途径。传统遗传学是根据生物个体的表

型特征去探究其相应的基因型的结构,人们习惯上称这样的遗传学研究途径为正向遗传学

(forward genetics )。随着分子遗传学尤其是重组

DNA 技术的发展与应用, 人们已经有可能 通过配合使用基因克隆、定点突变、 PCR 扩增及转基因等各项技术,首先从基因开始研究

其核苷酸序列特征、蛋白质产物的结构与功能,进而根据人们的需求对基因进行修饰改造, 然后再返回到生物体内观察其生物学活性与表型特征的变化。为与传统的正向遗传学相区 别,人们称这样的遗传学研究途径为反向遗传学,亦即是基因工程学。

5. 基因组学

20世纪70年初期诞生,并在随后的十来年时间中获得迅速的发展, 而是由当时科学技术发展的水平决定的。 特别是分子生物学及分 为基因工程的创立与发展奠定了强有力的技术基础。 这些技术主 DNA 连接酶的DNA 分子体外切割与连接、基因克隆载体

要的有依赖于核酸内切限制酶和 DNA 重组技术将外源 DNA (基因) 这个定 但它自身也具有如下几个方面独特的优 第一,具有跨越天然物种屏障的能力,可以把来自不同物种的

遗传学发展历史及研究进展(黄佳玲)

遗传学发展历史及研究进展 湛江师范学院 09生本3班黄佳玲 2009574310 摘要:自从孟德尔发现遗传定律的一个多世纪以来,人们对生物的遗传特性锲而不舍地深入研究。从假设到实验,从宏观到微观,遗传学的羽翼日渐丰满。从遗传因子到基因,从基因的概念到基因的本质、功能,基因的概念逐渐扩展,人们对基因的认识逐渐深化。可以说,基因概念的发展史,就是人们对基因认识的发展史,就是遗传学的发展史。而分子遗传学则主要研究基因的本质、基因的功能以及基因的变化等问题。 关键词:遗传学分子遗传学重组DNA技术 几千年来,人类对生物及人类自身的生殖、变异、遗传等现象的认识不断深入和发展。人类从古代就注意到遗传和变异的现象,并通过人工选择获得所需要的新品种。从19世纪起就对遗传和变异开始作系统的研究。按照不同历史时期的学术水平和工作特点,遗传学的研究进程大体上可以划分为经典遗传学、生化遗传学、分子遗传学、基因工程学、基因组学和表观遗传学等数个既彼此相对独立,又前后互相交融的不同发展阶段[1]。这当中,分子遗传学的地位无疑是相当重要的,它起到了承上启下的作用。它的早期研究都用微生物为材料,其形成和发展与微生物遗传学和生物化学也有密切关系。 分子遗传学的主要研究方向集中在核酸与蛋白质大分子的遗传作为上,重点是从DNA水平探索基因的分子结构与功能的关系,以及表达和调节的分子机理等诸多问题。 早在1927年马勒和1928年斯塔德勒就用 X射线等诱发了果蝇和玉米的基因突变,但是在此后一段时间中对基因突变机制的研究进展很慢。直到1944年,美国学者埃弗里等首先在肺炎双球菌中证实了转化因子是脱氧核糖核酸(DNA),从而阐明了遗传的物质基础。1953年,美国分子遗传学家沃森和英国分子生物学家克里克提出了DNA分子结构的双螺旋模型,这一发现常被认为是分子遗传学的真正开端,它为有关的科学工作者着手研究构成分子遗传学两大理论支柱,即维系遗传现象分子本质的DNA自我复制和基因与蛋白质之间的关系,提供了正确的思路,奠定了成功的基础。1955年,美国分子生物学家本泽用基因重组分析方法,研究大肠杆菌的T4噬菌体中的基因精细结构[2],其剖析重组的精细程度达到DNA多核苷酸链上相隔仅三个核苷酸的水平。这一工作在概念上沟通了分子遗传学和经典遗传学。 应该说二十世纪50年代初期至70年代初期,是分子遗传学迅猛发展快速进步的年代。在这短短的二十余年间,许多有关分子遗传学的基本原理[3]相继提出,大量的重要发现不断涌现。其中比较重要的有:1956年,美国科学家科恩伯格在大肠杆菌中发现了DNA聚合酶Ⅰ,这是可以在试管中合成DNA链的头一种核酸酶,从此拉开了DNA合成研究的序幕;1957年,弗伦克尔-康拉特和辛格证实,烟草花叶病毒TMV的遗传物质是RNA,进一步表明RNA同样具有重要的生物学意义;1958年梅塞尔森和斯塔尔发

高级分子遗传学复习提纲

高级分子遗传学复习题 1、概念解释: PDT 噬菌体展示技术(phage displayed technology,PDT)是将外源蛋白或多肽与噬菌体外壳蛋白融合,展示在噬菌体表面并保持特定的空间构象,利用特异性亲和作用以筛选特异性蛋白或多肽的一项新技术。该技术将基因型与表型、分子结合活性与噬菌体的可扩增性结合在一起,是一种高效的筛选新技术。目前已成功应用于抗原表位分析,单抗筛选,蛋白质功能拮抗多肽或模拟多肽的确定等。 DNA shuffling 将不同品系具有不同突变位点的基因(1~6kb)或同一家族的基因混合,用DNase I酶切构成随机DNA 片段库(Pool)。用此库样品为模板、以小分子引物进行PCR扩增,一些随机模板得到扩增,由于片段间存在同源性,在退火过程中常出现模板转换(switch),从而有可能出现集多种突变点于一个基因上的DNA分子,可从多种多样的重组分子中筛选出有用基因。 卫星RNA(satellite RNA) 类病毒(viroids)和拟病毒(virusoids)中类病毒是有侵染性并能独立作用的RNA分子,没有任何蛋白质外壳。拟病毒在构成上与类病毒类似,但是被植物病毒包装,与一个病毒基因组包被在一起。拟病毒不能独立复制,需要病毒帮助其复制。有时拟病毒又称为卫星RNA(satellite RNA)。 交换固定(crossover fixation) 指某一基因簇中的突变通过不等交换趋向扩展到整个基因簇的现象。结果突变的基因要么被淘汰,要么占据全部原来相同基因的位置。 分子伴侣(chaperone) 一种能诱导靶蛋白质形成特定构象使其正确组装的蛋白质。 空转反应(idling reaction) 当空载tRNA进入A位点时,核糖体产生pppGpp 和ppGpp, 诱发应急型反应。 AARS:(氨酰-tRNA合成酶) 催化氨基酸和tRNA2‘或3’-OH共价连接的酶。根据氨基酸序列,可将AARS分为I、II型两组。I 型:Arg、Gln、Glu、Ile、Leu、Trp、Tyr、Val、Cys-RS,其余为II型。I 型RS含有HIGH签名序列(His-Ile-Gly-His)和KMSKS(Lys-Met-Ser-Lys-Ser)序列,使AA结合在3'A的2'-OH上,可以在2'、3'之间移动。II型RS无签名序列,而有3个保守基序。 RNAi/RNAq(RNA干扰、RNA压制) 转录后基因沉默广泛存在于各种生物中,在植物中被称为转录后基因沉默(PTGS),在动物中被称为RNA 干扰(RNA interference, RNAi),在真菌中则被称为RNA压制(RNA quelling,RNAq)。尽管叫法不同,但都具有相似机制,都启动一种特殊的RNA降解过程。 酸性面条(negative noodle)

分子生物学的研究及发展

分子生物学的应用及发展 摘要:本文在文献检索的基础上,对分子生物学的发展简史,基本原理,研究领域等作了简单介绍,阐述了分子生物学在人们日常生活中的应用并结合药学专业着重讨论了其在药学及中药开发发面的应用,并进一步对分子生物学未来的研究技术、方向和前景做了展望。 一前言 生物以能够复制自己而区别于非生物。生命现象最基本的特征是进行“自我更新”。进行“自我更新”体现了一种最高级和最复杂的运动状态。这种运动就是生物机体从环境中摄取物质和能量,以更新本身的物质组成,而山现生长、繁殖,在这样的过程中保证了将自身的特征传给历代;同时也不断地向环境输送一些物质和释放能量。在生物机体的组成物质中,防水分外,有各种无机盐类和各种有机化合物。其中生物大分子——核酸和蛋白质在进行自我更新运动中,以其功能的重要性占第一位。为探索生命现象的本质问题,产生了分子生物学这一学科[1]。 分子生物学(molecular biology)是从分子水平研究生命本质为目的的一门新兴边缘学科,它是研究核酸、蛋白质等生物大分子的形态、结构特征及其重要性、规律性和相互关系的科学,是当前生命科学中发展最快并正在与其它学科广泛交叉与渗透的重要前沿领域[2]。 分子生物学的最终目标是远大的,从产生基本细胞行为类型的各种分子的角度,来理解这五类行为类型:生长、分裂、分化、运动和相互作用。即分子生物学力图完整地描述细胞大分子的结构、功能和相互联系,从而理解细胞为什么要采取这种方式[3]。 分子生物学作为一门新兴的边缘学科。它的迅速发展及其在整个生命科学领域的广泛渗透和应用,促使人们对生物学等生命科学的认识从细胞水平进入分子水平。在农业、畜牧、林业、微生物学等领域发展十分迅速,如转基因动植物等。在医学领域,为医学诊断、治疗及新的疫苗、新药物研制等开辟了新的途径,使医学科学中原有的学科发生分化组合,医学分子生物学等新的学科分支不断产生,使医学科学发生了深刻的变革,不认识到这一点就很难跟上科学发展的步伐。 分子生物学的发展为人类认识生命现象带来了前所未有的机会,也为人类利用和改造生物创造了极为广阔的前景。 二分子生物学发展简史 分子生物学的发展大致可分为三个阶段[4-7]:

遗传学发展历史及研究进展(综述)

遗传学发展历史及研究进展 湛江师范学院09生本一班徐意媚2009574111 摘要:遗传学是一门探索生命起源和进化历程的学科,起源于人类的育种实践,于1910年进入现代遗传学阶段,并依次经历个体遗传学时期、细胞遗传学时期、数量遗传学和群体遗传学时期、细胞水平向分子水平过渡时期、分子遗传学时期。目前遗传学在医学、农牧业等领域取得重大突破,如表遗传学在肿瘤的治疗方面。21世纪将是遗传学迅猛发展的世纪,在经济、微生物、工业、制造业等许多领域都将有重大的突破。 关键词:遗传学发展历史研究现状发展前景 1 现代遗传学发展前 1.1遗传学起源于育种实践 人类在新石器时代就已经驯养动物和栽培植物,渐渐地人们学会了改良动植物品种的方法。写于公元60年左右的《论农作物》和533~544年间中国学者贾思勰在所著的《齐民要术》中均记载了嫁接技术,后者还特别记载了果树的嫁接,树苗的繁殖,家禽、家畜的阉割等技术。[1] 1.2 18世纪下半叶和19世纪上半叶期间 许多人都无法阐明亲代与子代性状之间的遗传规律,直到18世纪下半叶之后,拉马克和达尔文对生物界遗传和变异进行了系统的研究。拉马克通过长颈鹿的颈、家鸡的翅膀等认为环境条件的改变是生物变异的根本原因,并提出用进废退学说和获得性状遗传学说。达尔文达尔文以博物学家的身份进行了五年的考察工作,广泛研究遗传变异与生物进化关系,终于在1859年发表著作《物种起源》,书中提出自然选择和人工选择的进化学说,认为生物是由简单到复杂、低级再到高级逐渐进化的。除此之外,达尔文承认获得性状遗传的一些论点,并提出了“泛生论”假说,但至今未获得科学的证实。 1.3 新达尔文主义 以魏斯曼(Weismann A.,1834-1914) 为代表的等人支持达尔文选择理论否定获得性遗传,魏斯曼等人提出种质连续论,认为种质是世代连续不绝的。他们还通过对老鼠22代的割尾巴试验,否定后天获得性遗传,明确地区分种质和体质,认为种质可以影响体质,而体质不能影响种质,在理论上为遗传学的发展开辟了道路。[2] 2.现代遗传学的发展阶段

分子遗传学复习题

分子遗传学复习题 名词解释: DNA甲基化(DNA methylation):是指由DNA甲基化转移酶介导,催化甲基基团从S-腺苷甲硫氨酸向胞嘧啶的C-5位点转移的过程。 ENCODE计划(The Encyclopedia of DNA Elements Project):即“DNA元件百科全书计划”,简称ENCODE 计划,是在完成人类基因组全序列测定后的2003年9月由美国国立人类基因组研究所(National Human Genome Research Institute,NHGRI)组织的又一个重大的国际合作计划,其目的是解码基因组的蓝图,鉴定人类基因组中已知的和还不知功能的多个物种的保守序列等在内的所有功能元件。ENCODE计划的实施分为3个阶段:试点阶段( a pilot phase)、技术发展阶段(a technology development phase)和生产阶段(a producttion phase)。 gRNA (guide RNA):既指导”RNA(gRNA,guide RNA),能通过正常的碱基配对途径,或通过G—U配对方式与mRNA上的互补序列配对,指导编辑的进行。 GT--AG规律(GT-AG rule):真核生物所有编码蛋白质的结构基因,其RNA前体在内含子和外显子交界处有两个较短的保守序列,内含子的左端均为GT,右端均为AG,此规律称GT-AG规律。 miRNA:即小RNA,长度为22nt左右,5′端为磷酸基团、3′端为羟基。miRNA广泛存在于真核生物中,不具有开放阅读框架,不编码蛋白质,其基因的转录产物是发夹状结构,在RNaseⅢ酶切后以双链形式存在,是近几年在真核生物中发现的一类具有调控功能的非编码 RNA,它们主要参与基因转录后水平的调控。 RNA编辑(RNA editing) :是指通过碱基修饰、核苷酸插入或删除以及核苷酸替换等方式改变RNA的碱基序列的转录后修饰方式。 RNA诱导的沉默复合体(RNA Induced Silencing Complex,RISC):与siRNA结合后可识别并切断mRNA。 RNA指导的DNA甲基化(RNA Directed DNA Methylation RDDM):活性RISC进入核内,指导基因发生DNA的甲基化。 密码子摆动假说(wobble hypothesis):密码子的第1,2位核苷酸(5’→3’)与反密码子的第2,3核苷酸正常配对;密码子的的第3位与反密码子的第1位配对并不严谨,当反密码子的第1位为U时可识别密码子第3位的A或G,而G则可识别U或C,I(次黄嘌呤)可识别U或C或A。 比较基因组学(comparative genomics):是一门通过运用数理理论和相应计算机程序,对不同物种的基因组进行比较分析来研究基因组大小和基因数量、基因排列顺序、编码序列与非编码序列的长度、数量及特征以及物种进化关系等生物学问题的学科。 表观遗传变异(epigenetic variation):基因的碱基序列未发生改变,而是由于DNA甲基化,组蛋白的乙酰化和RNA编辑等修饰导致基因活性发生了变化,使基因决定的表型发生变化,且可遗传少数世代,但这种变化是可逆的。 超基因家族(supergene family):是DNA序列相似,但功能不一定相关的若干个单拷贝基因或若干组基因家族的总称。 沉默子(silencer):一种转录负调控元件,当其结合特异蛋白因子时,对基因转录起阻遏作用。特点很象增强子,但不增强转录,而是减弱转录,故称负增强子。 代谢组学(metabolomics):是对某一生物或细胞在一特定生理时期内所有低分子量代谢产物同时进行定性和定量分析的一门新学科。 端粒(telomere):是由独特的DNA序列及相关蛋白质组成的线性真核染色体的末端结构,它具有防止末端基因降解、染色体末端间的粘连和稳定染色体末端及其精确复制等功能。 反向遗传学(reverse genetics):是从改变某个感兴趣的基因或蛋白质入手,然后去寻找相关的表型变化。 反转座子(retroposon)或“反转录转座子(retrotransposon)”:先转录为RNA再反转录成DNA 而进行转座的遗传元件。 核酶(ribozyme):具有催化活性的RNA, 即化学本质是核糖核酸(RNA), 却具有酶的催化功能。核酶的作用底物可以是不同的分子, 有些作用底物就是同一RNA分子中的某些部位。 核心启动子(core promoter):是指在体外测定到的由RNA polⅡ进行精确转录起始所要求的最低限度的一套DNA序列元件。 化学基因组学(chemogenomics):它是作为后基因组时代的新技术,是联系基因组和新药研究的桥梁和纽带。它指的是使用对确定的靶标蛋白高度专一的小分子

分子遗传学

第一章
公元前4000年,伊拉克 的古代巴比伦石刻上记 载了马头部性状在5个 世代的遗传。
浙江大学


第一节 遗传学研究的对象 和任务
遗传学第一章
1
浙江大学
遗传学第一章
2
1.遗传学的研究内容: 1.遗传学的研究内容:
(1).是研究生物遗传和变异的科学: 遗传学与生命起源和生物进化有关。 (2).是研究生物体遗传信息和表达规律的科学: 解决问题:物种 代代相传; 性状 遗传。 (3).是研究和了解基因本质的科学: 遗传物质是什么? 遗传物质 性状?
浙江大学 遗传学第一章 3
∴ 遗传学是一门涉及生命起源和生物进化的理论科学, 同时也是一门密切联系生产实际的基础科学,直接指导 医学研究和植物、动物、微生物育种。
浙江大学
遗传学第一章
4
2.遗传和变异的概念: 2.遗传和变异的概念:
(1).遗传(heredity):亲子间的相似现象。 “种瓜得瓜、种豆得豆” (2).变异(variation):个体之间的差异。 “母生九子,九子各别” (3).遗传和变异是一对矛盾。 (4).遗传、变异和选择是生物进化和新品种选育的 三大因素: 遗传 + 变异 + 自然选择 遗传 + 变异 + 人工选择 形成物种 动、植物品种
自然选择
人工选择
(5).遗传和变异的表现与环境不可分割。
浙江大学 遗传学第一章 5 浙江大学 遗传学第一章 6

3.遗传学研究的对象: 3.遗传学研究的对象:
以微生物(细菌、真菌、病毒)、
植物和动物以及人类为对象,研究其 遗传变异规律。
4.遗传学研究的任务: 4.遗传学研究的任务:
(1).阐明:生物遗传和变异现象 (2).探索:遗传和变异原因 (3).指导:动植物和微生物育种 表现规律; 物质基础 内在规律;
提高医学水平。
浙江大学
遗传学第一章
7
浙江大学
遗传学第一章
8
第二节
遗传学的发展
一、现代遗传学发展前
浙江大学
遗传学第一章
9
浙江大学
遗传学第一章
10
1.遗传学起源于育种实践:
人类 生产实践 遗传和变异 选择
2. 18世纪下半叶和19世纪上半叶期间,拉马克和达尔文对
生物界遗传和变异进行了系统的研究: (1).拉马克(Lamarck J. B., 1744~1829): ①.环境条件改变是生物变异的根本原因; ②.用进废退学说和 获得性状遗传学说 如长颈鹿、家鸡翅膀。
育成优良品种。
浙江大学
遗传学第一章
11
浙江大学
遗传学第一章
12

分子生物学前沿技术

分子生物学前沿技术 The Standardization Office was revised on the afternoon of December 13, 2020

激光捕获显微切割Laser capture microdissection (LCM) technology是在不破坏组织结构,保存要捕获的细胞和其周围组织形态完整的前提下,直接从冰冻或石蜡包埋组织切片中获取目标细胞,通常用于从中精确地分离一个单一的细胞。 背景:机体组织包含有上百种不同的细胞,这些细胞各自与周围的细胞、基质、血管、腺体、炎症细胞或相互粘附。在正常或发育中的组织器官内,细胞内信号、相邻细胞的信号以及体液刺激作用于特定的细胞,使这些细胞表达不同的基因并且发生复杂的分子变化。在状态下,如果同一类型的细胞发生了相同的分子改变,则这种分子改变对于疾病的发生可能起着关键性的作用。然而,发生相同分子改变的细胞可能只占组织总体积的很小一部分;同时,研究的目标细胞往往被其它组织成分所环绕。为了对疾病发生过程中的组织损害进行分子水平分析,分离出纯净的目标细胞就显得非常必要。1996年,美国国立卫生院(NIH)国家肿瘤研究所的[2]开发出激光捕获显微切割技术(Laser capture microdissection , LCM ),次年,美国Arcturus Engineering公司成功研制激光捕获显微切割系统,并实现商品化销售。应用该技术可以在显微镜直视下快速、准确获取所需的单一细胞亚群,甚至单个细胞,从而成功解决了组织中细胞异质性问题。这项技术现已成为美国“肿瘤基因组解剖计划”的一项支撑技术[1]。 原理:LCM的基本原理是通过一低能脉冲激活热塑膜———乙烯乙酸乙烯酯(ethylene vinylacetate,EVA)膜(其最大吸收峰接近

分子遗传学要点整理

Chapter 1: Genomes, Transcriptomes and Proteomes 1. 概述 基因组(Genome):指生物的整套染色体所含有的全部DNA或RNA 序列。基因组是地球上每一物种具有的生物学信息的存储库。 基因组学(Genomics):指研究生物的整个基因组,涉及基因组作图、测序和功能分析的一门学科。 基因组所包含的生物信息的利用需要酶及其他参与基因组表达过程中一系列复杂生化反应的蛋白质的协同活性。 基因组表达的最初产物是转录组,即那些含有细胞在特定时间所需生物信息、编码蛋白质的基因衍生而来的RNA分子的集合。转录组由转录过程来维持。 基因组表达的第二个产物是蛋白质组,即细胞中那些决定细胞能够进行生化反应的所有蛋白质组分。这是通过翻译过程来完成的。 2.1 Genes are made of DNA 奥地利神父孟德尔1865年根据7个碗豆性状的实验提出了遗传因子假说,认为每个性状由遗传因子控制,并提出了遗传因子的分离与自由组合两大遗传规律。 证明基因由核酸 (DNA或RNA) 组成的3个著名实验: ①肺炎双球菌的转化试验;DNA是遗传物质 ②噬菌体感染实验;只有DNA是联系亲代和子代的物质 ③烟草花叶病毒的感染实验。RNA也是遗传物质 2.2 The structure of DNA A. Nucleotides and polynucleotides B. The model of double helix DNA 晶体X射线衍射图谱?为揭示DNA分子的二级结构提供了重要实验证据 a. Watson and Crick (1953) 提出的 DNA双螺旋结构模型: "?DNA分子通常以右手双螺旋形式存在,两条核苷酸链反向平行,且互为互补链。 "?戊糖-磷酸骨架在分子的外铡,在分子表面形成大沟和小沟,碱基堆积于螺旋内部。 "?碱基间通过氢键相互连接,A 和T 以2个氢键配对, G和C 以3个氢键配对。"?螺旋中相邻碱基间相隔0.34nm ,每10个碱基对螺旋上升一圈,螺距为 3.4nm ,直径为2.37 nm 。 b. DNA双螺旋结构的稳定力: ??碱基间形成的氢键/ ??相邻碱基间的疏水堆积力/ ??碱基相互作用的范德华力 尽管氢键使得双链中的碱基间的配对具有特异性(只有互补的两条链之间才能形成DNA双链),但其对于双螺旋的总体上的稳定性并无太大贡献。 核酸分子的稳定性的根源在于碱基对之间的疏水堆积力。作为芳香族化合物,

分子遗传学复习题及答案-

分子遗传学复习题 1.名词解释: DNA甲基化(DNA methylation):是指由DNA甲基化转移酶介导,催化甲基基团从S-腺苷甲硫氨酸向胞嘧啶的C-5位点转移的过程。 ENCODE计划(The Encyclopedia of DNA Elements Project):即“DNA元件百科全书计划”,简称ENCODE计划,是在完成人类基因组全序列测定后的2003年9月由美国国立人类基因组研究所(National Human Genome Research Institute,NHGRI)组织的又一个重大的国际合作计划,其目的是解码基因组的蓝图,鉴定人类基因组中已知的和还不知功能的多个物种的保守序列等在内的所有功能元件。ENCODE计划的实施分为3个阶段:试点阶段(a pilot phase)、技术发展阶段(a technology development phase)和生产阶段(a producttion phase)。 gRNA (guide RNA):既指导”RNA(gRNA,guide RNA),能通过正常的碱基配对途径,或通过G—U配对方式与mRNA上的互补序列配对,指导编辑的进行。 GT--AG规律(GT-AG rule):真核生物所有编码蛋白质的结构基因,其RNA前体在内含子和外显子交界处有两个较短的保守序列,内含子的左端均为GT,右端均为AG,此规律称GT-AG规律。 miRNA:即小RNA,长度为22nt左右,5′端为磷酸基团、3′端为羟基。miRNA广泛存在于真核生物中,不具有开放阅读框架,不编码蛋白质,其基因的转录产物是发夹状结构,在RNaseⅢ酶切后以双链形式存在,是近几年在真核生物中发现的一类具有调控功能的非编码RNA,它们主要参与基因转录后水平的调控。 RNA编辑(RNA editing) :是指通过碱基修饰、核苷酸插入或删除以及核苷酸替换等方式改变RNA的碱基序列的转录后修饰方式。 RNA诱导的沉默复合体(RNA Induced Silencing Complex,RISC):与siRNA结合后可识别并切断mRNA。 RNA指导的DNA甲基化(RNA Directed DNA Methylation RDDM):活性RISC进入核内,指导基因发生DNA的甲基化。 密码子摆动假说(wobble hypothesis):密码子的第1,2位核苷酸(5’→3’)与反密码子的第2,3核苷酸正常配对;密码子的的第3位与反密码子的第1位配对并不严谨,当反密码子的第1位为U时可识别密码子第3位的A或G,而G则可识别U或C,I(次黄嘌呤)可识别U或C或A。 比较基因组学(comparative genomics):是一门通过运用数理理论和相应计算机程序,对不同物种的基因组进行比较分析来研究基因组大小和基因数量、基因排列顺序、编码序列与非编码序列的长度、数量及特征以及物种进化关系等生物学问题的学科。 表观遗传变异(epigenetic variation):基因的碱基序列未发生改变,而是由于DNA甲基化,组蛋白的乙酰化和RNA编辑等修饰导致基因活性发生了变化,使基因决定的表型发生变化,且可遗传少数世代,但这种变化是可逆的。 超基因家族(supergene family):是DNA序列相似,但功能不一定相关的若干个单拷贝基因或若干组基因家族的总称。 沉默子(silencer):一种转录负调控元件,当其结合特异蛋白因子时,对基因转录起阻遏作用。特点很象增强子,但不增强转录,而是减弱转录,故称负增强子。 代谢组学(metabolomics):是对某一生物或细胞在一特定生理时期内所有低分子量代谢产物同时进行定性和定量分析的一门新学科。 端粒(telomere):是由独特的DNA序列及相关蛋白质组成的线性真核染色体的末端结构,它具有防止末端基因降解、染色体末端间的粘连和稳定染色体末端及其精确复制等功能。

第十五期分子生物学常用技术与研究进展学习班

第十五期分子生物学常用技术与研究进展学习班 分子生物学实验技术是当今生命科学领域应用最广泛和最重要的手段之一,为推广分子生物学实验技术,满足临床医技人员、教学科研人员、在读研究生及其它有需要人员的要求,北京市理化分析测试中心已举办了十四期“分子生物学常用技术与研究进展学习班”,并得到了全体学员的一致好评。应广大学员的强烈要求,理化中心将于2016年11月19日至11月22日在北京开办本年度唯一一期分子生物学常用技术学习班,欢迎各位学员前来参加。本期学习班包括理论讲座与实验操作两部分内容,力求使每位学员在4天时间内都能学有所值、学有所用。 一、培训单位: 主办单位:北京市理化分析测试中心 协办单位:华斯泰生物医学科技有限公司 二、培训日程:

三、培训安排 时间:2016年11月19日-22日 地点:北京市海淀区永丰产业基地丰贤中路7号孵化楼B座四层 报到:北京康复瑞假日酒店西山店2016年11月18日14:00-18:00

四、住宿安排 1、交通、住宿、午餐及晚餐费用自理。如需会务组预定午餐,请各位学员在回执表内注明(午餐均为快餐,发票均为手撕发票)。 2、酒店预订:会务组协助提供协议酒店,但培训人员需自行预定,预定时请说明“百欧美生公司预定”即可享受协议价。 协议酒店:北京康福瑞假日酒店西山店(北京市海淀区北青路与永丰路交叉口往南800米路东),房间优惠价:单人间298元/天/间,双人标准间380元/天/间,均含早餐,电话:。 五、注册方式 1、报名时间 报名从即日起至2016年11月14日截止。为了保证教学质量,本次培训班限额40人,招满为止。 2、注册费 共计3200元/人,同一单位两人以上参会优惠至3000元/人。 3、缴费方式(电子汇款) 账户名称:北京市理化分析测试中心 账户号: 开户行:工商行紫竹院支行 汇款用途处务必请标明:学员姓名+分子培训班 4、联系人 姓名:马老师联系电话: E-mail:网站: 报名者请填写以下回执,并于2016年11月14日前E-mail至联系人邮箱。如有其它需要,请在备注中说明。

分子遗传学综述

分子遗传学综述 【摘要】:分子遗传学是在分子水平上研究生物遗传和变异机制的遗传学分支学科。经典遗传学的研究课题主要是基因在亲代和子代之间的传递问题;分子遗传学则主要研究基因的本质、基因的功能以及基因的变化等问题。 关键词:医学分子遗传学发展内容研究方法 分子遗传学是遗传学中的一门新兴分支学科。分子生物学的重要组成部分。广义地说,分子遗传学是研究分子水平描述的遗传体系或其组分的情形。狭义地说,它是研究遗传机理的分子基础以及受遗传物质控制的代谢过程。从分子水平研究遗传和变异的物质基础,是在遗传物质脱氧核糖核酸(DNA)的分子结构确认后迅速发展起来的。20世纪以来,随着对大分子化合物的研究不断取得突破,特别是脱氧核糖核酸分子双螺旋结构模型的建立,人们能够从主要生命物质结构的分予层次上得以合理地解释基因复制的机理、信息传递的途径、阐明生物遗传变异的运动形态,从而使整个遗传学的研究由形态描述、逻辑推理为主,转变为以物质结构与功能相统一为分析着眼点的新的发展阶段。分子遗传学的目的在于阐明脱氧核糖核酸的复制机理,脱氧核糖核酸、核糖核酸与蛋白质之间的关系,基因的本质、表达、传递及其调节机制,基因突变的分子基础,核外遗传的分子机制,以及细胞核质之间的关系等等.可从分子层次为探索生物发育、分化和进化等重大问题提供新的理论说明和实验手段.分子遗传学是遗传学发展的一个重要方向,遗传工程是分子遗传学的应用。

一、发展简史 1944年,美国学者埃弗里等首先在肺炎双球菌中证实了转化因子是脱氧核糖核酸(DNA),从而阐明了遗传的物质基础。1953年,美国分子遗传学家沃森和英国分子生物学家克里克提出了DNA分子结构的双螺旋模型,这一发现常被认为是分子遗传学的真正开端。1955年,美国分子生物学家本泽用基因重组分析方法,研究大肠杆菌的T4噬菌体中的基因精细结构,其剖析重组的精细程度达到DNA 多核苷酸链上相隔仅三个核苷酸的水平。这一工作在概念上沟通了分子遗传学和经典遗传学。 关于基因突变方面,早在1927年马勒和1928年斯塔德勒就用X射线等诱发了果蝇和玉米的基因突变,但是在此后一段时间中对基因突变机制的研究进展很慢,直到以微生物为材料广泛开展突变机制研究和提出DNA分子双螺旋模型以后才取得显著成果。例如碱基置换理论便是在T4噬菌体的诱变研究中提出的,它的根据便是DNA复制中的碱基配对原理。 美国遗传学家比德尔和美国生物化学家塔特姆根据对粗糙脉孢菌的营养缺陷型的研究,在40年代初提出了一个基因一种酶假设,它沟通了遗传学中对基因的功能的研究和生物化学中对蛋白质生物合成的研究。 按照一个基因一种酶假设,蛋白质生物合成的中心问题是蛋白质分子中氨基酸排列顺序的信息究竟以什么形式储存在DNA分子结构中,这些信息又通过什么过程从DNA向蛋白质分子转移.前一问题是

分子遗传学重点讲义资料

1.分子遗传学:是研究遗传信息大分子的结构和功能的科学。它依据物理、化学的原理来解 释生命遗传现象,并在分子水平上研究遗传机制及遗传物质对代谢过程的调控。 2. 分子遗传学研究对象:从基因到表型的一切细胞内与遗变异有关的分子事件。不仅仅包括中心法则中从DNA到蛋白质的过程。 分子遗传学研究内容:遗传信息大分子在生命系统中的储存、复制、表达及调控过程。 分子遗传学研究目标:明确遗传信息大分子对生物表型形成的作用机制。 第二章基因 1.从遗传学史的角度看,基因概念大致分以下几个阶段: 泛基因(或前基因)→孟德尔(遗传因子) →摩尔根(基因):基因是功能单位(决定性状),基因是突变单位(基因是突变的最小结构),交换单位(交换的最小结构)三位一体的组合。 →顺反子:在一个等位基因内部发生两个以上位点的突变,如两个突变位点位于同一染色体上,为顺式结构,生物个体表现为野生型;突变位点分别位于两个同源染色体上,为反式结构,生物个体表现为突变型。即其顺式和反式结构的表型效应是不同的。一个具有顺反效应的DNA片段就是一个顺反子,代表一个基因。(或者具有顺反效应的DNA片段就是一个基因) (基因内部这些不同位点之间还可以发生交换和重组:一个基因不是一个突变单位,也不是一个重组单位) →操纵子:基因是一个转录单位,是一个以不同来源的外显子为构件的嵌合体,处于沉默的DNA介质(内含子)中 →现代基因 2.鉴定基因的5个标准 1)基因具有开放性阅读框ORF。 2)基因往往具有一定的序列特征。 3)基因序列具有一定的保守特性。 4)基因能够进行转录。 5)通过基因失活产生的功能改变鉴定基因。(能排除假基因的干扰) 3.蛋白质基因:能够自我复制的蛋白质病毒因子。 朊病毒:一类不含核酸而仅由蛋白质构成的可自我复制并具有感染性的因子。 4.基因组印记(genomic imprinting):由于一些可遗传的修饰作用(如DNA、组蛋白甲基化作用)控制着亲本中某个单一的等位印记基因活性,从而导致个体在发育上的功能差异,使个体具有不同的性状特征。 5.印记基因(imprinted gene):表达特性取决于它们是在父源染色体上还是在母源染色体上的等位基因。 6.组蛋白上的共价键修饰:包括甲基化、乙酰化、磷酸化等在组蛋白上以组合形式。这些修饰的组合能改变染色质的结构,进而影响基因的表达。属于一种表观遗传学现象(epigenetics )。 7.组蛋白密码含义: 1)组蛋白末端不同的修饰作用将诱导与染色质相连蛋白之间的相互亲和力。 2)一个核小体中同一末端的修饰可能是相互依赖的,产生不同组合。 3)染色质高级结构的不同性质极大地依赖于具有不同修饰的核小体共价修饰的局部浓度和

分子遗传学技术新进展

分子遗传学技术新进展 摘要:分子遗传学是研究遗传信息大分子的结构与功能的科学,它的研究范畴是在中心法则基础上的进一步深入,研究对象是分子水平上的生物学过程,即遗传变异的过程。近年来,分子遗传学技术发展极为迅速,并对其他生物学领域产生了巨大的影响。通过简要综述基因重组技术以及人类基因组计划来阐述分子遗传学技术的新进展。 关键词:分子遗传学;DNA; 基因重组技术;人类基因组计划 引言 分子遗传学是研究遗传信息大分子的结构与功能的科学[1],它不同于一般的遗传学,传统的遗传学主要研究遗传单元在各世代的分布情况[2],而分子遗传学则着重研究遗传信息大分子在生命系统中的储存、复制、表达及调控过程。它的研究范畴是在中心法则基础上的进一步深入,由肽链到功能蛋白质,再由功能蛋白质到性状的研究,分子遗传学不等于中心法则的演绎,也不是核酸及其衍生物的生物化学,它的研究对象是分子水平上的生物学过程,即遗传变异的过程[1],它研究的是动态的生命过程,而不是在试管里或电泳仪上孤立地研究生物大分子的结构与功能的简单的因果关系。近年来,分子遗传学技术发展极为迅速,并对其他生物学领域产生了巨大的影响。21世纪,DNA测序方法建立,核酶的发现,PCR技术建立等等都是分子遗传学的最新进展。基因重组技术发展、基因治疗技术发展,人类基因组计划实施都标志着分子遗传学进入了一个崭新的阶段。本文将通过对分子遗传学发展史,分子遗传学主要研究内容,分子遗传学最新研究进展做一个简要综述,简明的阐述一下分子遗传学技术的新进展。 1 分子遗传学发展史 分子生物学的崛起的标志是分子遗传学的产生,同时分子遗传学又是微生物学、遗传学、化学、物理等学科相互交叉、相互渗透的产物,所以要研究分子遗传学的发展史,错综复杂。 1944年,美国学者埃弗里等首先在肺炎双球菌实验中证实转化因子为脱氧核糖核酸DNA,从而阐明遗传的物质基础[3]。1953年,美国分子遗传学家沃森和英国分子生物学家克里克提出DNA分子结构的双螺旋模型,这一发现基本被认为是分子遗传学的真正开端[4]。

分子遗传学考试资料

RNA 的3种剪接方式 内含子从mRNA前体中移走的过程称为RNA剪接。 RNA 的3种剪接方式分别是: 自我剪接内含子(Ⅰ型和Ⅱ型):能够自发地进行剪接,分为Ⅰ型内含子和Ⅱ型内含子两个亚类。Ⅰ型内含子:四膜虫35S rRNA前体的剪接反应是Ⅰ型的典型代表,特点是需要鸟苷 参与;Ⅱ型内含子:不需要鸟苷参与,而由其自身结构决定,特点是形成套索内含子。 蛋白质(酶)参与剪接的内含子(tRNA):主要在tRNA前体中发现。tRNA前体在内切酶作 用下,把发夹形的内含子切除,然后在连接酶的作用下,连接形成成熟的tRNA。 糖核蛋白体(snRNP)参与剪接的内含子:存在于绝大多数真核细胞的蛋白质基因中。在 真核生物的细胞核中,含有大量的小分子RNA,在天然状态下,以核糖核蛋白粒子形式存在,称为snRNP。参与剪接反应的snRNP至少有5种:U1、U2、U5和U4/U6。 U1结合于内含子的5’端; U2结合到内含子的分支点上; U5结合到内含子的3’端,U4/U6结合于U5; U1和U2结合,形成套索RNA结构; U4释放,内含子左侧切断,5’外显子作为独立片段释放; 内含子的3’剪接点切断,形成套索内含子,游离出来; 5’外显子和3’外显子连接形成成熟mRNA。 RNA编辑 一种依赖于特异编辑酶对基因编码的mRNA进行重新修饰的过程,包括对核苷酸进行添加、删除或修饰,从而可能改变了开放阅读框,产生了新的终止密码子或起始密码子,翻译出 氨基酸序列不同的多种蛋白质。 分为两类:一是单碱基的突变;二是碱基的缺失和添加。如U插入/删除;C→U替换;A →I替换;C插入;G插入。 机制: RNA编辑是由3’-5’方向进行,gRNA-Ⅰ的5’端与前体mRNA的未编辑的mRNA的一小段 锚定序列互补,形成短的(10-15bp)锚定双螺旋;

分子生物学主要研究内容

分子生物学主要研究内容 1. 核酸的分子生物学。 核酸的分子生物学研究 核酸的结构及其功能。由于 核酸的主要作用是携带和传 递遗传信息,因此分子遗传 学是其主要组成部分。由于 50年代以来的迅速发展,该 领域已形成了比较完整的理 论体系和研究技术,是目前分子生物学内容最丰富的一个领域。研究内容包括核酸/基因组的结构、遗传信息的复制、转录与翻译,核酸存储的信息修复与突变,基因表达调控和基因工程技术的发展和应用等。遗传信息传递的中心法则是其理论体系的核心。 2. 蛋白质的分子生物学。 蛋白质的分子生物学研究执行各种生命功能的主要大分子──蛋白质的结构与功能。尽管人类对蛋白质的研究比对核酸研究的历史要长得多,但由于其研究难度较大,与核酸分子生物学相比发展较慢。近年来虽然在认识蛋白质的结构及其与功能关系方面取得了一些进展,但是对其基本规律的认识尚缺乏突破性的进展。 3.细胞信号转导的分子生物学。 细胞信号转导的分子生物学研究细胞内、细胞间信息传递的分子基础。构成生物体的每一个细胞的分裂与分化及其它各种功能的完成均依赖于外界环境所赋予的各种指示信号。在这些外源信号的刺激下,细胞可以将这些信号转变为一系列的生物化学变化,例如蛋白质构象的转变、蛋白质分子的磷酸化以及蛋白与蛋白相互作用的变化等,从而使其增殖、分化及分泌状态等发生改变以适应内外环境的需要。信号转导研究的目标是阐明这些变化的分子机理,明确每一种信号转导与传递的途径及参与该途径的所有分子的作用和调节方式以及认识各种途径间的网络控制系统。信号转导机理的研究在理论和技术方面与上述核酸及蛋白质分子有着紧密的联系,是当前分子生物学发展最迅速的领域之一。 4.癌基因与抑癌基因、肽类生长因子、细胞周期及其调控的分子机理等。 从基因调控的角度研究细胞癌变也已经取得不少进展。分子生物学将为人类最终征服癌症做出重要的贡献。

遗传学各种技术总结

1、限制性片段长度多态性聚合酶链式反应(PCR-RFLP技术) CAPs(cleaved amplification polymorphism sequence-tagged sites)技术又称为限制性片段长度多态性聚合酶链反应(PCR-RFLP)技术。是用特异设计的PCR引物扩增目标材料时,由于特定位点的碱基突变、插入或缺失数很少,以至无多态出现,往往需要对相应PCR扩增片段进行酶切处理,以检测其多态性。CAPs标记在二倍体植物研究中可发挥巨大的作用,是PCR标记的有力补充。但在多倍体植物中的应用有一定的局限性。另外,CAPs标记需使用内切酶,这又增加了研究成本,限制了该技术的广泛应用。 原理:PCR-RFLP的基本原理是用PCR扩增目的DNA,扩增产物再用特异性内切酶消化切割成不同大小片段,直接在凝胶电泳上分辨。不同等位基因的限制性酶切位点分布不同,产生不同长度的DNA片段条带。此项技术大大提高了目的DNA的含量和相对特异性,而且方法简便,分型时间短。 基本流程:根据基因名称查询序列,设计引物;提取基因组DNA;PCR扩增;产物酶切,凝胶电泳。 2、TGF-β超家族 转化生长因子β(transforming growth factor)家族由一类结构、功能相关的多肽生长因子亚家族组成,其中包括TGF-β、活化素(activin)、骨形态发生蛋白(BMP)、生长分化因子( GDF)等。TGF-β除了影响细胞的增殖、分化,还在胚胎发育、胞外基质形成、骨的形成和重建等方面起着重要作用。TGF-β家族成员广泛存在于从果蝇到人多种生物的各种组织中,对正常细胞、癌变细胞都有着显著作用。 TGF-β超基因家族成员共同的特征: (1) N - 端有1段信号肽序列, 可借以跨过内质网; (2) 紧挨着生物活性区有由4个氨基酸(RSRR) 组成的蛋白酶加工位点; (3) C - 末端包含9个保守的半胱氨酸的生物活性区, 靠分子间的二硫键形成二聚体。3、聚合酶链式反应-单链构象多态(PCR-SSCP技术) 日本Orita等研究发现,单链DNA片段呈复杂的空间折叠构象,这种立体结构主要是由其内部碱基配对等分子内相互作用力来维持的,当有一个碱基发生改变时,会或多或少地影响其空间构象,使构象发生改变,空间构象有差异的单链DNA分子在聚丙烯酰胺凝胶中受排阻大小不同.因此,通过非变性聚丙烯酰胺凝胶电泳(PAGE),可以非常敏锐地将构象上有差异的分子分离开。作者称该方法为单链构象多态性(Single-Strand Conformation PolymorPhism,SSCP)分析。在随后的研究中,作者又将SSCP用于检查PCR扩增产物的基因突变,从而建立了PCR-SSCP技术,进一步提高了检测突变方法的简便性和灵敏性。 其基本过程是: ①PCR扩增靶DNA; ②将特异的PCR扩增产物变性,而后快速复性,使之成为具有一定空间结构的单链DNA分子; ③将适量的单链DNA进行非变性聚丙烯酰胺凝胶电泳;

分子遗传学要点总结

第一章 1.理解Genomes, Transcriptomes 和Proteomes三个名词,并阐明它们在基因组表达过程中是如何联系在一起的; Genomes:基因组(Genome):由德国汉堡大学威克勒教授于1920年首创,指生物的整套染色体所含有的全部DNA或RNA序列。基因组是地球上每一物种具有的生物学信息的存储库。 基因组学(Genomics):由罗德里克于1986年首创,指研究生物的整个基因组,涉及基因组作图、测序和功能分析的一门学科。 Transcriptomes:基因组表达的最初产物是转录组,即那些含有细胞在特定时间所需生物信息、编码蛋白质的基因衍生而来的RNA分子的集合。 ?转录组中的RNA分子以及其他来自非编码基因的RNA都由转录过程产生。 ?Proteomes:基因组表达的第二个产物是蛋白质组,即细胞中那些决定细胞能够进行生化反应的所有蛋白质组分。 ?这些蛋白质是通过翻译那些组成转录组的mRNA分子而合成的。 ?蛋白质组包括了在特定时间存在于细胞中的所有蛋白质。 阐明三者在基因组表达过程中是如何联系在一起的? ?基因组所包含的生物信息的利用需要酶及其他参与基因组表达过程中一系列复杂生化反应的蛋白质的协同活性。 ?基因组表达的最初产物是转录组,即那些含有细胞在特定时间所需生物信息、编码蛋白质的基因衍生而来的RNA分子的集合。转录组由转录过程来维持。 ?基因组表达的第二个产物是蛋白质组,即细胞中那些决定细胞能够进行生化反应的所有蛋白质组分。这是通过翻译过程来完成的。 ?The genome tells you what could be happened theoretically in the cell. ?Transcriptome tells you what might be happened. ?And the proteome tells you what is happening. 2.掌握双螺旋结构的关键特征; Watson and Crick (1953) 提出的DNA双螺旋结构模型: DNA分子通常以右手双螺旋形式存在,两条核苷酸链反向平行,且互为互补链; 戊糖-磷酸骨架在分子的外铡,在分子表面形成大沟和小沟,碱基堆积于螺旋内部; 碱基间通过氢键相互连接,A和T以2个氢键配对,G和C以3个氢键配对; 螺旋中相邻碱基间相隔0.34nm,每10个碱基对螺旋上升一圈,螺距为3.4nm,直径为2.37 nm。 3.正确区分编码RNA和功能性RNA;

相关文档
最新文档