信号与系统陈后金版答案完整版ppt课件
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3-14(2)
[u(t) u(t 1)][u(t 2) u(t 3)] r(t 2) r(t 3) r(t 3) r(t 4) r(t 2) 2r(t 3) r(t 4)
9
3-20:y ''(t) 7 y '(t) 10 y(t) 2x '(t) 3x(t); x(t) etu(t);
y(0 ) 1, y '(0 ) 1
解: 1:求冲激响应h(t):输入x(t) (t),有:
h ''(t) 7h '(t) 10h(t) 2 '(t) 3 (t),t 0
特征根为s1 -2, s2 -5, 又因为n m, 所以:
则 h(t) K1e2tu(t) K2e5tu(t)
y2[k] 2 y1[k 1] y1[n 1]
n
y2[k
]
2(
1 2
)
k
u[k
]
k n
(
1 2
)
n
u[n]
y2[k]
2( 1 )k u[k] 2
k (1)n n0 2
=[2+( 1 )k ]u[k] 2
8
3-14(1)
[ (t 1) 2 (t 1)][ (t 1) (t 3)] (t) 2 (t 2) (t 2) 2 (t 4)
e1 e2 , t 2
x(1) (t) (e1 et )[u(t 1) u(t 2)] (e1 e2)u(t 2) 3u(t 4 3)
2-9: x(t) et[u(t 1) u(t 2)]t(t 3),求x(1)(t), x'(t) x'(t) et[(t 1) (t 2)]et[u(t 1) u(t 2)]3 '(t 3)
x(1) (t) t {e [u( 1) u( 2)] 3 ( 3)}d
x(1) (t) t e [u( 1) u( 2)]d 3u(t 3)
0,t 1
t
e [u(
1)
u(
2)]d
t
e d ,1 t 2
1
2 e d , t 2
1
0,t 1
t e [u( 1) u( 2)]d e1 et ,1 t 2
2-1: (1) x(t) u(t 1) u(t)u(t) u(t 1)
x(t)
1
2-1: (2)
-1 0
1t
x(t) r(t 1) r(t 1) u(t 1) (t 1)
1
x(t)
(1)
-1 00 1
tt
2-1: (7) x(t) e2t[u(t) u(t 4)]
x(t)
1
0
4
t
1
2-2: (2) x(t) sin(t / 2)u(t 1)
2-3: (2)
1
…
01
t
(t3 2t2 3) (t 2) (8 8 3) (t 2)
19 (t 2)
2-4: (4)
sin(t) (t / 4)dt sin(t) |t /4
2-4: (5)
e j0t[ (t T ) (t T )]dt e j0 (T ) e j0 (T )
2 j sin(0T )
2
2-5: (4)
x(t)
2
0 23 5 t
x(t+1)
2
-1 0 1 2 4
t
x(t/3+1)
2
-3 0 3
6
12
t
3
2-9:
x(t) et[u(t 1) u(t 2)] t (t 3),求x(1) (t), x '(t) Q x(t) et[u(t 1) u(t 2)] 3 (t 3)
h '(t) 2K1e2tu(t) K1 (t) 5K2e5tu(t) K2 (t)
2K1e2tu(t) 5K2e5tu(t) (K1 K2 ) (t)
h
Байду номын сангаас
''(t
)
4K1e2t
u(t
)
2K1
(t
)
25K
e5t
2
u(t
)
5K
2
(t)
(K1 K2 ) '(t)
代入方程有:
2K2 (t) 5K1 K(t)2 (7K/13; KK12 ) '(1t)/ 3;2 '(t) 3 (1t0)
12
3-28: x(1) 3 x(0) 4 x(1) 6 x(2) 0 x(3) 1
5
2-13:(3)
2 x[3k] 2
11
k
-1 0 1 2
2-13:(4)
6
3-2
g(t) r(t) 2r(t 1) r(t 2)
Q x(1) (t) r(t) r(t 1)
g(t) x(1) (t) x(1) (t 1)
根据系统积分特性:输入信号积分,输出也积分,有:
yg (t) y(1) (t) y(1) (t 1) [u(t 1) u(t 2)] [u(t 1) u(t 3)] [u(t 1) [u(t 1)] [u(t 2) u(t 3)]
x '(t) e1 (t 1) e2 (t 2) et[u(t 1) u(t 2)] 3 '(t 3) et[u(t 1) u(t 2)] e1 (t 1) e2 (t 2) 3 '(t 3)
2-11:(3)
x[k] 0.9k{u[k] u[k 5]} 0.9k , 0 k 4
yg (t)
1
0 1 23 t
7
3-4 已知离散时间LTI系统,输入 x1[k] [k 1] 时,输出;
y1[k
]
(
1 2
)k
1
u[k
1],
求当输入x2
[k
]
2
[k
]
u[k
]时系统响应y2
[k
]。
k
x2[k] 2x1[k 1] [n]
nk
x2[k] 2x1[k 1] x1[n 1]
nk
3:求零状态响应:
yzs (t) x(t) h(t)
x( )h(t )d
[ 1 e2 u( ) 7 e5 u( )]e(t )u(t )d
3
3
[ 1 e2 7 e5 ]e(t )d
03
3
( 1 et 1 e2t 7 e5t )u(t)
4:求全响应: 4
3
12
y(t) yzi (t) yzs (t)
2:求零输入响应:
特征根为s1 2, s2 5;所以: 则 yzi (t) K1e2t K2e5t , t 0
利用初始条件,有: y(0 ) K1 K2 1 y '(0 ) 2K1 5K2 1 K1 2, K2 1
yzi (t) 2e2t e5t , t 0
11
[u(t) u(t 1)][u(t 2) u(t 3)] r(t 2) r(t 3) r(t 3) r(t 4) r(t 2) 2r(t 3) r(t 4)
9
3-20:y ''(t) 7 y '(t) 10 y(t) 2x '(t) 3x(t); x(t) etu(t);
y(0 ) 1, y '(0 ) 1
解: 1:求冲激响应h(t):输入x(t) (t),有:
h ''(t) 7h '(t) 10h(t) 2 '(t) 3 (t),t 0
特征根为s1 -2, s2 -5, 又因为n m, 所以:
则 h(t) K1e2tu(t) K2e5tu(t)
y2[k] 2 y1[k 1] y1[n 1]
n
y2[k
]
2(
1 2
)
k
u[k
]
k n
(
1 2
)
n
u[n]
y2[k]
2( 1 )k u[k] 2
k (1)n n0 2
=[2+( 1 )k ]u[k] 2
8
3-14(1)
[ (t 1) 2 (t 1)][ (t 1) (t 3)] (t) 2 (t 2) (t 2) 2 (t 4)
e1 e2 , t 2
x(1) (t) (e1 et )[u(t 1) u(t 2)] (e1 e2)u(t 2) 3u(t 4 3)
2-9: x(t) et[u(t 1) u(t 2)]t(t 3),求x(1)(t), x'(t) x'(t) et[(t 1) (t 2)]et[u(t 1) u(t 2)]3 '(t 3)
x(1) (t) t {e [u( 1) u( 2)] 3 ( 3)}d
x(1) (t) t e [u( 1) u( 2)]d 3u(t 3)
0,t 1
t
e [u(
1)
u(
2)]d
t
e d ,1 t 2
1
2 e d , t 2
1
0,t 1
t e [u( 1) u( 2)]d e1 et ,1 t 2
2-1: (1) x(t) u(t 1) u(t)u(t) u(t 1)
x(t)
1
2-1: (2)
-1 0
1t
x(t) r(t 1) r(t 1) u(t 1) (t 1)
1
x(t)
(1)
-1 00 1
tt
2-1: (7) x(t) e2t[u(t) u(t 4)]
x(t)
1
0
4
t
1
2-2: (2) x(t) sin(t / 2)u(t 1)
2-3: (2)
1
…
01
t
(t3 2t2 3) (t 2) (8 8 3) (t 2)
19 (t 2)
2-4: (4)
sin(t) (t / 4)dt sin(t) |t /4
2-4: (5)
e j0t[ (t T ) (t T )]dt e j0 (T ) e j0 (T )
2 j sin(0T )
2
2-5: (4)
x(t)
2
0 23 5 t
x(t+1)
2
-1 0 1 2 4
t
x(t/3+1)
2
-3 0 3
6
12
t
3
2-9:
x(t) et[u(t 1) u(t 2)] t (t 3),求x(1) (t), x '(t) Q x(t) et[u(t 1) u(t 2)] 3 (t 3)
h '(t) 2K1e2tu(t) K1 (t) 5K2e5tu(t) K2 (t)
2K1e2tu(t) 5K2e5tu(t) (K1 K2 ) (t)
h
Байду номын сангаас
''(t
)
4K1e2t
u(t
)
2K1
(t
)
25K
e5t
2
u(t
)
5K
2
(t)
(K1 K2 ) '(t)
代入方程有:
2K2 (t) 5K1 K(t)2 (7K/13; KK12 ) '(1t)/ 3;2 '(t) 3 (1t0)
12
3-28: x(1) 3 x(0) 4 x(1) 6 x(2) 0 x(3) 1
5
2-13:(3)
2 x[3k] 2
11
k
-1 0 1 2
2-13:(4)
6
3-2
g(t) r(t) 2r(t 1) r(t 2)
Q x(1) (t) r(t) r(t 1)
g(t) x(1) (t) x(1) (t 1)
根据系统积分特性:输入信号积分,输出也积分,有:
yg (t) y(1) (t) y(1) (t 1) [u(t 1) u(t 2)] [u(t 1) u(t 3)] [u(t 1) [u(t 1)] [u(t 2) u(t 3)]
x '(t) e1 (t 1) e2 (t 2) et[u(t 1) u(t 2)] 3 '(t 3) et[u(t 1) u(t 2)] e1 (t 1) e2 (t 2) 3 '(t 3)
2-11:(3)
x[k] 0.9k{u[k] u[k 5]} 0.9k , 0 k 4
yg (t)
1
0 1 23 t
7
3-4 已知离散时间LTI系统,输入 x1[k] [k 1] 时,输出;
y1[k
]
(
1 2
)k
1
u[k
1],
求当输入x2
[k
]
2
[k
]
u[k
]时系统响应y2
[k
]。
k
x2[k] 2x1[k 1] [n]
nk
x2[k] 2x1[k 1] x1[n 1]
nk
3:求零状态响应:
yzs (t) x(t) h(t)
x( )h(t )d
[ 1 e2 u( ) 7 e5 u( )]e(t )u(t )d
3
3
[ 1 e2 7 e5 ]e(t )d
03
3
( 1 et 1 e2t 7 e5t )u(t)
4:求全响应: 4
3
12
y(t) yzi (t) yzs (t)
2:求零输入响应:
特征根为s1 2, s2 5;所以: 则 yzi (t) K1e2t K2e5t , t 0
利用初始条件,有: y(0 ) K1 K2 1 y '(0 ) 2K1 5K2 1 K1 2, K2 1
yzi (t) 2e2t e5t , t 0
11