论文概率论在经济方面的应用资料

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、引言

1.1 概率论发展历史简介

概率论与数理统计研究的对象是随机现象,是研究和谐是随机现象统计规律性的学科。概率论产生于十七世纪,本来是有保险事业的发展而产生的,但是来自于赌博者的请求,却是数学家们思考概率论中问题的源泉。十七世纪中叶,法国贵族德·美黑在骰子赌博中,由于有要急近处理的事情必须中途停止赌博,要靠对胜负的预测把赌资进行合理的分配,但不知用什么样的比例分配才算合理,于是就写信向当时法国的最高数学家帕斯卡请教。正是这封信使概率论向前迈出了第一步。

帕斯卡和当时第一流的数学家费尔玛一起,研究了德·美黑提出的关于骰子赌博的问题。于是,一个新的数学分支--概率论登上了历史舞台。

随着18、19世纪科学的发展,人们注意到在某些生物、物理和社会现象与机会游戏之间有某种相似性,从而由机会游戏起源的概率论被应用到这些领域中;同时这也大大推动了概率论本身的发展。使概率论成为数学的一个分支的奠基人是瑞士数学家j.伯努利,他建立了概率论中第一个极限定理,即伯努利大数定律,阐明了事件的频率稳定于它的概率。随后a.de棣莫弗和p.s.拉普拉斯又导出了第二个基本极限定理(中心极限定理)的原始形式。拉普拉斯在系统总结前人工作的基础上写出了《分析的概率理论》,明确给出了概率的古典定义,并在概率论中引入了更有力的分析工具,将概率论推向一个新的发展阶段。19世纪末,俄国数学家p.l.切比雪夫、a.a.马尔可夫、a.m.李亚普诺夫等人用分析方法建立了大数定律及中心极限定理的一般形式,科学地解释了为什么实际中遇到的许多随机变量近似服从正态分布。20世纪初受物理学的刺激,人们开始研究随机过程。这方面a.n.柯尔莫哥洛夫、n.维纳、a.a.马尔可夫、a.r辛钦、p.莱维及w.费勒等人作了杰出的贡献。

如何定义概率,如何把概率论建立在严格的逻辑基础上,是概率理论发展的困难所在,对这一问题的探索一直持续了3个世纪。20世纪初完成的勒贝格测度与积分理论及随后发展的抽象测度和积分理论,为概率公理体系的建立奠定了基础。在这种背景下,苏联数学家柯尔莫哥洛夫1933 年在他的《概率论基础》一书中第一次给出了概率的测度论的定义和一套严密的公理体系。他的公理化方法成为现代概率论的基础,使概率论成为严谨的数学分支,对概率论的迅速发展起了积极的作用。

现在,概率论已发展成为一门与实际紧密相连的理论严谨的数学科学。它内容丰富,结论深刻,有别开生面的研究课题,由自己独特的概念和方法,已经成为了近代数学一个有特色的分支。

数理统计是伴随着概率论的发展而发展起来的一个数学分支,研究如何有效的由集、整理和分析受随机因素影响的数据,并对所考虑的问题作出推断或预测,为采取某种决策和行动提供依据或建议。

数理统计起源于人口统计、社会调查等各种描述性统计活动。早在公元前2250年,

大禹时代,根据人力物力和山川土质的多寡,分全国九州;殷周时代施行按人口分地,进行土地和户口的统计,施行井田制。春秋时代常以兵车多寡论诸侯实力,可见已进行了军事调查和比较;汉代全国户口与年龄的统计数字有据可查;明初编制了黄册与鱼鳞册,黄册乃全国户口名册,鱼鳞册系全国土地图籍,绘有地形,完全具有现代统计图表的性质。

在西方各国,统计工作开始于公元前3050年,埃及建造金字塔,为征收建筑费用,对全国人口进行普查和统计.到了亚里土多德时代,统计工作开始往理性演变。这时,统计在卫生、保险、国内外贸易、军事和行政管理方面的应用,都有详细的记载。统计一词,就是从意大利一词逐步演变而成的。

当前,由于计算机的应用,推动了数理统计在理论研究和应用方面不断地向纵深发展,数理统计的应用范围愈来愈广泛,已渗透到许多科学领域,应用到国民经济各个部门,成为科学研究不可缺少的工具。

1.2 概率与经济学结合的原因:

从理论研究角度看,借助概率论方法研究经济问题至少有三个优势:其一是前提假定用概率论语言描述得一清二楚,概率论强调事物处于不可能事件和必然事件之间,即事物出现的概率在(0,1)之间,这符合经济现象的现实,经济学强调经济现象要用数学来描述,由于概率论引进概率的概念,使得数学描述成为概率论描述的一个特例,因此概率论能够穷尽各种可能,能够更加清楚的描述经济现象;其二是逻辑推理严密精确,可以防止漏洞和谬误,通过内生化经济现象出现的概率,同时依据概率论的严密逻辑,推导经济运行的各种轨迹,再结合现有的经济理论,查看概率论的逻辑是否符合经济的行为规律,使得概率论与经济学达到共同解释问题的目的;其三是可以应用已有的概率论模型或概率论定理推导新的结果,得到仅凭直觉无法或不易得出的结论,传统的经济学假定经济现象或者经济行为在确定性的条件下发生,因此运用现有的经济理论能够清楚阐述经济现象的本质,概率论的引进使得经济学能够研究在不确定性条件下行为,扩大了经济学的视眼,得出的结论也更加具有概括性。运用概率论方法讨论经济问题,学术争议便可以建立在这样的基础上:或不同意对方前提假设;或找出对方论证错误;或是发现修改原模型假设会得出不同的结论。因此,运用概率论方法做经济学的理论研究可以减少无用争论,并且让后人较容易在已有的研究工作上继续开拓,也使得在深层次上发现似乎不相关的结构之间的关联变成可能。总而言之,概率论在经济学中的应用使得经济学成为一门更加规范的科学、更加符合经济行为规则的科学,这和马克思所说相吻合:一种科学只有在成功地运用数学时,才算达到了真正完善的地步。概率论在经济学中的应用使得经济学更加完善。

英国学者威尔斯说过,“统计的思维方法,就像读和写的能力一样,将来会成为效率公民的必备能力”。近几年来,我国的经济学界和经济部门越来越意识到用数学方法来解决经济问题的重要性,正在探索经济问题中应有数学的规律。现代经济学的一个明显特点是越来越多地使用统计学作为分析工具,绝大多数的经济学前沿论文都包含统计或计量模型。从经济学的分析框架来看,这并不难理解,因为参照系的建立和分析工具的发展通常都要借助

数学。统计学是应用数学的一个分支,主要通过利用概率论建立数学模型,收集所观察系统的数据,进行量化的分析、总结,并进而进行推断和预测,为相关决策提供依据和参考,它被广泛的应用在各门学科之上。

1.3 概率论在经济学中的新发展

除了本文所提到的概率统计在经济风险决策、经济生产、经济销售、经济利润和经济损失估计等方面的应用外,概率论在博弈论、激励理论和经济计量学中都有十分重要的作用。比如经济计量学的实证研究,通过估计有限样本条件下数据之间的关系来推断总体之间的关系,就是通过使用概率统计的统计推断来完成的;至于概率论在激励理论方面的应用就是考查在不同的概率条件下,如何设计激励机制从而给市场主体各种激励使得均衡结果达到帕累托最优,并考查在概率事件下,各个主体的行为特征;至于在博弈论方面的应用1994年的诺贝尔获得者海萨尼通过在博弈参与者之间引入选择策略的概率,从而提高纳什均衡的精度,使市场均衡更加广泛,更具有应用性,并把纳什均衡作为贝叶斯均衡的一个特例。由此可见,概率论知识在经济学中的应用是现代经济学的动态前沿,概率论对现代经济学的发展做出了卓越的贡献。

相关文档
最新文档