生物反应器的应用状况与前景

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

生物反应器的应用状况与前景
201230620207 雷智烺摘要:生物反应器是指用于生物反应过程的容器总称。

包括酶反应器、固定细胞反应器、各种细胞培养器和发酵罐等。

本文阐述了生物反应器的应用现状及前景。

关键词:生物反应器应用前景
生物反应工程学科是随着生物技术的发展逐步形成的,生物反应工程是一门以生物学,工程学,计算机与信息技术等多学科为基础研究生物反应过程中带有共性工程技术问题的交叉学科,生物反应工程以生物反应动力学为基础,将传递过程原理、设备工程学、过程动态学及最优化原理等化学工程学方法与生物过程方面的知识相结合,进行生物反应过程的分析与开发,以及生物反应器的设计、操作和控制等。

自然界中的生物现象可以说是无处不在,这些现象中的核心是生物微化反应,或者说是生物的生长、繁殖、形成产物、某些物质的减少或增加过程。

一般生物反应过程可以分为三个阶段:第一阶段指原料处理和培养基制备;第二阶段是利用生物反应器通过生物反应产生目的产物的过程;第三阶段指目的产物的提取与精制。

随着生物技术的发展,利用数学、化学工程学、化学工程原理和计算机技术等进行生物反应过程研究,使培养操作过程控制更为合理,新的生物反应器不断出现。

现今,生物反应器在许多领域都有应用:
一.动物培养用生物反应器
动物细胞体外培养时,生物反应器是整个培养过程的关键设备,为细胞提供了一个适宜的生长环境,使之快速增殖并形成所需的生物组织制品。

由于动物细胞在其形态结构、培养方法以及所需的力学环境等方面均不同于微生物细胞,因而传统的微生物反应器显然已不适用于动物细胞大规模培养,特别是组织工程的需要,促使新型生物反应器的研究与开发。

生物反应器的分类及结构特点:
1、搅拌式生物反应器
搅拌式反应器靠搅拌桨提供液相搅拌的动力,它有较大的操作范围、良好的混合性和浓度均匀性,因此在生物反应中被广泛使用。

但由于动物细胞没有细胞壁的保护,因此对剪切作用十分敏感,直接的机械搅拌很容易对其造成损害,传统的用于微生物
的搅拌反应器用作动物细胞的培养显然是不合适的。

所以,动物细胞培养中的搅拌式反应器都是经过改进的,包括改进供氧方式、搅拌桨的形式及在反应器内加装辅件等。

(1)供氧方式的改进
一般情况下搅拌式反应器还常伴有鼓泡,为细胞生长提供所需氧分。

由于动物细胞对鼓泡的剪胞生长提供所需氧分。

由于动物细胞对鼓泡的剪切也很敏感,所以人们在供氧方式的改进上做了许多工作。

笼式供氧是搅拌式动物细胞反应器供氧方式的一种,即气泡用丝网隔开,不与细胞直接接触。

反应器既能保证混合效果又有尽可能小的剪切力,以满足细胞生长的要求。

北野昭一报道了一个经过改进的搅拌式动物细胞反应器,整体呈梨形,搅拌置于反应器底部,在搅拌轴外装了一个锥形不锈钢丝网与搅拌轴一起转动。

轴心处的鼓泡管在丝网内侧鼓泡,丝网外侧的细胞不与气泡直接接触。

(2)搅拌桨的改进
搅拌桨的形式对细胞生长的影响非常大,这方面的改进主要考虑如何减小细胞所受的剪切力。

有人对搅拌桨的形式作了改进,并在反应器内加装了辅件,实验证明改进后的反应器适用于对剪切力敏感的细胞进行高密度培养。

2、非搅拌式生物反应器
搅拌式生物反应器用于动物细胞培养存在的最大缺点是剪切力大,容易损伤细胞,虽然经过各种改进,这个问题仍很难避免。

相比之下,非搅拌式反应器产生的剪切力较小,在动物细胞培养中表现出了较强的优势。

(1)填充床反应器填充是在反应器中填充一定材质的填充物,供细胞贴壁生长。

营养液通过循环灌流的方式提供,并可在循环过程中不断补充。

细胞生长所需的氧分也可以在反应器外通过循环的营养液携带,因而不会有气泡伤及细胞。

这类反应器剪切力小,适合细胞高密度生长。

(2)中空纤维反应器中空纤维反应器由于剪切力小而广泛用于动物细胞的培养。

(3)气升式生物反应器气升式生物反应器(airliftbioreactor)也是实现动物细胞高密度培养的常用设备之一,其特点是结构简单,操作方便。

有人在气升式反应器中利用微载体培养技术,研究了Vero细胞高密度培养的工艺条件。

传统的生物反应器速率较慢;体积反应速率不高;反应器体积大;产物浓度低,因此要求性能更高的生物反应器。

根据动物细胞无细胞壁,对剪切极端敏感,在细胞生长控制上,要防止细胞分化
和细胞凋亡,有时还要考虑对产品糖基化质量的要求。

所以反应器要具备低剪切效应,混合性能好等特点,要提供细胞形态在线观察和活细胞数量的传感技术,严格控制反应器的操作条件以及有关防污染的灌注系统、取样系统等都需要研究解决。

用于细胞过程生理特性和过程传递特性研究的生物反应器研制,其中主要解决用于过程分析的各种传感器选型研制和数据处理软件包的研制。

特别是近年来随着微生物基因组测序和系统生物学研究工作的深入展开,发酵过程检测与控测已经从基于参数传感技术的反馈控制发展为以信息处理为基础的生物过程检测与分析。

各种谱分析与生物反应器实验数据关联起来,提供各种表型数据具有重要意义。

因而对反应器设计提出了新的要求。

随着生物技术在各领域的推广应用,用于海洋藻类、微生物肥料、微生态饲料、环境污染处理等大规模细胞培养需要高强度低造价的生物反应器。

特别是近年来利用生物质生产燃料乙醇等能源物质的战略部署,需要应用大型高效节能生物反应器降低生产成本。

发展趋势
1、以代谢流分析为核心的生物反应器
长期来发酵过程优化与放大所依据的基本思想和方法是采用经典动力学为基础
的最佳工艺控制点为依据的静态操作方法,实质上这只是化学工程宏观动力学概念在发酵工程上的延伸。

随着过程传感技术和计算机技术的发展,国家生化工程技术研究中心(上海)设计了一种用于生物过程多尺度研究的新概念发酵装置(已由上海国强生化工程装备有限公司组织生产,定型为FUS-50L(A)),该装置以生物反应器中物料流检测的观点,具有十四个以上在线参数检测或控制,并集中力量开发了一个适应多种反应器特点,融合多种过程理论和控制理论,便于发酵过程工艺分析和优化操作的软件包。

在鸟苷发酵过程中,从反应器测量参数上发现了细胞代谢流迁移,由此实现了过程优化。

该产品先后成功地在青霉素、红霉素、饲料金霉素、链霉素、黄霉素、泰乐霉素、棒酸、鸟苷、肌苷、基因工程白蛋白、基因工程疟疾疫苗、基因工程植酸酶、胰岛素原(PIP)、基因工程必特螺旋霉素等多种产品上发酵优化应用取得了大幅提高发酵单位能力,其优化结果一般可由几十升发酵罐直接放大到上百立方的工业生产发酵罐。

2、动物细胞大规模培养生物反应器
研制由于细菌等原核细胞表达系统在转录及修饰方面的缺陷,许多重要价值的蛋白质,特别是基因工程药物、疫苗、抗体等糖基化的需要,使哺乳类动物细胞表达系
统成了一个更合适的工具,因此,哺乳类动物细胞表达系统引起了大家重视。

以哺乳动物大规模培养技术为基础的生物制药产业在美国等西方国家得到了迅速发展,数十种产品已进入市场,取得了巨大的经济和社会效益。

国外用于生产的动物细胞生物反应器已趋于大型化(最大到吨级规模)、多参数与高度自动化的计算机控制系统、以及适应动物细胞对大型环境因子高敏感性的反应器精巧设计制造,并形成商品化供应用户。

中国自“七五”至“八五”攻关期间立题开展有关动物细胞生物反应器研究,取得了较大进展,但哺乳类细胞培养技术要求高,技术壁垒大,有关公司在未能掌握核心技术的情况下,单凭模拟很难开展工作。

抗体等其他细胞表达产品,装药量大,中国科研单位已经掌握的早期生物药开发技术很难应用到新型药物生产工艺上,需要重新摸索;由于细胞株等上游配套技术的落后、反应器研制技术的差距、以及有关缺乏生化工程的研究等原因,因而缺乏必要的条件去掌握高表达细胞株构建和大规模细胞培养技术,难以突破技术瓶颈,中国有关动物细胞生物反应器产业仍近乎空白。

3、带pH测量与补料控制的摇床──摇床应用技术的发展
20世纪三十年代摇床问世以来,摇床就作为生物反应过程中必备的一种专用设备,用于微生物、动植物细胞菌种筛选、种子扩大培养等。

由于摇床设备的特点,不能实时测量培养过程中的有关参数以及过程补料控制,因此长期以来一直以摇床的放瓶结果作为实验数据。

当用来作为诸如菌种生理特性变化、培养基成分的作用以及温度、pH等环境条件变化等研究的依据时,实际上是一种缺乏过程研究的静态分析方法。

这种方法的局限性是很显然的,例如以这种方法作为菌种选育后技术时,传统摇瓶筛选方法往往缺乏补料或供氧不足,并不一定处于代谢流分配最合理的状态,由此将出现严重的高产菌株漏筛现象。

因此,国内外有关公司己注意开发带pH测量的摇床,并形成产品。

4、生物反应器中试系统设计
对于生产量大的传统生物技术产品,为了对已经通过前期研究(实验室研究和市场分析)的产品进行过程优化研究,在中试规模上达到高生产水平或质量,并进而为车间生产提供工艺放大依据和设备设计依据,必要时还可进行小批量生产,提供应用试验样品、或供市场销售的部分产品。

为此,近年来许多有关发酵产品生产的企业迫切需要建立一个多功能的中试发酵车间。

5、大型生物反应器设计与制造技术研究
几十年来随着发酵工业的快速发展,发酵工程趋向设备大型化、高效和自动化。

以传统生物技术产品来说,一些氨基酸、抗生素或发酵轻化工产品都在几十到几百M3以上发展,一些原来是小规模发酵罐的老厂搬迁新厂区,发酵罐的规模也普遍要求放大。

基因工程产品一般附加值高,不需要大型生物反应器,但近年来随着基因工程酶生产技术的发展,如基因工程植酸酶的研究成功,又由于饲料添加剂的需求量大,用于基因工程高密度高表达的大型生物反应器研制已势在必行。

二.植物培养用生物反应器
由于植物细胞与微生物细胞形态结构不同,植物细胞较微生物细胞大,对剪切力耐受性差,而且对氧的要求相对微生物要低得多,因此微生物反应器并不完全适合于植物细胞生长与生产。

出现了许多有别于传统微生物反应器的植物细胞培养反应器并在不断完善。

用于植物细胞培养的反应器主要有搅拌式、非搅拌式及其改进型反应器,另外还有植物细胞固定化反应器和膜反应器等。

生物反应器的类型及其特点:
植物细胞培养具有周期长、细胞抗剪切能力弱、易团聚等特点。

同时,植物细胞规模培养的目的是生产天然产物,而这些天然产物均为细胞此生代谢物。

所以,植物细胞培养反应器的设计,不仅要考虑有利于细胞生长,同时还要考虑有利于产物的积累和分离。

总体上讲,适合植物细胞的反应器应该具有适宜的氧传递、良好的流动性和较低的剪切力。

根据不同植物细胞生长和代谢产物积累的特点,目前已研究设计出多种类型的反应器用于植物细胞培养。

反应器的选择取决于生产细胞的浓度、通气量以及所提供的营养成分的分散程度。

根据通气和搅拌系统的类型可将生物反应器分为以下几类:
1 机械搅拌式生物反应器
机械搅拌式生物反应器有较大的操作范围,混合程度高,适应性广,在大规模生产中广泛使用。

搅拌罐中产生的剪切力大,容易损伤细胞,直接影响细胞的生长和代谢,特别对于次级产物生成影响极大。

搅拌转速越高,产生剪切力越大,对植物细胞伤害越大。

对于有些对剪切力敏感的细胞,传统的机械搅拌罐不适用。

为此,对搅拌罐进行了改进,包括改变搅拌形式、叶轮结构与类型、空气分布器等,力求减少产生的剪切力,同时满足供氧与混合的要求。

2 非搅拌式生物反应器
相对于传统搅拌式反应器,非搅拌式反应器所产生的剪切力较小,结构简单,因此被认为适合植物细胞培养,其主要类型有鼓泡式反应器、气升式反应器和转鼓式反应器等。

通过对培养紫苏细胞的生物反应器比较发现鼓泡式反应器优于机械搅拌式反应器。

但由于鼓泡式反应器对氧的利用率较低,如果用较大通气量,则产生的剪切力会损伤细胞。

研究表明,喷大气泡时,湍流剪切力是抑制细胞生长和损害细胞的重要原因。

较大气泡或较高气速导致较高剪切力,从而对植物细胞有害。

气升式反应器广泛应用于植物细胞培养的研究和生产。

通过胡萝卜细胞培养研究发现,比较搅拌罐、气体喷射罐和带通气管的气升式反应器,最高细胞浓度和最短倍增时间可从气升罐中得到。

气升式反应器用于多种植物细胞悬浮培养或固定化细胞培养,但其操作弹性较小,低气速时,尤其H/D大,高密度培养时,混合性能欠佳。

过量供气,过高的氧浓度反而会影响细胞的生长和次生代谢产物的合成。

将气升式发酵罐与慢速搅拌结合使用可弥补低气速时混合性差的弱点,采用分段的气升管,也有利于氧的利用与混合。

转鼓式反应器用于烟草细胞悬浮培养的研究发现,与有一个通风管的气升式反应器相比,相同条件下转鼓式反应器中生长速率高,其氧的传递及剪切力对细胞的伤害水平方面均优于气升式反应器。

3 光生物反应器
许多植物细胞培养过程中需要光照,往往考虑在普通反应器基础上增加光照系统,但在实际中存在很多问题,如光源的安装、保护,光的传递,还有光照系统对反应器供气、混合的影响等。

小规模实验往往采用外部光照,反应器表面有透明的照明区,光源固定在反应器外部周围。

但大规模生产时透光窗的设置,内部培养物对光的均匀接受等问题难以解决,因此许多人对采用内部光源的反应器进行了研究。

其他新型反应器
根据植物细胞的特性,许多有别于传统微生物反应器的新型反应器正用于植物细胞的研究生产,如各种固定化植物细胞反应器和膜反应器等。

Dubuis等用新型环回式流化床反应器(loopfluidizedbedreactor)进行coffeaarabica培养,测定了生长和产物合成的动力学参数,认为该反应器操作方便,消除了气体直接喷射引起的剪切力,易于测定放大所需的参数,适合中试和工业化生产。

Nagai等用固定床反应器培养固定化烟草细胞,生长速率
与摇瓶相同,胞内合成与摇瓶无明显区别。

分类
一、悬浮培养生物反应器
1机械搅拌生物反应器
尽管机械搅拌反应器已成功用于许多细胞的培养中,反应器内的温度、pH、溶氧及营养物质浓度较其他反应器更易控制等优点,但由于机械搅拌造成的剪切力以对植物细胞造成较大的损伤,对次级代谢产物的合成也会产生影响,同时会带来染菌和机械上的问题,因此需筛选出抗剪切力的细胞系,也可对反应器结构进行改造,尤其是搅拌桨的结构和类型的改进,使其具有缓和、充分的搅拌效果。

2非机械搅拌式反应器
植物细胞的培养比较多地采用各种非机械搅拌生物反应器,其中常用的是气体搅拌生物反应器。

气体搅拌生物反应器没有活动的搅拌装置,在很大程度上减少了剪切力,并能在长期操作中保持无菌。

气体搅拌生物反应器包括鼓泡塔和气升式反应器等。

气体搅拌生物反应器结构较简单,氧传递效率高,剪切力低,对细胞的损伤小,容易实现长期无菌培养,较适用于植物细胞培养。

缺点:操作弹性小,低气速时尤其在培养后期细胞密度较高时,混合效果较差。

如果提高通气量,又会产生大量泡沫,也易于驱除培养液中的二氧化碳和乙烯,对细胞生长有阻碍作用。

过高的溶氧对植物细胞合成次级代谢产物不利。

二、固定化细胞生物反应器
1填充床生物反应器
细胞可以位于支撑物表面,也可包埋于支撑物之中,培养液流经支撑物颗粒,不断被细胞利用。

优点:单位体积固定细胞量大。

缺点:混合效果低,对必要的氧传递、pH、温度控制和气体产物的排除造成困难,影响细胞的培养。

2流化床生物反应器
利用液体的能量来悬浮颗粒。

颗粒呈流化状态所需的能量与颗粒大小成正比,因此常采用小固定化颗粒,这些小颗粒良好的传质特性是流化床反应器的优点,缺点:剪切力和颗粒碰撞会损坏固定化细胞。

3膜生物反应器
采用具有一定孔径和选择透性的膜固定植物细胞。

营养物质通过膜渗透到细胞中,细胞产生的次级代谢产物通过膜释放到培养液中。

主要有:中空纤维反应器和螺线式卷绕反应器,优点:可以重复使用。

传统的生物反应器速率较慢;体积反应速率不高;反应器体积大;产物浓度低,因此要求性能更高的生物反应器。

随着生物技术在各领域的推广应用,用于海洋藻类、微生物肥料、微生态饲料、环境污染处理等大规模细胞培养需要高强度低造价的生物反应器。

特别是近年来利用生物质生产燃料乙醇等能源物质的战略部署,需要应用大型高效节能生物反应器降低生产成本。

许多实验证明,在植物细胞培养过程中,抑制细胞生长和损伤细胞的主要是剪切力,而不是氧供应不足,相反,过高的氧浓度往往抑制细胞生长和产物合成。

提高混合程度,减低剪切力,是目前设计适于植物细胞培养反应器的主要原则,但如果能提高植物细胞对剪切力的耐受程度,将大大简化反应器的选择和设计问题。

很多情况下,剪切力抑制产物的合成,但对生长影响不大,探讨其机理有助于采取相应措施解决。

对于需要光照的细胞,还要考虑光源的设置、光传递及光的产热问题。

不同植物细胞的特性,如对剪切力的耐受性、结团情况、倍增时间、对氧和光的需求等各不相同,没有哪种反应器能满足所有植物细胞的要求,实验中应根据细胞特性采用合适的反应器,进一步研究各种植物细胞和不同反应器中流体力学的性质,可为选择和设计植物细胞培养反应器提供可靠的依据。

三.微藻培养用生物反应器
根据微藻自身的营养特点,可通过光能自养和化能异养两种方式来培养微藻。

微藻培养用生物反应器分类
1.封闭式光生物反应器
2.敞开式光生物反应器
比较
封闭式光生物反应器比敞开式培养系统有以下优点
1、培养密度高,收获效率也显著提高;
2、培养条件易于控制,易于实现高密度培养,对代谢产物积累有利;
3、无污染,可实现纯种培养;
4、不受地域环境限制,生产期长,可终年生产;
5、适合于所有微藻的光自养培养,尤其适合于微藻代谢产物产品的生产。

6、
四.医学
组织工程是生物医学工程领域中一个快速发展的分支,它融合了细胞生物学和工程学的原理,目的在开发具生物活性的组织替代物,期能修复受损组织或是再生。

由于组织工程对象是人体组织,细胞和组织块之体外培养条件必须仿生地接近人体内环境,因此生物反应器即为良好的应用工具,除在种子细胞增殖、组织块建构培养扮演重要角色外,生物反应器尚能控制pH、溶氧、机械应力、营养供给及代谢物移除等条件,为细胞的生长、分化和发育分化提供最适宜的环境。

如在旋转生物反应器内,应用微载体技术快速扩增并向软骨分化人脂肪干细胞。

将人脂肪干细胞结合Cytodex3微载体在旋转的生物反应器(RCSS)内进行动态培养,应用倒置显微镜和扫描电镜对微载体表面的脂肪干细胞进行动态观察,并对收获的脂肪干细胞进行Safranin O、toluidine blue染色等组织化学染色及Ⅱ型胶原的免疫化学染色分析。

脂肪干细胞于24 h内贴附于Cytodex3微载体表面,细胞形态为短梭形,随时间的延长,贴附于微载体的细胞逐渐增多,到培养后期,细胞密度可达最初接种的19倍左右,在微载体上收获的细胞进行番红花O、阿利新蓝染色呈阳性,Ⅱ型胶原染色阳性,均强于对照组。

利用微载体细胞培养技术可简便快速地在体外扩增脂肪干细胞,并成功实现向软骨细胞分化。

因此,本研究利用生物反应器技术结合微载体对ADSCs进行快速扩增同时向软骨细胞方向诱导,旨在观察ADSCs在微载体上增殖分化情况,探讨其未来临床应用的可行性。

生物反应器的商业应用前景
在过去15年里,生物技术工业不仅诞生了百亿美元级的公司,而且也成为当今世界商业活动中增长最快的领域之一。

生物技术产品的市场非常大,包括了医药、农业、渔业、造纸业和其他许多产业。

据统计,从上世纪80年代至今,通过DNA重组技术所生产的生物医药年销售额已超过100亿美元。

由于生物医药产业被许多国家视为强劲的经济增长点而加以重点扶持,生物医药的年销售规模将从1996年的101亿美元扩大到2006年的320亿美元,平均年增长率将达12%以上,其中治疗药物年平均增长16%,诊断试剂年平均增长9%。

美国是现代生物技术发展较早和较快的国家,1994年,美国生物技术药品年销售额为50多亿美元,至2001年,美国生物技术产品在全球市场上的销售额达200亿美元,占到全球总市场的约90%以上。

此外,美国还拥有世界上约一半的生物技术公司和一半的生物技术专利。

迄今为止,获得美国FDA批准上市的治疗类生物技术药品共16种,另外约有400多。

相关文档
最新文档