Al含量对Zr基块体非晶合金力学性能的影响
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第38卷第6期稀有金属2014年11月
Al含量对Zr基块体非晶合金力学性能的影响
李春燕1,2,寇生中1,2,赵燕春1,2,袁小鹏1,袁子洲1,2
(1. 兰州理工大学材料科学与工程学院甘肃兰州730050;2. 兰州理工大学省部共建有色金属先进加工与再利用国家重点实验室,甘肃兰州730050)
摘要:用铜模吸铸法制备了(Zr64.8/90Cu14.85/90Ni10.35/90)90+x Al10-x(x=-4,-3,-2,0,2,4,6)块体合金,利用X射线衍射仪(XRD)、万能试验机、显微硬度计和扫描电镜(SEM)研究了Al含量改变对Zr基块体非晶合金力学性能的影响。
结果表明:随着Al 含量的减小,合金先是从非晶相为主的非晶/晶体复合材料转变为完全非晶材料,接着转变为以晶体相为主的非晶/晶体复合材料,最后转变为完全晶体材料。
表明通过调整Al的含量,可以制备出具有完全非晶结构的Zr基块体非晶合金。
当x=-2时,即合金成分为Zr63.36Cu14.52Ni10.12Al12时,合金为完全非晶结构,该合金的室温压缩塑性应变达到20.6%,应力-应变曲线体现出了“加工硬化”特性,屈服强度(σs)、极限强度(σm)和断裂强度(σf)分别为1740.6,2030.7和1510.5MPa。
表明通过调整Al的含量,可以制备出具有优良室温压缩塑性的Zr基块体非晶合金。
随着Al含量的减小,合金试样的显微硬度的总体趋势为先增大再减小。
当x=2时,合金为非晶/晶体复合材料,该合金具有较高的显微硬度HV719.8。
关键词:SPE纯水电解;微孔层;扩散层;气液传输
中图分类号:TK91 文献标识码:A 文章编号:1000–4343 (2012)–0283–05
Mechanical Properties of Zr-based Bulk Metallic Glasses with Different Al Contents
Li Chunyan1,2, Kou Shengzhong1,2, Zhao Y anchun1,2,Yuan Xiaopeng1, Yuan Zizhou1,2
(1.College of Material Science and Technology, Lanzhou University of Technology, Lanzhou 730050, China; 2. State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technol-ogy, Lanzhou 730050, China)
Abstract:(Zr64.8/90Cu14.85/90Ni10.35/90)90+x Al10-x bulk alloys with x=-4, -3, -2, 0, 2, 4 and 6 were prepared with copper mold casting method. The effects of Al contents on mechanical properties of Zr-based bulk metallic glasses were studied by X-ray diffrac-tion(XRD), universal testing machine, microhardness tester and scanning electron microscope(SEM). The results showed that with the decrease of the content of Al element, the structure of alloys changed from amorphous/crystal composite materials with mainly amor-phous phase into completely amorphous materials, and then into amorphous/crystal materials with mainly crystalline phase, and finally into fully crystalline materials. It meant that Zr-based bulk metallic glasses with completely amorphous structure could be fabricated by adjusting Al content. The structure of the alloy was completely amorphous when x=-2, with alloy composition of Zr63.36Cu14.52Ni10.12Al12, and the compressive plastic strain (εp) of the alloy was up to 20.6%. The yield strength (σs), maximum strength (σm) and facture strength (σf) were 1740.6, 2030.7 and 1510.5MPa, respectively, and the “work-hardening” characteristic cou ld be seen from the stress-strain curve. It demonstated that Zr-based bulk metallic glasses with excellent compressive plasticity and high compressive strength could be fabricated by adjusting Al content. With the decrease of the Al content, the microhardness of alloy samples
收稿日期:2013-12-25;修订日期:2014-06-12
基金项目:国家自然科学基金项目(50961008,51061008);国家科技部重点基础研究发展计划(2011CB612203);甘肃省科技计划(145RJZA090);甘肃省青年科技基金计划(1107RJYA275);甘肃省有色金属新材料省部共建国家重点实验室开放基金(SKL12008) 资助
作者简介:李春燕(1979-),女,甘肃白银人,博士,副教授;研究方向:非晶合金、复合材料,电话:0xxx-xxxxxxx,E-mail: ltegdz@
first increased and then decreased. When x=2, the structure of the alloy was amorphous/crystal composite material, and the hardness reached HV719.8, which indicated that higher microhardness was obtained in the alloy.
Key words:Zr-based bulk metallic glasses; mechanical properties; plastic strain; work-hardening; microhardness
固体聚合物电解质(Solid Polymer Electrolyte,简称SPE)纯水电解技术具有效率高、气体纯度高、安全可靠寿命长等优点[1-2]。
被公认为制氢领域重点发展、甚至首选的方法。
催化剂电催化活性与气液传输能力是影响SPE纯水电解池性能的主要因素,此前有大量集中于高活性催化剂的研究报道,实现了较高的电解性能[3-6]。
文献[7,8]研究了具有梯度扩散层燃料电池的排水……
1 实验
1.1 膜电极制备
1.1.1 构建有微孔层阳极转移膜的制备
阳极催化剂采用Adams法制备的IrO2,微孔层材料为TiC。
(1)微孔层浆料配制:将TiC、造孔剂(草酸铵)、PTFE按一定比例同分散剂异丙醇混合,冰浴超声数百次左右而形成浆料;(2)阳极浆……
1.1.2 阴极转移膜的制备
……
1.2 单池组装
……
1.3 单池测试
……
2 结果与讨论
如图1在温度80℃,常压的工作条件下,不同膜电极CCM-1与CCM-2的性能对比图。
……
3 结论
通过控制PTFE量、喷涂温度、造孔剂草酸铵量构建了疏水性、孔结构梯度变化的催化层-微孔层-扩散层立体化气液传输通道……
参考文献:[1] Singh Akanksha, Singh B K, Davidson D J, Srivastava O N. A patent for
generation of electrolytic hydrogen by a cost effective and cheaper route [J].Hydrogen Energy, 2004, 29(11):1191.
[2] Ni Meng, Leung Michael K H, Leung Dennis Y C. Energy and exergy
analysis of hydrogen production by a proton exchange membrane (PEM) electrolyzer plant [J].Energy Conversion and Management, 2008, 49(10) :2748.
[3] Stéphane Fierro, Agnieszka Kapałka, Christos Comninellis. Electrochem-
ical comparison between IrO2 prepared by thermal treatment of iridium metal and IrO2 prepared by thermal decomposition of H2IrCl6 solution [J].Electrochemistry Communications, 2010, 12(1): 172.
[4] Wang Jiantao. Biological hydrogen production and hydrogen generation
[J]. Energy Conservation Tecnology,2010,28(159):57.
[5] Berenguer R, Quijada C, Morallón E. Electrochemical characterization of
SnO2electrodes doped with Ru and Pt [J].Electrochimica Acta, 2009, 54(14):5230-5238.
[6] Marshall Aaron T, Haverkamp Richard G. Electrocatalytic activity of
IrO2-RuO2supported on Sb-doped SnO2nanoparticles [J].
Electrochimica Acta, 2010, 55(6): 1978-1984.
[7] Mathias M, Roth J, Fleming J, Lehnert W. Diffusion media materials and
characterisation. Handbook of Fuel Cells-Fundamentals, Technology and Applications[M]. New York: John Wiley and Sons, Ltd; 2003.Capter 46,4.
[8] Sylvie Escribano, Jean-François Blachot, Jérémy Ethève, Arnaud Morin,
Renaut Mosdale. Characterization of PEMFCs gas diffusion layers properties [J]. Power Sources, 2006, 156(1):8.
[9] Ismail M S, Damjanovic T, Ingham D B, Pourkashanian M, Westwood A.
Effect of polytetrafluoroethylene-treatment and microporous lay-er-coating on the electrical conductivity of gas diffusion layers used in proton exchange membrane fuel cells [J].Power Sources 2010, 195(9):2700.
………………………………。