离子液体的分类、应用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
离子液体的分类、合成与应用
当前研究的离子液体的正离子有4类:烷基季铵离子、烷基季瞵离子、1, 3-二烷基取代的咪唑离子、N-烷基取代的吡啶离子记为。根据负离子的不同可将离子液体分为两大类:一类是卤化盐。其制备方法是将固体的卤化盐与AlCl3混合即可得液态的离子液体,但因放热量大,通常可交替将2种固体一点一点地加入已制好的同种离子液体中以利于散热。此类离子液体被研究得较早,对以其为溶剂的化学反应研究也较多。此类离子液体具有离子液体的许多优点,其缺点是对水极其敏感,要完全在真空或惰性气氛下进行处理和应用,质子和氧化物杂质的存在对在该类离子液体中进行的化学反应有决定性的影响。此外因AlCl3遇水会放出HCl,对皮肤有刺激作用。
另一类离子液体,也被称为新离子液体,是在1992年发现[ emim ] BF4的熔点为12 ℃以来发展起来的。这类离子液体不同于AlCl3离
子液体,其组成是固定的,而且其中许多品种对水、对空气稳定,因此近几年取得惊人进展。[center][center][center]其正离子多为烷基取代的咪唑离子[ R1 R3im ] + ,如[ bmim ] + ,负离子多用BF4-、PF6- ,也有CF3SO3-、(CF3SO2)2N-、C3F7COO-、C4F9SO3、CF3COO- 、(CF
SO2)3C- 、(C2F5SO2)3C- 、(C2F5SO2)2N-、SbF6-、AsF6、为负离子的3
离子液体要注意防止爆炸(特别是干燥时)。
离子液体种类繁多,改变阳离子和阴离子的不同组合,可以设计合成出不同的离子液体。一般阳离子为有机成分,并根据阳离子的不同来分类。离子液体中常见的阳离子类型有烷基铵阳离子、烷基钅翁阳
离子、N-烷基吡啶阳离子和N, N ’- 二烷基咪唑阳离子等,其中最常见的为N, N’-二烷基咪唑阳离子。离子液体合成大体上有2种基本方法:直接合成法和两步合成法。
直接合成法
就是通过酸碱中和反应或季铵化反应一步合成离子液体,操作经济简便,没有副产物,产品易纯化。例如硝基乙胺离子液体就是由乙胺的水溶液与硝酸中和反应制备。具体制备过程是:中和反应后真空除去多余的水,为了确保离子液体的纯净,再将其溶解在乙腈或四氢呋喃等有机溶剂中,用活性炭处理,最后真空除去有机溶剂得到产物离子液体。最近, Hirao等用此法合成了一系列不同阳离子的四氟硼酸盐离子液体。另外通过季铵化反应也可以一步制备出多种离子液体,如1-丁基-3-甲基咪唑钅翁盐[bmim]、[CF3 SO3]、[bmim]Cl等。
两步合成法
如果直接法难以得到目标离子液体,就必须使用两步合成法。首先通过季铵化反应制备出含目标阳离子的卤盐( [阳离子]X型离子液体) ;然后用目标阴离子Y- 置换出X- 离子或加入Lewis酸MXy来得到目标离子液体。在第二步反应中,使用金属盐MY(常用的是AgY 或NH4 Y)时,产生AgX沉淀或NH3、HX气体而容易除去;加入强质子酸HY,反应要求在低温搅拌条件下进行,然后多次水洗至中性,用有机溶剂提取离子液体,最后真空除去有机溶剂得到纯净的离子液体。应特别注意的是:在用目标阴离子(Y-)交换X- 阴离子的过程中,必须尽可能地使反应进行完全,确保没有X-阴离子留在目标离子液体中,
因为离子液体的纯度对于其应用和物理化学特性的表征至关重要。高纯度二元离子液体的合成通常是在离子交换器中利用离子交换树脂通过阴离子交换来制备。另外直接将Lewis酸(MXy )与卤盐结合,可制备[阳离子] [MnXny+1]型离子液体,如氯铝酸盐离子液体的制备就是利用这个方法。
离子液体的物理化学特性如熔点、黏度、密度、亲水性和热稳定性等,可以通过选择合适的阳离子和阴离子调配,在很宽的范围内加以调变。尤其是对水的相容性调变,对用作反应介质分离产物和催化剂极为有利。下面拟用一些性能数据说明离子液体的结构面貌和其物化性能间的关系。
熔点:熔点是作为离子液体的关键判据性质之一。离子液体要求熔点低,在室温为液体。由不同氯化物的熔点可知,阳离子的结构特征对其熔点造成明显的影响。阳离子结构的对称性越低,离子间相互作用越弱,阳离子电荷分布均匀,则其熔点越低,阴离子体积增大,也会促进熔点降低。一般来说,低熔点离子液体的阳离子具备下述特征:低对称性、弱的分子间作用力和阳离子电荷的均匀分布。
溶解性:离子液体能够溶解有机物、无机物和聚合物等不同物质,是很多化学反应的良溶剂。成功地使用离子液体,需要系统地研究其溶解特性。离子液体的溶解性与其阳离子和阴离子的特性密切相关。阳离子对离子液体溶解性的影响可由正辛烯在含相同甲苯磺酸根阴离子季铵盐离子液体中的溶解性看出,随着离子液体的季铵阳离子侧链变大,即非极性特征增加,正辛烯的溶解性随之变大。由此可见,改变
阳离子的烷基可以调整离子液体的溶解性。阴离子对离子液体溶解性的影响可由水在含不同[bmim] +阳离子的离子液体中的溶解性来证实, [bmim] [CF3SO3]、[bmim] [CF3CO2]和[bmim] [C3F7CO2]与水是充分混溶的,而[bmim]PF6、[bmim] [(CF3SO2)2N]与水则形成两相混合物。在20℃时,饱和水在[bmim] [(CF3SO2)2N]中的含量仅为1.4% ,这种离子液体与水相溶性的差距可用于液- 液提取的分离技术。大多数离子液体的介电常数超过一特征极限值时,其与有机溶剂是完全混溶的。
热稳定性:离子液体的热稳定性分别受杂原子- 碳原子之间作用力和杂原子- 氢键之间作用力的限制,因此与组成的阳离子和阴离子的结构和性质密切相关。例如在氧化铝上测定的多种咪唑盐离子液体的起始热分解温度大多在400 ℃左右, 同时也与阴阳离子的组成有很大关系。当阴离子相同时,咪唑盐阳离子2位上被烷基取代时,离子液体的起始热分解温度明显提高;而3位氮上的取代基为线型烷基时较稳定(图2) 。相应的阴离子部分稳定性顺序为: PF6 >Beti > Im≈B F4 >Me≈AsF6 ≥I、Br、Cl。同时,离子液体的水含量也对其热稳定性略有影响。
密度:离子液体的密度与阴离子和阳离子有很大关系。比较含不同取代基咪唑阳离子的氯铝酸盐的密度发现,密度与咪唑阳离子上N - 烷基链长度呈线性关系,随着有机阳离子变大,离子液体的密度变小。这样可以通过阳离子结构的轻微调整来调节离子液体的密度。阴离子对密度的影响更加明显,通常是阴离子越大,离子液体的密度也越