金刚石刀具的磨损机理

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

金刚石刀具的磨损机理
摘要:分析和探讨了金刚石刀具的磨损形态和磨损机理,提出了金刚石刀具在制造与使用时应注意的若干问题。

关键词:金刚石刀具、PCD刀具、磨损
Wear mechanism of diamond tools
Luan Yujian
Sichuan University College of manufacturing science and Engineering
Student Number:1143021172
Abstract: the analysis and discussion of the diamond tool wear form and wear mechanism, and puts forward some problems that should be paid attention to in diamond tool manufacture and use of.
Key Words:Diamond tool、PCD tool、wear
引言:由于金刚石材料的高硬度和各向同性使其磨损非常缓慢。

是一种理想的刀具材料。

为了充分发挥PCD刀具的切削性能,世界各国先后投入大量人力物力对PCD刀具进行研究。

1、金刚石刀具的磨损形态
金刚石刀具的磨损形态常见于前刀面磨损、后刀面磨损和刃口崩裂。

1、金刚石刀具的磨损机理
金刚石刀具的磨损机理比较复杂,可分为宏观磨损与微观磨损。

前者以机械磨损为主,后者以热化学磨损为主。

宏观磨损的基本规律如图,早期磨损迅速,正常磨损十分缓慢。

通过高倍显微镜观察,刃口质量越差及锯齿度越大,早期磨损就越明显。

这是因为金刚石刀刃圆弧采用机械方法研磨时,实际得到的是不规则折线如图,在切削力作用下,单位折线上压力迅速增大,导致刀刃磨损加快。

另一个原因是,当金刚石刀具的刃磨压力过大或刃磨速度过高,及温度超过某一临界值时,金刚石刀具表面就会发生氧化与石墨化,使金刚石刀具表面的硬度降低,形成硬度软化层。

在切削力作用下,软化层迅速磨损。

由此可见,金刚石刀具刃磨质量的高低会严重影响它的使用寿命与尺寸精度的一致性。

当宏观磨损处于正常磨损阶段,金刚石刀具的磨损十分缓慢,实践证明,在金刚石的结晶方向上的磨损更是缓慢。

随着切削时间的延长,刀具仍有几十至几百纳米的磨损,这就是微观磨损。

通过高倍显微镜长期观察以及用+光谱与+衍射分析后,金刚石刀具的微观磨损原因可能有以下3个:
1随着切削时间的不断延长,切削区域能量不断积聚,温度不断升高,当达到热化学反应温度时,就会在刀具表面形成新的变质层。

变质层大多是强度甚差的氧化物与碳化物,不断形成,不断随切屑消失,逐渐形成磨损表面。

2金刚石晶体在切削力特别是承受交变脉冲载荷持续作用下,一个又一个C 原子获得足够的能量后从晶格中逸出,造成晶体缺陷,原子间引力减弱,在外力作用下晶格之间发生剪切与剥落,逐渐形成晶格层面的磨损,达到一定数量的晶格层面磨损后就会逐渐形成刀具的磨损表面。

3金刚石刀具在高速切削有色金属及其合金时,在长时间的高温高压作用下,当金刚石晶体与工件的金属晶格达到分子甚至原子之间距离时,引起原子之间相互渗透。

改变了金刚石晶体的表面成分,使得金刚石刀具表面的硬度与耐磨性降低,这种现象称为金刚石的溶解。

金刚石刀具的磨损程度与磨损速度则取决于金刚石原子在有色金属或在其它非金属材料原子中的溶解率。

实践证明,金刚
石刀具在切削不同的材料时,有不同的溶解率,也就是说金刚石刀具在不同切削条件下切削不同的工件材料,磨损速度与程度是不相同的,溶解率越大,金刚石刀具磨损就越快。

2、金刚石刀具的化学磨损
微切削加工用来制作具有光学表面质量的零件,目前只限于少数材料。

属于这一类的材料主要有高纯度铜、无硅铝合金和含磷量约为12%的非电流析出镍。

工业上很重要的铁基材料则由于单晶金刚石刀具的严重磨损而无法加工。

解决这一问题主要有三种可能的途径,也就是说,通过改进切削加工工艺、刀具材料和被加工材料。

金刚石刀具沉积硬质材料涂层则属于改进刀具材料。

涂层应能阻止金刚石与被加工材料的直接接触。

为了确定适宜的硬质材料涂层,首先应研究切削加工过程中刀具与工件之间存在的界面的相互作用。

切削加工Fe、Ni、Cr、Ti等(门捷列夫元素周期表第<00CC>-<00D0>族过渡金属)金属材料时,金刚石刀具则出现严重的化学磨损。

解释化学磨损的一种假设是过渡金属中存在非配对d电子。

过渡金属倾向于通过其d轨道与碳的p轨道的重叠发生化学反应。

如果发生化学磨损,碳原子便从紧密金刚石晶格中脱除。

碳原子一脱离金刚石晶格:(1)就可能通过与其它碳原子的化合转变成一种软质石墨结构;(2)或与氧发生反应生成CO或CO2,与材料形成碳化物;(3)或扩散到材料中。

据Thornton和Wilks观察,在压力约为13.3Pa的真空中,以约10m<00F6>min的很低切削速度车削铁,单晶金刚石刀具磨损严重,刀具温度估计在200℃以下。

在这种情况下,金刚石的严重磨损只能归因于金刚石由刚出现的洁净铁表面所诱发的催化性石墨化。

为了理解洁净铁表面的催化作用,假设金刚石晶格中的碳与铁原子在切削加工时发生化学键合。

Thornton将此分为至少5种化学键合类型,如下图所示:
键合类型1和5分别相当于铁晶格或金刚石晶格中的原子键合;3相当于界面层的铁碳键合;而2和4相当于最上部铁或碳原子位置和紧接着的原子位置之间的化学键合。

键合类型4很有可能弱于其它键合类型。

利用磁控溅射工艺,通过优化沉积TiN、TiAlN和AlN涂层的工艺参数,涂层的成分可接近化学计量,硬度则可高达1460HV0.015到1940HV0.015不等。

厚度约为50nm的TiN、TiAlN和AlN薄膜涂层均呈现非常光滑的细晶表面。

平均粗糙度约为 1.0nm。

如果涂层厚度≤50nm,则金刚石刀具的刃口钝化(R\<100nm)很小。

因此,容许用于微切削加工。

通过在金刚石刀具上沉积TiN、TiAlN或AlN涂层,金刚石刀具在试验条件下微切削加工纯铁时的磨损可比未涂层金刚石刀具减少达50%。

3、问题建议
1金刚石刀具在使用时,除有锋利的刀刃外,还应当选取适当的刃区形式见下图,以增强刀刃强度。

2由于用机械方法加工制成的金刚石刀具用于镜面切削时,常常需要一个磨合期,即需要经过一段时间的切削过程,刀具才能达到最佳加工效果。

为了缩短或消除磨合期,一般可用离子束溅蚀法、无损伤机械化学抛光法、真空等离子化学抛光法与热化学抛光法等研磨方法来解决。

3单晶金刚石各向异性,在不同晶面及不同方向上性能差异甚大,切削不同的材料,应有不同的定向。

4为了提高金刚石刀具的钎焊质量,应选用对金刚石润湿性较好的合金作为钎焊材料,也可适当添加Ti、Cr、V、Mo等元素,以改善在液相下合金焊料对金刚石表面的浸润性,实现焊料对金刚石的牢固粘结。

另外,钎焊必须在真空中惰性气体的保护下进行,钎焊温度应低于金刚石石墨化转变温度(800℃),而且钎焊时动作要快,以避免出现刀片开裂等现象。

刀片钎焊后可适当延长保温时间,
以消除钎焊应力。

5刀具宜采用逐渐减载的研磨工艺,既可保持较高的研磨效率,又可降低研磨后表面硬度的软化层深度,从而延长刀具的使用寿命。

单晶金刚石刀具则在高精密研磨盘上研磨,并选用较小的刃磨角与适当的偏向角,使用极细的金刚石研磨粉,采用精度高、运转平稳且振动小的研磨机床(如空气静压轴承研磨机)。

6金刚石刀具适宜在机床—工件—刀具系统刚性足够、转速高、功率大、振动小、平稳性好的组合机床或加工中心上切削有色金属及其合金、纤维增强金属(FRM)、纤维增强塑料(FRP)、碳纤维增强复合材料(CFRP)等连续表面。

金刚石刀具的检测和调刀应采用光学仪器等非接触式测量方法。

参考文献
●金刚石刀具磨损机理的探讨、陆海钰
●金刚石刀具化学磨损的预防、J.Dong等
●PCD刀具磨损形式分析、尚自河等
●聚晶金刚石刀具磨损研究综述、董海李享德等
●材料磨损机理及其耐磨性、刘家浚。

相关文档
最新文档