生物制氢展望(一)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
生物制氢展望(一)
【摘要】制氢的方法包括化石能源制氢、电解水制氢、生物制氢、热解制氢等1]。其中,生物制氢具有节能、清洁、原料来源丰富、反应条件温和、能耗低和不消耗矿物资源等优点2,3]。
1生物制氢原理
广义地讲,生物制氢是指所有利用生物产生氢气的方法,包括微生物产氢和生物质气化热解产氢等4,5]。狭义地讲,生物制氢仅指微生物产氢,包括光合细菌(或藻类)产氢和厌氧细菌发酵产氢等2,6,7,8,9]。本文只讨论狭义上理解的生物制氢,这也是利用生物制氢的主要研究方向3,6]。
迄今为止一般采用的方法有:光合生物产氢,发酵细菌产氢,光合生物与发酵细菌的混合培养产氢。
1.1生物制氢的三种方法
1)光合生物产氢利用光合细菌或微藻将太阳能转化为氢能8,10]。目前研究较多的产氢光合生物主要有蓝绿藻、深红红螺菌、红假单胞菌、类球红细菌、夹膜红假单胞菌等6,11]。2)发酵细菌产氢利用异养型的厌氧菌或固氮菌分解小分子的有机物制氢8]。能够发酵有机物产氢的细菌包括专性厌氧菌和兼性厌氧菌,如丁酸梭状芽孢杆菌、大肠埃希氏杆菌、产气肠杆菌、褐球固氮菌、白色瘤胃球菌、根瘤菌等6,11]。与光合细菌一样,发酵型细菌也能够利用多种底物在固氮酶或氢酶的作用下将底物分解制取氢气,底物包括:甲酸、乳酸、丙酮酸及各种短链脂肪酸、葡萄糖、淀粉、纤维素二糖,硫化物等。发酵气体中含H2(40%~49%)和CO2(51%~60%)。CO2经碱液洗脱塔吸收后,可制取99.5%以上的纯H2。产甲烷菌也可被用来制氢。这类菌在利用有机物产甲烷的过程中,首先生成中间物H2、CO2和乙酸,最终被产甲烷菌利用生成甲烷。有些产甲烷菌可利用这一反应的逆反应在氢酶的催化下生成H211]。
3)光合生物与发酵细菌的混合培养产氢由于不同菌体利用底物的高度特异性,它们能分解的底物是不同的。要实现底物的彻底分解并制取大量H2,应考虑不同菌种的共同培养。YokoiH.等采用丁酸梭菌(Clostridiumbutylicm)、产气肠杆菌(Enterobacteraerogenes)和类红球菌(Rhobactersphaerbdies)共同培养,从甜土豆淀粉残留物中制取H2,可连续稳定产氢30天以上,平均产氢量为4.6molH2/mol葡萄糖,是单独利用C.butylicm产氢量的两倍。原因在于C.butylicm产生的淀粉酶能降解淀粉成葡萄糖来产氢,E.aerogenes中不含淀粉酶,只能直接利用葡萄糖产氢。而在两者代谢的过程中,葡萄糖降解除了产生H2,还产生两者不能利用的小分子有机酸,使培养基的pH值下降,偏离了微生物的最适生长条件,从而使氢气产量下降。但当三者共同培养时,葡萄糖降解产生的有机酸能被R.sphaerbdies降解,从而使培养基pH值保持恒定,葡萄糖能够被充分利用,产氢量大大提高11]。
1.2生物制氢的方法比较
光合生物制氢的优势在于对蓝细菌(Cyanobacteria)的研究较早,已经积累了丰富的经验,且光合细菌的底物范围也较广12];光合细菌对光的转化效率高13]。但光合生物制氢存在以下问题:1)蓝细菌和绿藻在产氢的同时伴随氧的释放,易使氢酶失活1,14]。消除氧气的机械法和化学法3]或者消耗大量惰性气体和能量,或者导致不可逆反应使细胞失活,都不可取。2)光合产氢微生物只对特定波长的光线有吸收作用15],而提供充分的波长合适的光能又会消耗大量的能源,光源的维护与管理变得复杂,使产业化制氢难度变大7,11]。发酵法生物制氢较光合法生物制氢具有以下几个优点:1)发酵产氢菌株的产氢能力要高于光合产氢菌株的产氢能力。2)在实际培养中,发酵细菌生长要快于光合细菌。3)无需光照,不但可以昼夜持续产氢,且产氢反应装置的设计简单,操作管理方便。4)可以使单台制氢设备的容积足够大,提高单台制氢设备的产氢能力,易于实现工业化生产规模。5)可以广
泛利用工业废料为底物,实现废物处理的资源化。6)混合培养时,产氢细菌驯化和启动更容易6,7,13,16,17,18]。