[工学]钢结构设计原理课件 第4章 受弯构件计算

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第4章 受弯构件的计算原理
▲ 截面塑性发展系数的取值见P110—~111表 4.2.1
第4章 受弯构件的计算原理
b
▲ 当翼缘外伸宽度b与其厚度t之比为:
t
Y
235 b 235
13 15
fy t
fy
XX
Y
时,塑性发展对翼缘局部稳定会有不利影响,应取x =1.0。
▲ 对于需要计算疲劳的梁,因为有塑性区深入的截面,塑
式中: 2c2c 3 21f (4.2.10)
M、V—验算截面的弯矩及剪力;
In—验算截面的净截面惯性矩; y1—验算点至中和轴的距离; S1—验算点以上或以下截面面积对中和轴的面积矩;
如工字形截面即为翼缘面积对中和轴的面积矩。
1—折算应力的强度设计值增大系数。
在式(4.2.10)中将强度设计值乘以增大系数1,是考虑到折算
根据材料力学开 口截面的剪应力计算 公式,梁的抗剪强度 或剪应力按下式计算:
第4章 受弯构件的计算原理
式中 :
Vy Sx Ixt
fv
图4.2.3 工字形和槽形截面梁中的剪应力
(4.2.4)
工字型截面剪应力 可近似按下式计算
Vy ——计算截面沿腹板平面作用的剪力; Sx ——计算剪应力处以上或以下毛截面
≤[]
(4.2.12)
——标准荷载下梁的最大挠度
[]——受弯构件的挠度限值,按附P384表2.1规定采用。
一般说来,梁的最大挠度可用材料力学、结构力学方法计算。
均布荷载下等 截面简支梁
5q4l 5Mxl2Mxl2
38E4xI 48ExI 1E 0xI
性区钢材易发生硬化,促使疲劳断裂提前发生,宜取 x= y =1.0。
第4章 受弯构件的计算原理
4.2.2 抗剪强度 1.剪力中心
在构件截面上有一特殊点S,当外力产生的剪力作用在 该点时构件只产生线位移,不产生扭转,这一点S称为构件 的剪力中心。也称弯曲中心,若外力不通过剪力中心,梁在 弯曲的同时还会发生扭转,由于扭转是绕剪力中心取矩进行 的,故S点又称为扭转中心。剪力中心的位置近与截面的形 状和尺寸有关,而与外荷载无关。
第4章 受弯构件的计算原理
第4章 受弯构件的计算原理
第4章 受弯构件的计算原理
第4章 受弯构件的计算原理
第4章 受弯构件的计算原理
2.抗弯强度计算
规范引入有限塑性发展系数x和y来表征截面抗弯强度的提高。 梁设计时只是有限制地利用截面的塑性,塑性发展深度取a≤h/8~
h/4。
来自百度文库
梁的抗弯强度应满足: (1)绕x轴单向弯曲时
Mx fy f xWx R
(4.2.2)
(2)绕x、y轴双向弯曲时
式中:
Mx My f xWnx yWny
(4.2.3)
Mx、My ——梁截面内绕x、y轴的最大弯矩设计值;
Wnx、Wny ——截面对x、y轴的净截面模量;
x、y ——截面对x、y轴的有限塑性发展系数,小于; f ——钢材抗弯设计强度 。
tw—腹板厚度 lz—集中荷载在腹板计算高度上边缘的假定分布长度,可按下式计算:
跨中集中荷载: lz = a+5hy +2hR
梁端支座反力: lz = a+2.5hy +b a—集中荷载沿梁长方向的实际支承长度。对于钢轨上轮压取a=50mm; hy—自梁顶面至腹板计算高度上边缘的距离。 hR—轨道的高度,对梁顶无轨道的梁hR=0。 b—梁端到支座板外边缘的距离,按实际取,但不得大于2.5hy
对中和轴的面积矩;
V hwtw
fv
Ix——毛截面惯性矩; t——计算点处板件的厚度;
fv——钢材抗剪设计强度。
max
1.2V hwtw
fv
第4章 受弯构件的计算原理
4.2.3 局部压应力
当梁上有集中荷载(如吊车轮压、次梁传来的集中力、支座反 力等)作用时,集中荷载由翼缘传至腹板,且该荷载处又未设置支 承加劲肋时,腹板边缘存在沿高度方向的局部压应力。为保证这部 分腹板不致受压破坏,应计算腹板上边缘处的局部承压强度。
第4章 受弯构件的计算原理
剪力中心S位置的一些简单规律 (1)双对称轴截面和点对称截面(如Z形截面),S与截 面形心重和; (2)单对称轴截面,S在对称轴上; (3)由矩形薄板中线相交于一点组成的截面,每个薄板中 的剪力通过该点,S在多板件的交汇点处。
常用开口薄壁截面的剪力中心S位置
2.弯曲剪应力计算
1.受力计算简图(荷载、支座约束) 2.各内力分布图(弯矩、剪力) 3.根据截面应力分布的不利情况,确定危险点 4.计算危险截面的几何特性
5.计算危险点的应力和折算应力 6.强度验算
第4章 受弯构件的计算原理
4.2.5 受弯构件的刚度
梁必须有一定的刚度才能保证正常使用和观感。梁的刚度可
用标准荷载作用下的挠度进行衡量。梁的刚度可按下式验算:
腹板的计算高度h0
第4章 受弯构件的计算原理
ho ho ho
t1
t1
b
b
1)轧制型钢,两内孤起点间距;
2)焊接组合截面,为腹板高度;
3)铆接(或高强螺栓连接)时为铆钉(或高强螺栓)间 最近距离。
第4章 受弯构件的计算原理
第4章 受弯构件的计算原理
4.2.4 折算应力
《规范》规定,在组合梁的腹板计算高度边缘处,若同时受有
图4.2.4 腹板边缘局部压应力分布
第4章 受弯构件的计算原理
腹板边缘处的局部承强度的计算公式为:
即要保证局
c
F
tw lz
f
式中:
(4.2.7)
部承压处的局部 压应力不超过材 料的屈服强度。
F—集中荷载,动力荷载作用时需考虑动力系数
—集中荷载放大系数(考虑吊车轮压分配不均匀),重级工作制吊车
梁=1.35,其它梁=1.0;
较大的正应力、剪应力和局部压应力c,应对这些部位进行验 算。其强度验算式为:
z2c2c 3 21f (4.2.10)
My 1 In
——弯曲正应力
c——局部压应力
、c c拉应力为正, 压应力为负。
VS 1 I nx t w
——剪应力
y 1 x
y1
τ
σc
σ
图4.2.5 、 、c的共同作用
第4章 受弯构件的计算原理
应力最大值只在局部区域,同时几种应力在同一处都达到最大值, 且材料强度又同时为最小值的概率较小,故将设计强度适当提高。 当和c异号时比同号时要提早进入屈服,而此时塑性变形能力高, 危险性相对较小故取 1 =1.2。 和c同号时屈服延迟,脆性倾向增 加,故取1 =1.1 。
受弯构件截面强度验算
第4章 受弯构件的计算原理
相关文档
最新文档