几类约束矩阵方程问题的理论与计算

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

几类约束矩阵方程问题的理论与计算
【摘要】:约束矩阵方程问题是指在一定的约束矩阵集合中求矩阵方程(组)的解.其研究是近年来数值代数研究领域的重要课题.本文研究以下几类特殊约束矩阵方程问题的理论与计算.1.两类线性约束矩阵方程问题及其最佳逼近问题的迭代算法提出了求线性矩阵方程组:A1XB1=C1,A2XB2=C2的(最小二乘)双对称解的迭代算法;从算子角度,将十余种常见的矩阵结构约束(如对称、中心对称、自反等)划归为一类特殊的算子约束.针对一般形式的线性矩阵方程组,提出了求这一类特定算子约束(最小二乘)解的迭代算法.在不计舍入误差的前提下,所提出的算法均可在有限步内获得上述线性矩阵方程(组)相应的约束(最小二乘)解,并可解决其最佳逼近问题.2.非线性矩阵方程:Xs+A*X-1A=Q的Hermitian正定解深入研究了非线性矩阵方程:Xs+A*X-tA=Q(s,t为正整数)的定解理论和数值算法.利用矩阵分解原理给出了方程存在Hermitian正定解的两个充分必要条件.给出了方程仅有两个解的充分条件及解的计算公式.研究了AQ(?)=Q(?)A情形下,方程可解的必要条件和解的特性.分析了固定点迭代算法的收敛性,给出了单调收敛条件.此外还考虑了s≥1,0t≤1或0s≤1,t≥1的情形,给出了方程存在Hermitian正定解的充分条件和必要条件.探讨了解的特性,并提出了计算其极端解的免逆迭代算法.3.非线性矩阵方程:Xs-A*X-1A=Q的Hermitian正定解研究了非线性矩阵方程:Xs-A*X-1A=Q(s,t为正整数)的Hermitian正定解.证明了解的存在性.
给出了方程存在唯一解的充分条件.获得了解范围的最新估计.进行了解的扰动分析,导出了一般解和唯一解的扰动界.4.非对称代数Riccati 方程的极小非负解分析了当非对称代数Riccati方程的四个系数矩阵构成一个非奇异M-矩阵或奇异不可约M-矩阵时,方程极小非负解的敏感性.基于不变子空间的扰动性质,导出了极小非负解在任意酉不变范数意义下的扰动界,并获得了条件数的显式表达式.5.TLS问题和LS 问题解的相关量比较在TLS问题和LS问题解残量的比较基础上,在更一般情形下,对TLS问题和LS问题解的加权残量进行了比较.导出了TLS解、改进的LS解及普通LS解加权残量之间的误差界,进一步完善了已有的相关结果.【关键词】:线性矩阵方程双对称矩阵算子约束解非线性矩阵方程Hermitian正定解非对称代数Riccati方程TLS 问题LS问题加权残量
【学位授予单位】:华东师范大学
【学位级别】:博士
【学位授予年份】:2010
【分类号】:O241.6
【目录】:摘要6-8Abstract8-10目录10-12主要符号对照表12-13第一章前言13-171.1研究背景13-141.2研究现状14-151.3本文的主要工作15-17第二章两类线性约束矩阵方程问题的迭代算法17-662.1矩
阵方程组:A_1XB_1=C_1,A_2XB_2=C_2的双对称解18-282.2矩阵方程组:A_1XB_1=C_1,A_2XB_2=C_2的最小二乘双对称解28-392.3一般线性矩阵方程组的特定算子约束解39-502.4一般线性矩阵方程组的特定算子约束最小二乘解50-66第三章矩阵方程X~s+A~*X~(-t)A=Q的Hermitian正定解66-913.1矩阵方程X~s+A~*X~(-t)A=Q(S,t∈Z~+)67-763.2固定点迭代法的单调收敛性76-833.3矩阵方程X~s+A~*X~(-t)A=Q(s≥1,083-91第四章矩阵方程X~s-A~*X~(-t)A=Q的Hermitian正定解91-1024.1解的存在唯一性及解的范围91-964.2解的扰动估计96-994.3数值例子99-102第五章非对称代数Riccati方程极小非负解的扰动分析102-1135.1预备知识103-1085.2扰动界108-1115.3条件数的表达式111-113第六章TLS问题和LS问题解加权残量的比较113-1236.1预备知识113-1156.2TLS 解和LS解加权残量的比较115-1216.3数值例子121-123参考文献123-134在学期间的研究成果134-136致谢136-137 本论文购买请联系页眉网站。

相关文档
最新文档