直驱型风力发电系统概述

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

直驱型风力发电系统概述

1 引言

随着风电机组单机容量的增大,双馈型风电系统中齿轮箱的高速传动部件故障问题日益突出,于是没有齿轮箱而将主轴与低速多极同步发电机直接连接的直驱式布局应运而生;从中长期来看,直驱型和半直驱型传动系统将逐步在大型风电机组中占有更大比例,另外在传动系统中采用集成化设计和紧凑型结构是未来大型风电机组的发展趋势。在大功率变流技术和高性能永磁材料日益发展完善的背景下,大型风电机组越来越多地采用pmsg,pmsg不从电网吸收无功功率,无需励磁绕组和直流电源,也不需要滑环碳刷,结构简单且技术可靠性高,对电网运行影响小。pmsg与全功率变流器结合可以显著改善电能质量,减轻对低压电网的冲击,保障风电并网后的电网可靠性和安全性,与双馈型机组(变流器容量通常为1/3风电机组额定功率)相比,全功率变流器更容易实现低电压穿越等功能,更容易满足电网对风电并网日益严格的要求[1-2]。

中国风电行业发展迅速,但与国际发展水平还有很大差距,目前主要依靠进口,对外依赖性强;基于pmsg和背靠背双pwm变流器的直驱型风电系统是一种发展很快的技术,具有优良的性能,国外大型风电厂商已有成熟的直驱风电产品,国内在理论研究与产品性能方面,都还亟需提高与改进,因此很有必要对其涉及的关键技术进行研究。

2 直接驱动型风力发电系统介绍

图 1是典型的永磁直驱型变速恒频风力发电系统,包括永磁同步发电机(pmsg)和全功率背靠背双pwm变流器,无齿轮箱。pmsg通过全功率变流器直接与电网连接,通常极对数较多,低转速,大转矩,径向尺寸较大,轴向尺寸较小,呈圆环状;由于省去了齿轮箱,从而简化了传动链,提高了系统效率,降低了机械噪声,减小了维修量,提高了机组的寿命和运行可靠性;发电机通过变流器与电网隔离,因此其应对电网故障的能力更强,与dfig风电系统相比,更容易实现低电压穿越功能。但是永磁材料目前的成本仍然较高;变流器容量较大,损耗较大,变流器的成本较高。理论上永磁体在高温时存在失磁的风险,但是近年来随着永磁材料性能的不断提高、价格的下降,pmsg+全功率变流器已经成为一种很有吸引力和应用前景的方案[3-4]。目前,zephyros, mitsubishi,新疆金风等在市场上有这类产品。

图1 永磁直驱型变速恒频风力发电系统

针对图1的pmsg直驱型风电系统,还可以采用电励磁同步发电机(electrically excited synchronous generator,eesc),通常在转子侧进行直流励磁。使用eesc

相比使用pmsg的优势在于,转子励磁电流可控,可以控制磁链在不同功率段获得最小损耗;而且不需要使用成本较高的永磁材料,也避免了永磁体失磁的风险,enercon 公司主要经营这类产品。但是eesc需要为励磁绕组提供空间,会使电机尺寸更大,转子绕组直流励磁需要滑环和电刷。pmsg由于不是标准产品,在尺寸及结构上有很大的灵活性,根据磁通分布可以分为以下几类:径向磁通永磁电机(radial flux pm machine,rfpm)、轴向磁通(axial flux pm machine,afpm)和横向磁通(transversal flux pm machine,tfpm),其中rfpm结构简单稳固,功率密度更高,在大功率直驱型风电系统中得到了较多应用[5-7]。

目前市场上已有的直驱型风力发电系统产品,根据发电机类型、额定功率和转速以及厂家的不同,可以汇总得到表1。

表1 不同厂家的直驱型风力发电系统产品

表2给出了几个厂家直驱风力发电机的比较,包括风力发电机类型、转子速度、转矩、直径、总质量、质量转矩比等。

表2 几个厂家直驱风力发电机的比较

3 直驱风电变流器

电力电子变流器作为风力发电与电网的接口,作用非常重要,既要对风力发电机进行控制,又要向电网输送优质电能,还要实现低电压穿越等功能;随着风力发电的快速发展和风电机组单机容量的不断增大,变流器的容量也要随之增大,因此大容量多电平变流器也开始得到应用,以下将对一些典型变流器拓扑结构进行讨论。

从图1中可以看到,典型的永磁直驱变速恒频风电系统中,采用背靠背双pwm变流器,包括电机侧变流器与电网侧变流器,能量可以双向流动。对pmsg直驱系统,电机侧pwm变流器通过调节定子侧的dq轴电流,实现转速调节及电机励磁与转矩的

解耦控制,使发电机运行在变速恒频状态,额定风速以下具有最大风能捕获功能。电网侧pwm变流器通过调节网侧的dq轴电流,保持直流侧电压稳定,实现有功和无功的解耦控制,控制流向电网的无功功率,通常运行在单位功率因数状态,还要提高注入电网的电能质量。背靠背双pwm变流器是目前风电系统中常见的一种拓扑,国内外对其研究较多,主要集中在变流器建模、控制算法以及如何提高其故障穿越能力等方面[8-9]。国外公司如abb、alstom,国内公司如合肥阳光电源等,均有这类变流器产品。

对直驱型风电系统,变流器拓扑的选择较多。图2是不控整流+boost变换器+逆变拓扑结构,通过boost变换器实现输入侧功率因数校正(power factor correction, pfc),提高发电机的运行效率,保持直流侧电压的稳定,对pmsg的电磁转矩和转速进行控制,实现变速恒频运行,在额定风速以下具有最大风能捕获功能[10]。国外enercon公司的直驱风电系统e82(2mw)、国内合肥阳光电源的小型并网风力机变流器使用这种拓扑。

图2 不控整流+dc/dc变换+逆变拓扑

随着风电机组单机容量的不断增大,风电变流器的电压与电流等级也在不断提高,因此多电平变流器拓扑得到了广泛关注。变流器采用多电平方式后,可以在常规功率器件耐压基础上,实现高电压等级,获得更多级(台阶)的输出电压,使波形更接近正弦,谐波含量少,电压变化率小,并获得更大的输出容量。图3是直驱风电系统中三电平背靠背双pwm变流器拓扑,与两电平双pwm变流器相比,功率器件和电容增加了一倍,并额外增加了箝位二极管;直流侧电容由两个完全一样的电容串联组成,电容的中点作为变换器的箝位点,由网侧变换器保持直流侧两个电容的电压均衡。这种结构在风电中的应用目前已经比较成熟,对其的研究很多,主要集中在控制策略的优化上[11-12]。目前,世界范围内从事大功率风力发电用变流器和高压变频器研制的一些公司,都有多电平的产品方案;abb用于风力发电的变流器如

acs1000,整流器采用12脉冲二极管整流,逆变器采用三电平npc结构,器件采用igct;siemens也有相似的应用,功率器件采用高压igbt;法国alstom公司采用飞跨电容型四电平拓扑,功率器件采用igbt,另外还基于igct开发出了飞跨电容型五电平变频器。

相关文档
最新文档