基于Matlab无速度传感器异步电机矢量控制器的建模与代码生成

基于Matlab无速度传感器异步电机矢量控制器的建模与代码生成
基于Matlab无速度传感器异步电机矢量控制器的建模与代码生成

异步电机矢量控制

目录 1引言 (1) 1.1 交流电机调速系统发展的现状 (1) 1.2 矢量控制的现状 (1) 1.3 课题的研究背景及意义 (2) 1.4 本课题的主要内容 (2) 2 矢量控制的基本原理 (4) 2.1 坐标变换的基本思路 (4) 2.2 矢量控制坐标变换 (5) 2.3 矢量控制系统结构 (8) 3 转子磁链定向的矢量控制方程及解耦控制 (10) 4 转速、磁链闭环控制的矢量控制系统 (13) 4.1 带磁链除法环节的直接矢量控制系统 (13) 4.2 带转矩内环的直接矢量控制系统 (13) 5 控制系统的设计与仿真 (15) 5.1 矢量控制系统的设计 (15) 5.2 异步电动机的重要子模块模型 (16) 5.3 系统仿真结果和分析 (18) 6 结论 (21) 参考文献 (22) 致谢.............................................................................................. 错误!未定义书签。

1引言 1.1 交流电机调速系统发展的现状 在当今用电系统中,电动机作为主要的动力设备而广泛地应用于工农业生产、防、科技及社会生活的方方面面[1] [2] [3] [4]。电动机负荷约占总发电量的60%~70%,成为电量最多的电气设备。根据采用的电流制式不同,电动机分为直流电动机和交电动机两大类,交流电动机分为同步电动机和异步电动机两种。电动机作为把能转换为机械能的主要设备,在实际的应用中,一是要使电动机具有较高的机能量转换效率:二是要根据生产机械的工艺要求控制并调节电动机的转速。电动的调速性能直接影响着产品质量、劳动生产效率和节电性能。 但是直到20世纪70年代,凡是要求调速范围广、速度控制精度高和动态响性能好的场合,几乎全都采用直流电动机调速系统。其原因主要是:(1)不论异步电动机还是同步电动机,唯有改变定子供电频率调速是最为方便的,而且以获得优异的调速特性。但大容量的变频电源却在长时期内没有得到很好的解;(2)异步电动机和直流电动机不同,它只有一个供电回路—定子绕阻,致其速度控制比较困难,不像直流电动机那样通过控制电枢电压或控制励磁电流可方便地控制电动机的转速。但交流电机,特别是笼式异步电动机,拥有结构单、坚固耐用、价格便宜且不需要经常维修等优点,正是这些突出的优点使得气工程师们没有放弃对电力牵引交流传动技术的探索和发展。进入20世纪70代,由于电力电子器件制造技术和微电子技术的突破和发展,先进的控制理论矢量控制、直接转矩控制等具有高动态控制性能的新技术开始被采用,使得交传动进入一个崭新的阶段。 交流电动机的诞生已有一百多年的历史,时至今日已经研制出了形式、用途容量等各种不同的品种。交流电动机分为同步电动机和异步电动机两大类。同电动机的转子转速与定子电流的频率保持严格不变的关系:异步电动机则不保这种关系。其中交流异步电动机拥有量最多,提供给工业生产的电量多半是通交流电动机加以利用的。据统计,交流电动机用电量约占电机总用电量的85%。 1.2 矢量控制的现状 自20世纪70年代,德国西门子公司的EBlasehke提出了“磁场定向控制的理论”和美国的PC.Custmna与A.AQark申请了专利“感应电机定子电压的坐标交换控

异步电动机无速度传感器矢量控制系统设计

肖金凤 1971年1月 生,1994年毕业于湖南大学电气与信息工程学院电机专业,学士学位,2004年毕业于湖南大学电气与信息工程学院控制工程专业,硕士学位,讲师。主要研究方向为电机智能控制、工业过程控制及综合自动化。 异步电动机无速度传感 器矢量控制系统设计 * 肖金凤1 , 黄守道2 , 李劲松 1 (1.南华大学,湖南 衡阳 421001;2.湖南大学,湖南 长沙 410082) 摘要 文章提出一种基于模糊神经网络的模型参考自适应电机转速辨识方法,将其与SVP WM 调制技术控制的变频器系统结合起来,组成了一种基于DSP 的异步电机无速度传感器矢量控制系统。具体介绍了其结构及软硬件的设计。仿真结果表明此系统动态性能好,能准确跟踪电机转速的变化。 关键词 异步电动机 无速度传感器 SVP WM 矢量控制 数字信号处理器 Fiel d Oriented Control Syste m of Speed Sensorless Based on DSP X iao Jinfeng ,Huang Shoudao ,L i Jingsong (1.N anhua Un iversity ;2.H unan Un i v ersity ) Abstract :This paper presents a ne w m et h od of i n ducti o n m otor speed identifica -ti o n .It is the co m binati o n o f f u zzy neural net w ork (FNN )w ith m odel reference adap -ti v e syste m (MRAS).W e co m bi n e this m ethod w it h the i n verter contro lled by space vector pulse w idth m odu lati o n (SVP WM )to for m a field oriented con tro l syste m o f speed senso rless based on DSP . Its struct u re and soft w are and hardw are are ana -l y zed .The S i m u lation results sho w that the contro l syste m has better dyna m ic per -f o r m ance and can accurately track the variati o n of the m otor speed . K ey w ords :I nducti o n m oto r Speed sensorless SVP WM F ield oriented con -tro l (FOC) DSP *湖南省自然科学基金资助项目(编号:02JJ Y 2089) 1 引言 异步电动机的数学模型由电压方程、磁链方 程、转矩方程和运动方程组成,是一个高阶、非线性、强耦合的多变量系统。采用传统的控制策略对其进行控制时,动态控制效果较差。目前异步电动机控制研究工作正围绕几个方面展开:采用新型电力电子器件和脉宽调制控制技术;应用矢量控制技术及现代控制理论、智能控制技术;广泛应用数字控制系统及计算机技术;无速度传感器控制技术。本文以电机控制专用芯片 T M S320F240为核心,采用磁通、转速闭环的矢量控制策略,利用SVP WM 脉宽调制技术、无速度传感器及智能控制技术,设计了一电机控制系统。仿真结果表明该控制系统抗干扰能力强,动态性能好。 2 速度估计策略 模型参考自适应方法(MRAS)是应用较广的速度估计方法。本文设计的模型参考自适应速度估计系统为减少定子电阻的影响选择瞬时无功功率模型,同时为有效解决瞬时无功功率模型参考 40 异步电动机无速度传感器矢量控制系统设计《中小型电机》2005,32(2)

异步电机矢量控制仿真

2.5异步电机基于磁场定向的矢量控制系统仿真 学号:S16085207020 姓名:李端凯 图1 矢量控制仿真模型整体结构图 图2 id*求解模块 图3 iq*求解模块

图4 DQ到ABC坐标转换模块 图5 求解转子磁链角模块 图6-1 ABC到DQ坐标转换模块 在这一部分转换中包含两种变换——3/2变换和旋转变换。在交流电动机中三相对称绕组通以三相对称电流可以在电动机气隙中产生空间旋转的磁场,在功率不变的条件下,按磁动势相等的原则,三相对称绕组产生的空间旋转磁场可以用两相对称绕组来等效,三相静止坐标系和两相静止坐标系的变换则建立了磁动势不变情况下,三相绕组和两相绕组电压、电流和磁动势之间的关系。图1绘出了ABC 和αβ两个坐标系中的磁动势矢量,按照磁动势相等的等效原则,三相合成磁动势与两相合成磁动势相等,故两套绕组磁动势在α、β轴上的投影都应相等,于是得:

()233332333cos60cos6011 ()22 sin 60sin 602a b c a b c b c b c N i N i N i N i N i i i N i N i N i N i i αβ=--=--=-=+ 写成矩阵形式: 图6-2 ABC 和αβ两个坐标系中的磁动势矢量 111220a b c i i i i i αβ???-- ?????=??????????? 再就是旋转变换,两相静止坐标系和两相旋转坐标系的变换(简称2s/2r 变换),两相静止绕组,通以两相平衡交流电流,产生旋转磁动势。如果令两相绕组转起来,且旋转角速度等于合成磁动势的旋转角速度,则两相绕组通以直流电流就产生空间旋转磁动势。从两相静止坐标系到两相旋转坐标系的变换,称为两相旋转-两相静止变换,简称2s/2r 变换。其变换关系为: cos sin sin cos d q i i i i αβφφφφ-??????=???????????? 由此整理得到: 111cos sin 22sin cos 0a d b q c i i i i i φφφφ????-- ????????=?????-?????????? 同理可得:DQ 到ABC 坐标转换则是其逆变换。 图7 求解磁链模块

无速度传感器矢量控制

无速度传感器矢量控制技术的行业现状与展望 The Comprehensive Status Analysis and Future Development Tendency of Sensor-less Vector Control (SVC) Technology 1 引言 交流传动在高性能场合的应用始于矢量控制概念的引入,包括直接磁场定向与间接磁场定向控制。尽管这一概念早在60年代就已出现,并由Siemens 的Blaschke博士于1972年正式提出,但是真正应用还是在微电子技术发展的二十年后。矢量控制从基本原理上讲能够获得优异的动静态特性,但是对电机参数的敏感性却成为实际应用中必须解决的问题。驱动器通过启动前的自整定以及运行过程中的在线整定,适应电机参数变化,保持矢量控制的动静态性能,这些复杂的自适应控制算法都必须通过强大的信号处理器才能完成。 近年来随着半导体技术的发展及数字控制的普及,矢量控制的应用已经从高性能领域扩展至通用驱动及专用驱动场合,乃至家用电器。交流驱动器已在工业机器人、自动化出版设备、加工工具、传输设备、电梯、压缩机、轧钢、风机泵类、电动汽车、起重设备及其它领域中得到广泛应用。随着半导体技术的飞速发展,功率器件在不断优化,开关速度在提高而损耗在下降,功率模块的功率密度在不断增加;数字信号处理器的处理能力愈加强大,处理速度不断提升,交流驱动器完全有能力处理复杂的任务,实现复杂的观测、控制算法,现代交流传动的性能也因此达到前所未有的高度。以代表交流驱动控制最高水平的交流伺服为例,其需求随着新的生产技术与新型加工原料的出现而迅速增长。据相关统计,高性能交流伺服驱动器数量的年增长率超过12%。伺服驱动中应用最多的电机是异步电机及同步电机,额定功率从50W到200kW,位置环、速度环以及转矩环路的典型带宽分别为60Hz、200Hz 以及1000Hz。 交流电机驱动中的大部分问题应当说在当今的驱动器中已经得到解决,相关的成熟技术提供了被业界广泛接受的解决方案,并在许多领域中得到成功应用,因此从基本结构上来讲,交流驱动器的现有设计方案在未来的几年中不会有大的变化。现在,交流驱动器开发的一个重点是如何将驱动器与电机有机地结合在一起,开发出更低成本、高可靠性、高性能“驱动模块”。基于这一思路,为进一步减小成本、提高可靠性,开发人员在如何省去轴侧传感器以及电机相电流传感器进行了深入的研究,特别是高性能无速度传感器矢量控制(SVC)的实现吸引了各国研发人员的广泛关注,并已成为近年来驱动控制研究的热点。随着具有强大处理能力的数字信号处理器的推出,实现该控制方式所需要的高鲁棒性、自适应的参数估计以及非线性状态观测成为可能,新的无速度传感控制方案不断推出。Siemens、Yaskawa、Toshiba GE、Rockwell、Mistubishi、Fuji等知名公司纷纷推出自己的SVC控制产品(本文所指SVC均针对异步电机),控制特性也在不断提高。SVC目前已在印刷、印染、纺机、钢铁生产线、起重、电动汽车等领域中广泛应用,在高性能交流驱动中占有愈来愈重要的地位。 2 无速度传感器矢量控制的优势 概括来说,无速度传感器矢量控制可以获得接近闭环控制的性能,同时省去了速度传感器,具有较低的维护成本。与传统V/Hz控制比较,无速度传感器矢量控制可以获得改进的低速运行特性,变负载下的速度调节能力亦得到改善,同时还可获得高的起动转矩,这在高摩擦与惯性负载的起动中有明显的优势。正是由于这些驱动特性,该控制技术已逐渐成为通用恒转矩驱动应用的选择。事实上,基本上所有的AC驱动厂家都提供该控制模式。 Schneider公司的驱动市场经理Susan Bowler认为,该控制模式的吸引人之处在于利用最小的附加费用获得大大增强的性能,包括低速特性、转矩响应及定位能力等。由于其性能接近伺服驱动,公司在拓展需要更精确负载定位控制的场合。该公司的第三代Altivar无速度传感器驱动产品具有自调谐特性,确保驱动器在电机运行参数随时间发生变化的情况下

无速度传感器永磁同步电机发展与控制策略评述

无速度传感器永磁同步电机发展与控制策略评述潘萍付子义 中图分类号:TM351TM344.4文献标识码:A文章编号:1001-6848(2007)06-0091-02无速度传感器永磁同步电机发展与控制策略评述 潘萍,付子义 (河南理工大学,焦作454003) 摘要:介绍了永磁同步电机无速度传感器控制策略,分析了无速度传感器技术研究现状,指出状态观测器法及谐波注入法是目前无速度传感器技术的研究热点。 关键词:永磁同步电机;无速度传感器;评述;控制策略;状态观测器;谐波注入法 DevelopmentRenewandStrategyofPermanentM_agnetSynchronousMoOrSpeedSensorless PANPing,FUZi—yi (HenanPolytechnicUniversity,Jiaozuo454003,China) ABSTRACT:Thispapersummarizesthestrategyofpermanentmagnetsynchronousmotor.Itanalyzesthepresentofspeedsensorlesstechonologyofpermanentmagnetsynchronousmotor,indicatesthatthestateobserverandharmonicinjectionprocessarecurrentresearchfocus. KEYWORDS:Permanentmagnetsynchronousmotor;Speedsensorless;Review;Controlstrategy;Stateobserver;Harmonicinjectionmethod O引言 永磁同步电机控制系统离不开高精度的位置和速度传感器,但在实际的系统中,传感器的存在不仅增加了系统成本,还易受工作环境影响,同时也降低了系统的可靠性,因此,无速度传感器交流调速系统成为近年研究热点¨j。 1无速度传感器永磁同步电机研究及发展 无速度传感器永磁同步电机是在电机转子和机座不安装电磁或光电传感器的情况下,利用直接计算、参数辨识、状态估计、间接测量等手段,从定子边较易测量的量,如定子电压、定子电流中提取出与速度有关的量,从而得出转子速度,并应用到速度反馈控制系统中。 国际上对永磁同步电机无速度传感器的研究始于20世纪70年代旧J。1975年,A.Abbondanti等人推导出了基于稳态方程的转差频率估计方法, 收稿日期:2006—09-26 基金项目:河南省杰出青年科学基金(0211060500);河南省重要攻关项目(9911020429)在无速度传感器控制领域作出首次尝试,调速比可达10:l。但由于其出发点是稳态方程,动态性能和调速精度难以保证。1979年,M.Ishida等学者利用转子齿谐波来检测转速,限于当时的检测技术和控制芯片的实时控制能力,仅在大于300r/rain的转速范围取得较好的结果。1983年R.Joetten首次将无速度传感器技术应用于永磁同步电机矢量控制。近年来,德国亚探工大(RWTHAachen)电机研究所的学者又先后开展了采用推广卡尔曼滤波器的永磁同步电机和感应电机无机械传感器调速系统的研究。美国麻省理工学院(MIT)电机工程系的学者在1992年发表了采用全阶状态观测器的无传感器永磁同步电机调速系统的论文。由于状态观测器受电机参数变化的影响较大,还需要另外一个状态观测器来估计电机的参数,这样使无传感器永磁同步调速系统的估计算法变得比较复杂,同时系统还存在对负载变化比较敏感等问题。国内自90年代中开始,也开始对永磁电机无速度传感器控制技术进行研究,但主要局限于各高等院校,研究主要还是着重于理论和仿真方面。 一91—   万方数据

异步电动机矢量控制系统的仿真

异步电动机矢量控制系统仿真 1.异步电机矢量控制系统的原理及其仿真 1.1 异步电动机矢量控制原理 异步电机矢量变换控制系统和直接转矩控制系统都是目前已经获得使用的高性能异步电机调速系统,对比直接转矩控制系统,矢量变换系统有可以连续控制,调速范围宽的优点,因此矢量变换控制系统为现代交流调速的重要方向之一。 本文采用的是转子磁场间接定向电流控制型交流异步电机矢量控制系统[1],如图1所示。 图1矢量变换控制系统仿真原理图 如果把转子磁链方向按空间旋转坐标系的M轴方向定向,则可得到按转子磁场方式定向下的三相鼠笼式异步电动机的矢量控制方程。 (1) (2) (3) (4)

(5) 上列各式中,是转子励磁电流参考值;是转差角频率给定值;是定子电流的励磁分量;是定子电流的转矩分量;是定子频率输入角频率; 是转子速度;是转子磁场定向角度;是转子时间常数;和分别是电机互感和转子自感。 图4所示控制系统中给定转速和实际电机转速相比较,误差信号送入转速调节器,经转速调节器作用产生给定转矩信号,电机的激磁电流给定信号根据电机实际转速由弱磁控制单元产生,再利用式(1)产生定子电流激磁分量给定信号,定子电流转矩分量给定信号则根据式(2)所示的电机电磁转矩表达式生成。、和转子时间常数Lr一起产生转差频率信号,和ωr相加生成转子磁场频率给定信号,对积分则得到转子磁场空间角度给定信号。和经坐标旋转和2/3相变换产生定子三相电流给定信号、和,和定子三相电流实测信号、和相比较,由滞环控制器产生逆变器所需的三相PWM信号。 1.2 异步电机转差型矢量控制系统建模 在MATLAB/SIMULINK环境下利用电气系统模块库中的元件搭建交流异步电机转差型矢量控制系统[2],电流控制变频模型如图2所示。 图2 电流控制变频模型图 整个仿真图由电气系统模块库中的元件搭建组成,元件的直观连接和实际的主电路相像似,其中主要包括:速度给定环节,PI速度调节器、坐标变换模块、

无速度传感器的高性能异步电动机调速系统

无速度传感器的高性能异步电动机调速系统 范钦德杜耀武 范钦德先生,上海电器科学研究所(集团)有限公司研究员级高级工程师; 杜耀武先生,上海格立特电力电子有限公司工学博士。 关键词:无速度传感器 矢量控制磁链观测 目前广泛使用的通用变频器多为VVVF控制的开环系统,明显地存在转矩小、低速性能差、稳态精确度低、动态性能(加减速性能和负载抗干扰性能)不理想等缺点。特别是低速时由于定子压降和死区电压误差的存在,使系统性能受到严重影响,甚至发生不稳定现象。而在高性能的交流电机矢量控制系统中,转速的闭环控制环节一般是必不可少的。通常,采用光电码盘等速度传感器来进行转速检测,并反馈转速信号。这样,由于速度传感器的安装会给系统带来一些问题:如安装的精确度将影响测速的精确度,并给电机的维护带来一定困难,同时破坏了异步电机的简单坚固的特点,在恶劣环境下,速度传感器工作的精确度易受环境的影响。另外,因必须安装速度传感器,对推广应用也将造成一定的影响。 作为高性能通用变频器发展方向的无速度传感器矢量控制通用变频器就是解决上述缺点而提出的现实问题。其根本目的是在保持通用变频器方便、可靠等优点的前提下,不增加硬件成本,无需速度传感器,其性能却接近带速度反馈的矢量控制系统。 无速度传感器矢量控制的核心问题是对电机磁链的观测和转子的速度进行估计,控制系统性能好坏将取决于合理的控制方案与速度辨识环节的恰当结合。上世纪70年代末国外就已经开展了此项的研究。目前较典型的估计算法有:利用电机方程式直接计算法;模型参考自适应法;扩展卡尔曼滤波法;定子侧电量FFT分析法;非线性方法。但这些方法大多从理想条件下的电机数学模型出发,在不同程度上依赖于电机的参数和运行状态。当电机参数变化时,系统控制性能变差而且有些方法过于复杂,给具体方案的实现带来了很大的困难。基于电机磁链观测的转子速度估计方法计算简便,工程上易于实现,许多高性能无速度传感器矢量控制均采用该方法。 本调速系统基于一种电机磁链混合观测模型,设计了一种无速度传感器的控制方案,实现速度闭环控制。该方法简单实用,在整个速度范围内达到了良好的性能。 一控制原理 矢量控制技术得以有效实现的基础在于异步电机磁链信息的准确获取。为进行磁场定向和磁场反

无速度传感器的矢量控制系统仿真

课程设计任务书 学生姓名:专业班级: 指导教师:工作单位:武汉理工大学 题目: 无速度传感器的矢量控制系统仿真 初始条件: 电机参数为:额定电压U=380V、频率50 =、定子电阻s R=0.252Ω、 f Hz 额定功率P=2.2KW、定子自感 L=0.0016H、转子电阻r R=0.332Ω、额定转速 s n=1420rpm、转子自感r L=0.0016H、级对数p n=2、互感m L=0.08H、转动惯量J=0.6Kgm2 要求完成的主要任务: (1)设计系统原理图; (2)用MATLAB设计系统仿真模型; (3)能够正常运行得到仿真结果,包括转速、转矩等曲线,并将推算转速与实际转速进行比较 参考文献: [1] 洪乃刚.《电力电子和电力拖动控制系统的MATLAB仿真》.北京:机械 工业出版社,2005:212-215 时间安排: 2011年12月5日至2011年12月14日,历时一周半,具体进度安排见下表 具体时间设计内容 12.5 指导老师就课程设计内容、设计要求、进度安排、评分标准等做具体介 绍;学生确定选题,明确设计要求 12.6-12.9 开始查阅资料,完成方案的初步设计 12.10—12.11 由指导老师审核设计方案,学生修改、完善并对其进行分析 12.12-12.13 撰写课程设计说明书 12.14 上交课程设计说明书,并进行答辩 指导教师签名:年月日 系主任(或责任教师)签名:年月日

摘要 异步电动机具有非线性、强耦合、多变量的性质,要获得高动态调速性能,必须从动态模型出发,分析异步电动机的转矩和磁链控制规律,研究高性能异步电机的调速方案。矢量控制是目前交流电动机较先进的一种动态模型,它又有基于转差频率控制的、无速度传感器和有速度传感器等多种矢量控制方式。无速度传感器控制的高性能通用变频器是当前全世界自动化技术和节能应用中受到普遍关心的产品和开发课题。本文介绍无速度传感器的矢量控制系统的原理和Matlab仿真。 关键词:矢量控制、无速度传感器、Matlab

异步电机的矢量控制系统

电力拖动课程结题报告 题目:异步电机的矢量控制系统 班级:K0312417 姓名:罗开元 学号:K031241723 老师:郎建勋老师 2015年 6月 22 日

前言 异步电机的矢量控制设计及仿真在矢量控制技术出现之前,交流调速系统多为V / f 比值恒定控制方法,又常称为标量控制。采用这种方法在低速及动态(如加减速)、加减负载等情况时,系统表现出明显的缺陷,所以交流调速系统的稳定性、启动、低速时的转矩动态相应都不如直流调速系统。随着电力电子技术的发展,交流异步电机控制技术全面从标量控制转向了矢量控制,采用矢量控制的交流电机完全可以和直流电机的控制效果相媲美,甚至超过直流调速系统。 矢量变换控制(以下简称VC)技术的诞生和发展为现代交流调速技术的发展提供了理论基础。交流电动机是一个多变量、非线性、强耦合的被控对象,采用了参数重构和状态重构的现代控制理论概念可以实现交流电动机定子电流的励磁分量和转矩分量之间的解耦,实现了将交流电动机的控制过程等效为直流电动机的控制过程。这就使得交流调速系统的动态性能得到了显著的改善和提高,从而使交流调速最终取代直流调速系统成为可能。实践证明,采用矢量控制方法的交流调速系统的优越性高于直流调速系统。矢量控制原理的出现也促进了其它控制方法的产生,如多变量解耦控制等方法。 七十年代初期,西门子公司的F .Blashke 和W .Flotor 提出了“感应电机磁场定向的控制原理”,通过矢量旋转变换和转子磁场定向,将定子电流按转子磁链空间方向分解成为励磁分量和转矩分量,这样就可以达到对交流电机的磁链和电流分别控制的目的,得到了类似于直流电机的模型,然后模拟直流电机进行控制,可以获得良好的静、动态调速性能。本文分析异步电机的数学模型及矢量控制原理的基础上, 利Matlab/Simulink 中SimPowerSystems 模块,采用模块化的思想分别建立了交流异步电机模块、矢量控制器模块、坐标变换模块、磁链调节器模块、速度调节模块, 再进行功能模块的有机整合, 构成了按转子磁场定向的异步 电机矢量控制系统仿真模型。仿真结果表明该系统转速动态响应快、稳态静差小、抗负载扰动能力强, 验证了交流电机矢量控制的可行性、有效性。 1.异步电机的 VC 原理 1.1 坐标变换 坐标变换的目的是将交流电动机的物理模型变换成类似直流电动机的模式,这样变换后,分析和控制交流电动机就可以大大简化。以产生同样的旋转磁动势为准则,在三相坐标 系上的定子交流电机A i 、B i 、C i ,通过3/2变换可以等效成两相静止坐标系上的交流电流 α i 和 β i ,再通过同步旋转变换,可以等效成同步旋转坐标系上的直流电流 d i 和q i 。如果观察 者站到铁心上与坐标系一起旋转,他所看到的就好像是一台直流电动机。 把上述等效关系用结构图的形式画出来,得到图l 。从整体上看,输人为A ,B ,C 三相电压,输出为转速ω,是一台异步电动机。从结构图内部看,经过3/2变换和按转子磁链

感应电机矢量控制系统的仿真

《运动控制系统》课程设计学院: 班级: 姓名: 学号: 日期: 成绩:

感应电机矢量控制系统的仿真 摘要:本文先分析了异步电机的数学模型和坐标变换以及矢量控制基本原理,然后利用Matlab /Simulink软件进行感应电机的矢量控制系统的仿真。采用模块化的思想分别建立了交流异步电机模块、逆变器模块、矢量控制器模块、坐标变换模块、磁链观测器模块、速度调节模块、电流滞环PWM调节器,再进行功能模块的有机整合,构成了按转子磁场定向的异步电机矢量控制系统仿真模型。仿真结果表明了该系统转速动态响应快、稳态静差小、抗负载扰动能力强,验证了交流电机矢量控制的可行性和有效性。 关键词:异步电机;坐标变换;矢量控制;Simulink仿真 一、异步电机的动态数学模 型和坐标变换 异步电机的动态数学模型是一个 高阶、非线性、强耦合的多变量系统, 异步电机的数学模型由下述电压方 程、磁链方程、转矩方程和运动方程 组成。 电压方程: 礠链方程: 转矩方程: 运动方程: 异步电机的数学模型比较复杂, 坐标变换的目的就是要简化数学模 型。异步电机数学模型是建立在三相 静止的ABC坐标系上的,如果把它变 换到两相坐标系上,由于两相坐标轴 互相垂直,两相绕组之间没有磁的耦 合,仅此一点,就会使数学模型简单 了许多。 (1)三相--两相变换(3/2变换) 在三相静止绕组A、B、C和两相 静止绕组a、b 之间的变换,或称三相 静止坐标系和两相静止坐标系间的变 换,简称 3/2 变换。 (2)两相—两相旋转变换(2s/2r变 换) 从两相静止坐标系到两相旋转坐 标系 M、T 变换称作两相—两相旋转 变换,简称 2s/2r 变换,其中 s 表 示静止,r 表示旋转。

无速度传感器简介

无速度传感器 在高性能的异步电机矢量控制系统中,转速的闭环控制环节一般是必不可少的。通常,采用光电码盘等速度传感器来进行转速检测,并反馈转速信号。但是,由于速度传感器的安装给系统带来一些缺陷:系统的成本大大增加;精度越高的码盘价格也越贵;码盘在电机轴上的安装存在同心度的问题,安装不当将影响测速的精度;电机轴上的体积增大,而且给电机的维护带来一定困难,同时破坏了异步电机的简单坚固的特点;在恶劣的环境下,码盘工作的精度易受环境的影响。因此,越来越多的学者将眼光投向无速度传感器控制系统的研究。国外在20世纪70年代就开始了这方面的研究,但首次将无速度传感器应用于矢量控制是在1983年由R.Joetten完成,这使得交流传动技术的发展又上了一个新台阶,但对无速度传感器矢量控制系统的研究仍在继续。 2无速度传感器的控制方法 在近20年来,各国学者致力于无速度传感器控制系统的研究,无速度传感器控制技术的发展始于常规带速度传感器的传动控制系统,解决问题的出发点是利用检测的定子电压、电流等容易检测到的物理量进行速度估计以取代速度传感器。重要的方面是如何准确地获取转速的信息,且保持较高的控制精度,满足实时控制的要求。无速度传感器的控制系统无需检测硬件,免去了速度传感器带来的种种麻烦,提高了系统的可靠性,降低了系统的成本;另一方面,使得系统的体积小、重量轻,而且减少了电机与控制器的连线,使得采用无速度传感器的异步电机的调速系统在工程中的应用更加广泛。国内外学者提出了许多方法。 (1)动态速度估计法主要包括转子磁通估计和转子反电势估计。都是以电机模型为基础,这种方法算法简单、直观性强。由于缺少无误差校正环节,抗干扰的能力差,对电机的参数变化敏感,在实际实现时,加上参数辨识和误差校正环节来提高系统抗参数变化和抗干扰的鲁棒性,才能使系统获得良好的控制效果。 (2)PI自适应控制器法其基本思想是利用某些量的误差项,通过PI自适应控制器获得转速的信息,一种采用的是转矩电流的误差项;另一种采用了转子q轴磁通的误差项。此方法利用了自适应思想,是一种算法结构简单、效果良好的速度估计方法。 (3)模型参考自适应法(MRAS)将不含转速的方程作为参考模型,将含有转速的模型作为可调模型,2个模型具有相同物理意义的输出量,利用2个模型输出量的误差构成合适的自适应律实时调节可调模型的参数(转速),以达到控制对象的输出跟踪参考模型的目的。根据模型的输出量的不同,可分为转子磁通估计法、反电势估计法和无功功率法。转子磁通法由于采用电压模型法为参考模型,引入了纯积分,低速时转子磁通估计法的改进,前者去掉了纯积分环节,改善了估计性能,但是定子电阻的影响依然存在;后者消去了定子电阻的影响,获得了更好的低速性能和更强的鲁棒性。总的说来,MRAS是基于稳定性设计的参数辨识方法,保证了参数估计的渐进收敛性。但是由于MRAS的速度观测是以参考模型准确为基础的,参考模型本身的参数准确程度就直接影响到速度辨识和控制系统的成效。 (4)扩展卡尔曼滤波器法将电机的转速看作一个状态变量,考虑电机的五阶非线性模型,采用扩展卡尔曼滤波器法在每一估计点将模型线性化来估计转速,这种方法

异步电机矢量控制设计

异步电机的矢量控制设计及仿真

前言 异步电机的矢量控制设计及仿真在矢量控制技术出现之前,交流调速系统多为V / f 比值恒定控制方法,又常称为标量控制。采用这种方法在低速及动态(如加减速)、加减负载等情况时,系统表现出明显的缺陷,所以交流调速系统的稳定性、启动、低速时的转矩动态相应都不如直流调速系统。随着电力电子技术的发展,交流异步电机控制技术全面从标量控制转向了矢量控制,采用矢量控制的交流电机完全可以和直流电机的控制效果相媲美,甚至超过直流调速系统。 矢量变换控制(以下简称VC)技术的诞生和发展为现代交流调速技术的发展提供了理论基础。交流电动机是一个多变量、非线性、强耦合的被控对象,采用了参数重构和状态重构的现代控制理论概念可以实现交流电动机定子电流的励磁分量和转矩分量之间的解耦,实现了将交流电动机的控制过程等效为直流电动机的控制过程。这就使得交流调速系统的动态性能得到了显著的改善和提高,从而使交流调速最终取代直流调速系统成为可能。实践证明,采用矢量控制方法的交流调速系统的优越性高于直流调速系统。矢量控制原理的出现也促进了其它控制方法的产生,如多变量解耦控制等方法。 七十年代初期,西门子公司的F .Blashke和W .Flotor提出了“感应电机磁场定向的控制原理”,通过矢量旋转变换和转子磁场定向,将定子电流按转子磁链空间方向分解成为励磁分量和转矩分量,这样就可以达到对交流电机的磁链和电流分别控制的目的,得到了类似于直流电机的模型,然后模拟直流电机进行控制,可以获得良好的静、动态调速性能。本文分析异步电机的数学模型及矢量控制原理的基础上, 利Matlab/Simulink中SimPowerSystems模块,采用模块化的思想分别建立了交流异步电机模块、矢量控制器模块、坐标变换模块、磁链调节器模块、速度调节模块, 再进行功能模块的有机整合, 构成了按转子磁场定向的异步电机矢量控制系统仿真模型。仿真结果表明该系统转速动态响应快、稳态静差小、抗负载扰动能力强, 验证了交流电机矢量控制的可行性、有效性。 1.异步电机的VC 原理 1.1 坐标变换 坐标变换的目的是将交流电动机的物理模型变换成类似直流电动机的模式,这样变换后,分析和控制交流电动机就可以大大简化。以产生同样的旋转磁动势 为准则,在三相坐标系上的定子交流电机A i、B i、C i,通过3/2变换可以等效成

异步电机矢量控制Matlab仿真实验

基于Matlab/Simulink异步电机矢量控制系统仿真 一.理论基础 矢量控制系统的基本思路是以产生相同的旋转磁动势为准则,将异步电动机在静止三相坐标系上的定子交流电流通过坐标变换等效成同步旋转坐标系上的直流电流,并分别加以控制,从而实现磁通和转矩的解耦控制,以达到直流电机的控制效果。所谓矢量控制,就是通过矢量变换和按转子磁链定向,得到等效直流电动机模型,在按转子磁链定向坐标系中,用直流电动机的方法控制电磁转矩与磁链,然后将转子磁链定向坐标系中的控制量经变换得到三相坐标系的对应量,以实施控制。其中等效的直流电动机模型如图1-1所示,在三相坐标系上的定子交流电流iA、iB、iC ,通过3/2变换可以等效成两相静止正交坐标系上的交流isα和isβ,再通过与转子磁链同步的旋转变换,可以等效成同步旋转正交坐标系上的直流电流ism和ist。 图1-1 异步电动机矢量变换及等效直流电动机模型 从图1-1的输入输出端口看进去,输入为A、B、C三相电流,输出为转速ω,是一台异步电动机。从内部看,经过3/2变换和旋转变换2s/2r,变成一台以ism和ist为输入、ω为输出的直流电动机。m绕组相当于直流电动机的励磁绕组,ism相当于励磁电流,t绕组相当于电枢绕组,ist相当于与转矩成正比的电枢电流。 按转子磁链定向仅仅实现了定子电流两个分量的解耦,电流的微分方程中仍存在非线性和交叉耦合。采用电流闭环控制,可有效抑制这一现象,使实际电流快速跟随给定值,图1-2是基于电流跟随控制变频器的矢量控制系统示意图。

图1-2矢量控制系统原理结构图 通过转子磁链定向,将定子电流分量分解为励磁分量i sm 和转矩分量i st ,转子磁链r ψ仅由定子电流分量i sm 产生,而电磁转矩e T 正比与转子磁链和定子电流转矩分量的乘积,实现了定子电流的两个分量的解耦。简化后的等效直流调速系统如图1-3所示。 图1-3简化后的等效直流调速系统 二.设计方法 1.电流模型设计 转子磁链在实用的系统中多采用按模型计算的方法,即利用容易测得的电压、电流或转速等信号,借助于转子磁链模型,实时计算磁链的幅值与空间位置。转子磁链模型可以从电动机数学模型中推导出来,也可以利用专题观测器或状态估计理论得到闭环的观测模型。在计算模型中,由于主要实测信号的不同,又分为电流模型和电压模型两种。本设计采用在αβ坐标系上计算转子磁链的电流模型。 由实测的三相定子电流通过3/2变换得到静止两相正交坐标系上的电流i sα和i sβ,在利用αβ坐标系中的数学模型式计算转子磁链在αβ轴上的分量 ?? ? ?? ?? ++-=+--=β αβχαβααωψψψωψψψs r r r s r r r i Tr Lm Tr dt d i Tr Lm Tr dt d 11 (2-1-1) 也可表述为:

感应电机高性能无速度传感器控制系统--回顾、现状与展望

电气传动2004年第l期 感应电机高性能无速度传感器控制系统 ——回顾、现状与展望 李篡嚣才m3月 摘要文章对感应电机岛|生能无速度传感;}{}控制的策略进行分析和分类,将当前该研究领域的土要控制策略分为基1:电机理想模型的方案和基于电机非理想特性的方案加以介绍.并且列…了无速度传感器控制的研究热点。 关键词:感应电机无速度传感器柠制磁通观测 speedsensorlesscontroJofInduction MotorwithHighPerformance LiYo“gdo“gl』iMingc“ Abstract:ThI。”畔7(Il…sesthe8pced scns。rle…nductJ。…ac¨㈣untrolmeth。dswIthhlghper【ormⅢ1ce.a11d【1.1sslflPsthemintotwocatezorIesmet】10dsb…d…dea】mot…odcIandbased01111。n】de“chtlractcrlstIcs l'he…renⅢse…hfu“I…dprobkmslnthlsareaa…Jsolnlrod…d Keywords:¨1(1ucIlotl¨Iott……orle引ontrolfl…bs…atIoll 1引言 随着感应电机无速度传感器控制理论和电机控制专用cPU的发展,感应电机高性能无速度传感器控制的实现有了很好的硬件和软件条件,可以实现更完整的电机建模及更先进复杂的观测和控制算法。 在电机的动态方程中,转速是电机模型的一个参数,无速度传感器控制省去了复杂昂贵的转速榆测器件.因此带来一系列问题。 1)转速闭环只能采用辩识的转速进行反馈,转速控制的精度依赖于速度辨识的精度。 2)一些磁通观测方法不能独立使用。例如:包含转速的电机电流模型和全阶观测器无法独立应用。在无速度传感器控制时,这些模型可作为模型参考自适应系统的参考模型或可调模型用于转速和磁通同时计算。因此无速度传感器系统不仅是少r转速闭环所需的反馈信号,更重要的是少了一个稳定磁通计算的电机参数——转速。 3)低频范围磁链观测难度大。感应电机的无速度传感器控制的关键在于磁链的准确观测,而磁链的观测在本质上都是对电机反电势的积4分o]。直接对反电势积分会存在积分初值和飘移问题,因此在无速度传感器控制中如何避免纯积分的问题是关键所在。异步电机在定子供电频率为零时,定子电压电流中不包含转子转速和参数的信息;在定子供电频率很低时电压和反电势很低,电压电流检测误差、PwM脉冲宽度的误差、开关器件的压降等对于电机线电压的重构和反电势计算的影响较大,定子电阻的误差对反电势计算误差影响也变大。所以零频率附近无速度传感器控制具有理论上和实际中的双重限制。 4)多参数辨识受到限制:shinnaka等人从理论上证明了在无速度传感器控制中,在转子磁通幅值恒定的条件下,转子电阻和转速不可能同时辨识出来o。,这给无速度传感器控制中转子电阻辨识增加了难度。转子电阻误差影响滑差计算的精度,在无速度传感器控制中,速度精度主要受滑差精度的影响[3]。 本文对感应电机高性能无速度传感器控制的策略进行分析和分类,将当前该研究领域的主要控制策略分为基于电机理想模型的方案和基于电机非理想特性的方案加以介绍,并且列出了无速度传感器控制的一些结论和研究热点。文中讨论  万方数据

交流感应电动机无速度传感器的高动态性能控制方法综述

交流感应电动机无速度传感器的 高动态性能控制方法综述 清华大学 杨耕 上海大学 陈伯时 摘要:文章分析了交流感应电机无速度传感器的高动态性能控制方案的控制要点。在介绍国内外产业界已实用化的、以及正在研发中的几种代表性的控制策略的同时,讨论了各种方法理论要点和实际应用中的特点。最后,介绍了当前的几个研究热点问题并就发展方向提出了一点设想。 关键词:异步电动机控制 无速度传感器 转矩控制 磁链观测 速度辨识 Rev iew the M ethods for the Speed Sen sor-less Con trol of I nduction M otor Yang Geng Chen Bo sh i Abstract:T h is paper analyzes theo retical po ints of the i m p lem entati on fo r h igh perfo r m ance contro l of in2 ducti on mo to r w ithout speed senso r.A fter that,typ ical app roaches of the contro l strategy,w h ich are used in p ractical p roducts o r are being developed recently,are p resented and the characteristic of each app roach is dis2 cussed.F inally,som e unso lved p roblem s being researched as w ell as the develop ing po tentials are introduced. Keywords:contro l of inducti on mo to r speed senso r2less to rque contro l flux observer speed identifica2 ti on 1 前言 交流感应电机的无速度传感器高动态性能控制,是为了实现与有速度传感器的矢量控制(或直接转矩控制)相当的转矩和速度性能的方案,被用于无法设置速度传感器的设备或新一代高性能通用变频器之中[1,2]。相关的理论与技术也成为近10年来交流传动领域的热门研发内容之一。 本文主要综述在无速度传感器的前提下,具有速度反馈控制环的矢量控制方案(V C)和直接转矩控制方案(D TC),而不讨论诸如“V F控制+为补偿负载变动的滑差补偿”等只考虑静态的方法。本文在介绍各种方法的同时,综述其理论要点和实际应用中的特点、介绍所应用的厂家,从中总结出实现高动态性能控制的要点及主要成果。最后,介绍当前几个研究热点问题。 2 控制方法 211 方法分类的出发点 一般地,由转矩控制环及速度控制环构成的无速度传感器矢量控制(或直接转矩控制)系统由图1所示的3个环节构成。即:①速度调节器;②磁链和转矩控制器;③速度推算或辨识器(含磁链计算或观测) 。 图1 无速度传感器控制系统构成 对于环节②,需要控制转矩和磁链。由此可以分为:a以转子磁链定向控制为基础的矢量控制策略。目前常用的有计算滑差频率的被称为间接法(I V C)和把状态观测器观测到的转子磁链进行反馈控制的直接法(DV C)。b以控制定子磁链为特点的,被称之为直接转矩控制策略(D TC)。 环节③的结构依存于环节②的结构。实际上在计算或推定速度值时,常常也要获得(计算或观测)磁链(转子的或是定子的)值。因此,按其理论上的特点,可以把获得转速和磁链的方法大致分 3 电气传动 2001年 第3期

相关文档
最新文档