燃煤锅炉的热效率热效率计算

燃煤锅炉的热效率热效率计算

根据《关于发展热电联产的规定》(计基础〔2000〕1268号)文件,热效率=(供热量+供电量×3600千焦/千瓦时)/(燃料总消耗量×燃料单位低位热值)×100%,供热量就是热力产品(热水、蒸汽)根据供热流量、压力、温度的参数进行焓值计算后得出的焦耳热值当量年度产量,加上年发电量换算成焦耳热值当量(kWh乘以3600),二者的和就是热电厂年产品总量(电+热)。

分母是热电厂的燃料消耗,如果是燃煤电厂,就用所耗煤种的低位热值(可以查到)*年耗煤吨量;如果是燃气电厂,就用天然气的热值*年耗气量。

电厂出口的总产品热值比上输入的各种一次能源消耗热值,就是热效率。

如何求解热效率

当前,能源日逐紧张。如何节能,如何提高能源的利用效率已是摆在人们面前的一个突出而现实的问题。热效率的计算也成为中考热点问题。如何求解热效率,下面通过一些典例进行分析归纳。

一、燃具的效率

例1、小明学习了热学的有关知识后,他想估算一下自己家煤炉的效率是多少。于是小明仔细记录了他家每天烧水、煮饭、炒菜需要的时间,并把它折算成了烧水的时间,相当于每天将30Kg20℃的水烧开。小明家实际平均每天需要烧4块蜂窝煤,按每块蜂窝煤含煤0.5Kg算,他家每天实际用煤2Kg.普通煤的热值为3×107J/Kg,则他家煤炉的效率是多少?

[分析与解]:煤炉烧水,化学能转化为内能,水吸收的热量是有用能量,完全燃烧煤所放出的热量是总的能量。煤炉的效率可用η=Q有用/Q总×100%=cmΔt/m'q×100%计算。

Q有用=cmΔt=4.2×103×30×(100-20)J=1.008×107J

Q总=mq=2×3×107J=6×107J

η=Q有用/Q总×100%=1.008×107J/6×107J=16.8%

二热机的效率

例2、小兵同学想知道一辆小汽车的实际效率是多少。他从驾驶员那了解到:该汽车行驶100Km的耗油量约7Kg。从书上查得汽油的热值q=4.6×107J /Kg。他又测出在平直公路上,用644N的水平拉力可使汽车匀速前进。若空气阻力不计,试求该小汽车的效率是多少?

[分析与解]:小汽车行驶,化学能转化为内能后又转化为机械能,对汽车做功是有用的能量,完全燃烧汽油放出的能量是总能量。小汽车的效率可用η=Q 有用/Q总×100%=FS/mq×100%计算。

Q有用=FS=644×105J=6.44×107J

Q总=mq=7×4.6×107J=3.22×108J

η=Q有用/Q总×100%=6.44×107J/3.22×108J=20%

三、电热器的效率

例3、某品牌电热水壶的铭牌上标着如下表所示的数据:

当电热水壶装满水后,在额定电压下工作,水温从20℃加热到100℃用了16min。则该电热水壶的热效率是多少?

[分析与解]:电热水壶烧水,电能转化为内能,烧水时水吸收的热量是有用的能量,消耗的电能为总的能量。电热水壶的效率可用η=Q有用/Q总×100%=cmΔt/Pt×100%计算。

Q有用=cmΔt=cρvΔt=4.2×103×103×4×10-3×80J=1.344×106J

Q总=Pt=1500×16×60J=1.44×106J

η=Q有用/Q总×100%=1.344×106J/1.44×106J=93.3%

四、太阳能热水器的效率

例4、某同学自制了一台家用太阳能热水器。他从太阳能手册中查到:在地球表面,晴天时垂直于阳光表面接受到的辐射热为1.26×103J/m2.s。如果晒水箱内的水大约有40Kg,晒水箱接受阳光垂直照射的面积始终约为1.5m2,测得要使水温上升30℃需89min,则这台太阳能热水器的效率是多少?

[分析与解]:太阳能热水器加热水时,太阳能转化为内能,水吸收的热量是有用能量,接收的太阳能为总的能量。若太阳辐射热为a,阳光照射热水器的面积为s,照射时间为t,则太阳能热水器的效率可用η=Q有用/Q总×100%=cm△t/ast×100%计算。

Q有用=cmΔt=4.2×103×40×30J=5.04×106J

Q总=ast=1.26×103×1.5×89×60J=1.009×107J

η=Q有用/Q总×100%=5.04×106J/1.009×107J=50%

五、火力发电厂的效率

例5、垃圾处理成为城市建设及可持续发展的一个重要问题。现在人们已经可以变废为宝了,利用垃圾中的可燃物质燃烧发电。某垃圾焚烧电厂,年处理垃圾2.16×105t。研究表明,生活垃圾的平均热值为6.27×106J/Kg.如果利用垃圾作为燃料建立发电厂,每燃烧1t生活垃圾,可以发电240kw.h,那么,生活垃圾燃烧发电的效率是多少?

[分析与解]:垃圾焚烧发电,把化学能转化为内能后又转化为电能,所发的电能为有用能量,垃圾焚烧所放出的能量为总能量。此电厂的发电效率可用η=Q有用/Q总×100%=W/mq×100%计算。

Q有用=W=240kw.h=240×3.6×106J=8.64×108J

Q总=mq=1000×6.27×106J=6.27×109J

η=Q有用/Q总×100%=8.64×108J/6.27×109J=13.8%

基于遗传算法的燃煤锅炉热效率优化

摘要:在对锅炉飞灰含碳量进行人工神经网络建模的基础上,确定了各种运行参数和煤种对锅炉飞灰含碳量的影响关系。由于锅炉煤种的多变性,针对某个煤种进行实炉调整所获得的最佳工况往往与目前燃用煤种所需的最佳工况偏离。文中结合遗传算法和人工神经网络技术,对某台300MW四角切圆燃煤电厂锅炉热效率的优化进行了研究,为大型电厂锅炉通过燃烧调整提高锅炉效率提供有效手段。

1 引言

锅炉的热效率受到多种热损失的影响,但比较而言,以机械不完全燃烧损失q4受锅炉燃烧状况影响最为复杂,飞灰含碳量受锅炉煤种和运行参数影响很大,相互关系很难以常规的计算公式表达,因此采用了人工神经网络对锅炉的飞灰含碳量特性进行了建模,并利用实炉测试试验数据对模型进行了校验,结果表明,人工神经网络能很好反映大型电厂锅炉各运行参数与飞灰含碳量特性之间的关系。采用锅炉负荷、省煤器出口氧量、各二次风挡板开度、燃尽风挡板开度、燃料风挡板开度、煤种特性,各磨煤机给煤量、炉膛与风箱差压、一次风总风压、燃烧器摆角作为神经网络的输入矢量,飞灰含碳量作为神经网络的输出,利用3层BP网络建模是比较合适的。

目前锅炉运行往往根据试验调试人员针对锅炉的常用煤种进行燃烧调整,以获得最佳的各种锅炉运行参数供运行人员参考,从而实现锅炉的最大热效率。但这种方法会带来如下问题:①由于锅炉燃煤的多变性,针对某一煤种进行调整试验获得的最佳操作工况可能与目前燃用煤种的所需的最佳工况偏离;②由于调试试验进行的工况有限,试验获得的最佳工况可能并非全局最优值,即可能存在比试验最佳值更好的运行工况。

本文在对某300MW四角切圆燃烧锅炉进行实炉工况测试并利用人工神经网络技术实现飞灰含碳量与煤种和运行参数关系的建模工作基础上,结合遗传算法这一全局寻优技术,对锅炉热效率最优化运行技术进行了研究,并在现场得到应用。

2 遗传算法和神经网络结合的锅炉热效率寻优算法

利用一个21个输入节点,1个输出节点,24个隐节点的BP网络来模拟锅炉飞灰含碳量与锅炉运行参数和燃用煤种之间的关系,获得了良好的效果,并证明了采用人工神经网络对锅炉这种黑箱对象建模的有效性[1]。人工神经网络的输入采用锅炉负荷、省煤器出口氧量、

作者:周昊朱洪波曾庭华廖宏楷岑可法

各二次风挡板开度、燃尽风挡板开度、燃料风挡板开度、各磨煤机给煤量、炉膛与风箱差压、一次风总风压、燃烧器摆角和煤种特性,除煤种特性这一不可调节因素外,基本上包括了运行人员可以通过DCS进行调整的所有影响锅炉燃烧的所有参数。

遗传算法是受生物进化学说和遗传学说启发而发展起来的基于适者生存思想的一种较通用的问题求解方法[2,3],作为一种随机优化技术在解优化难题中显示了优于传统优化算法的性能。遗传算法目前在优化领域得到了广泛的应用,显示了其在优化方面的巨大能力[3]。遗传算法的一个显著优势是不需要目标函数明确的数学方程和导数表达式,同时又是一种全局寻优算法,不会象某些传统算法易于陷入局部最优解。遗传算法寻优的效率较高,搜索速度快。

根据锅炉的反平衡计算公式,锅炉热效率η可由下式求得:

η=100-(q2+q3+q4+q5+q6)(%) (1)

式中q2为排烟热损失,q3为可燃气体不完全燃烧热损失,q4为固体不完全燃烧损失,q5为锅炉散热损失,q6为其他热损失。

根据遗传算法的要求,确定锅炉热效率η为遗传算法的目标函数,用式(1)计算。对该300MW 锅炉,利用DCS与厂内MIS网的接口按每6s下载各运行参数,包括排烟氧量、排烟温度、锅炉负荷、各二次风挡板开度、燃尽风挡板开度、燃料风挡板开度、各磨煤机给煤量、炉膛与风箱差压、一次风总风压、燃烧器摆角等。锅炉飞灰含碳量可由飞灰含碳量监测仪在线监测或人工取样分析,燃用煤种由人工输入。这样锅炉的各项损失即可在线获得,并进而计算出各运行工况下的锅炉实时热效率。将排烟氧量和煤种特性等影响锅炉排烟热损失q2的参数按热效率计算,标准化为计算公式代入式(1),而影响q4的各参数采用人工神经网络模型代入式(1),其中炉渣含碳量对热效率影响由人工测试后输入。具体计算公式可参见锅炉热效率计算标准。

由以上步骤建立了锅炉热效率和锅炉各运行参数及煤种的函数关系,即锅炉热效率作为因变量,而锅炉的各操作参数和煤质特性作为自变量,这样就可以利用遗传算法进行寻优计算,获得最佳的锅炉运行条件,实现锅炉热效率的最大化。

火电厂锅炉运行中,为考虑到习惯运行方式和各种安全因素的影响,对各种可调因素的选择区域都有一定的范围限制,寻优范围必须控制在这些范围以内,这些限制构成了自变量的定

义域。至此,完成了锅炉热效率最优化燃烧的结合神经网络的遗传算法优化过程,具体程序流程见图1。

3 燃煤锅炉热效率的优化效果

在电厂锅炉运行中,运行人员调节最为频繁的参数主要是各种配风方式,包括各二次风、燃尽风、由送引风机配合所确定的氧量等,其余影响锅炉燃烧的因素,如负荷和煤种,对于运行人员而言在某一工况下是不可调节因素,燃烧器的摆角出于汽温调节的需要,往往也不会对其调整以实现低的飞灰含碳量。作为示例,我们对影响燃烧的部分参数的寻优过程进行了模拟和验证。

某个实际运行工况如表1所示,除煤种特性为事先取样分析人工输入外,其余参数均由集散控制系统(DCS)下载。考虑对锅炉的排烟氧量和各二次风门开度及燃尽风门开度进行寻优,其余参数维持该工况,利用软件寻优,遗传算法选择的参数种群规模为50,交换概率为0.8,突变概率为0.15,迭代次数500次,可调参数7个,计算获得优化后的各风门开度、氧量及锅炉效率和飞灰含碳量值,优化后的各值如表2所示。图2示出了不同迭代次数下的遗传算法计算得到的飞灰含碳量值和锅炉热效率,图中曲线1表示锅炉效率,曲线2表示省煤器后氧量,曲线3表示飞灰含碳量,可见遗传算法的收敛速度很快。

对图2的寻优过程进行分析,发现飞灰含碳量曲线具有震荡,这是因为氧量同时影响到排烟热损失和飞灰含碳量,优化过程初期氧量较高,飞灰含碳量相应可以搜索到较低值,但由于排烟热损失比机械不完全燃烧损失数值更大,迫使优化过程向氧量较低的方向寻优,而氧量较低又导致飞灰含碳量有所增加,这种相互反作用的机理使飞灰含碳量曲线呈现震荡性,这种震荡性也是由遗传算法的寻优本质所决定的。

由于遗传算法可以对多个自变量同时进行寻优,如果有需要,可以对任何需要的参数进行寻优,甚至对所有影响因素进行寻优,在软件编程上实现也很方便,这为遗传算法在锅炉优化运行中的应用提供了便利。

对锅炉在中等负荷下的热效率优化过程也进行了试验,表3示出了某种中等负荷条件下锅炉实际运行工况。表4为中等负荷下遗传计算获得的优化结果。现场验证表明,按优化结果推荐的配风方式进行调节,工况调节后由DCS下载数据计算得到的锅炉效率与优化算法预测的锅炉效率基本相当。多个试验结果表明高负荷下的飞灰含碳量的预测和实测基本相当,而中等负荷下的飞灰含碳量预测略有偏低,这可能与神经网络建模时中等负荷下的样本数量偏少有一定关系。但由于本文研究的锅炉燃烧状况较好,燃料的灰分低而且挥发分和热值均较高,所以飞灰含碳量都较低,机械不完全燃烧损失也较小,对锅炉热效率的影响也较小。因此各工况下预报的锅炉热效率值与实测误差很小,一般在0.2%以内。

对于燃用燃尽性能差和高灰分煤的锅炉,机械不完全燃烧损失占到锅炉效率损失的很大部

分,由于排烟热损失的优化比较简单,而本文主要针对机械不完全燃烧损失进行优化,因此对于燃用劣质煤锅炉采取此优化方法具有更好的应用前景,能够确定锅炉最佳氧量和各风门开度。

对锅炉热效率优化另一种方法也进行了研究,即将锅炉热效率与煤种特性、运行参数之间的关系直接采用人工神经网络建模,然后利用遗传算法优化,结果表明这种方法的效果远不如本文的方法。其原因经分析为,人工神经网络方法进行建模时存在一定的误差,由于热效率的绝对值较大对锅炉热效率直接建模,导致误差过大淹没了方案的可行性。

4 结论

本文在对大型燃煤电厂锅炉进行实炉多工况热态试验和采用人工神经网络进行锅炉飞灰含碳量特性建模的基础上,利用遗传算法对大型电厂锅炉提高热效率的优化运行方法进行了研究并经现场应用,表明采用人工神经网络和遗传算法进行锅炉燃烧优化是可行的。

电站燃煤锅炉燃烧热效率计算方法

电站锅炉的热效率计算 电站锅炉通过燃烧燃料产生蒸汽,把煤的化学能转化为高温蒸汽的储能多过程中的转化效率即为锅炉的热效率。锅炉燃烧的热效率是燃烧优化的另一个主要目标。锅炉热效率可以用锅炉有效利用的热量与进入炉内的燃料燃烧所产生的总热量的百分比[33]来表示,见式: 1 r 100%Q Q η= ⨯ (1-1) 式中η为锅炉热效率,1Q 为燃煤锅炉有效利用的热量,r Q 为炉内燃料燃烧产生的总热量。 1热效率计算方法 锅炉热效率的计算常用的有两种方法:正平衡法,又称输入输出法;反平衡法,又称热损失法。正平衡法,通过直接测量求得锅炉有效利用的热量和输入锅炉的总热量来求得热效率,如公式(2-3)所示。反平衡法,通过测定锅炉的各项热损失q ∑来求得热效率,计算公式如下: 1100%1s r Q q Q η=- ⨯=-∑ (1-2) 式中 s Q 为锅炉所有热损失之和, η为锅炉热效率,r Q 为输入锅炉燃料燃烧产生的总热量。 由于当前电站锅炉对燃煤量的测量一般采用皮带秤或测量给煤机转速等来进行粗糙的估计测量,对输入、输出热量的测量造成了较大误差。因此,正平衡法的误差比较大;而反平衡法不会出现这样的误差。我们设计算热效率所采用的 r Q 的相对误差为δ,则按照正平衡法计算,误差计算如下: ()()111 r r r =-=11Q Q Q Q Q Q δδδ±⋅∆±±⋅正 (1-3) 按照反平衡法计算,则误差计算为: ()()r r r =11=11s s s Q Q Q Q Q Q δδδ⎛⎫⎛⎫±⋅∆--- ⎪ ⎪ ⎪±±⋅⎝ ⎭⎝⎭反 (1-4) 比较式(1-3)和式(1-4)可以看出, 正∆和反∆的绝对值的大小由1r Q Q 和r s Q Q 的大小决定,1r Q Q 是锅炉热效率,r s Q Q 是锅炉热损失,热损失约为10%,锅炉热效率约为

燃气锅炉的热效率及其计算方法

燃气锅炉的热效率及其计算方法随着社会的发展和节能环保意识的提高,燃气锅炉逐渐成为家庭、工厂、学校等场所的主要热源设备。而燃气锅炉的热效率,直接关系到其能否高效节能地运行。本文将介绍燃气锅炉热效率的概念、影响因素以及计算方法。 1. 燃气锅炉热效率的概念 燃气锅炉热效率,通俗来说,就是燃气燃烧转化为热能后,锅炉输出到供热系统的热量与燃烧所得热量之比。其数学表达式如下: 热效率 = 输出热量 ÷输入热量 × 100% 其中,输出热量指的是锅炉输出到供热系统中的热量,一般以千瓦时(kWh)或兆焦(MJ)表示;输入热量指的是燃料中含有的能量,一般以标准煤的热值表示。

热效率是衡量燃气锅炉能效的重要指标之一。不同类型、不同 规格的燃气锅炉热效率有所不同,而通常要求其热效率在80%以上,越高越好。 2. 燃气锅炉热效率影响因素 燃气锅炉的热效率受到多种因素的影响,主要包括以下几点: (1)锅炉本身的结构设计。不同规格、不同类型的锅炉结构 各异,其热效率也会有所不同。一般来说,锅炉的换热面积越大、燃烧室设计更合理、烟气流通更加顺畅,热效率会越高。 (2)燃料的质量和燃烧效果。不同的燃料质量各异,在燃烧 过程中产生的热效率也会受到影响。同时,燃气锅炉的燃烧效果 也会受到多种因素的影响,如空气过多或过少、燃烧温度过低等,都会使燃料燃烧不完全,热效率下降。 (3)水质和除垢处理。燃气锅炉在长期使用过程中,因为水 质问题或操作不当,会在内管、水室内壁等处形成水垢,影响锅 炉的传热效果,从而导致热效率下降。

(4)锅炉排放的烟气温度。燃烧后产生的烟气温度越高,说 明热量利用效果越差,热效率越低。 3. 燃气锅炉热效率计算方法 为了方便计算燃气锅炉的热效率,通常可以利用热平衡法或热 损失法。 (1)热平衡法 热平衡法是指在给定的装置内部,对于进出口热量的平衡原理,将各部分的热量平衡起来,计算锅炉的热效率。具体方法如下: ①在燃烧前后取样,测出燃料的热值。 ②测量输出热量,即锅炉向外输出的热量。 ③测量各温度、压力,计算出燃烧前后烟气温度和水的进出口 温度等。

锅炉热效率

锅炉热效率试验 1热效率试验的标准 《GB10184-88 电站锅炉性能试验规程》 2本课程的适用范围 火力发电厂燃煤锅炉。 基于燃用煤、不包括其它的燃料。 热效率是锅炉的一项重要经济指标。 3热效率的计算方式 3.1 输入-输出法 又称:直接法或正平衡法。 即直接测量锅炉输入和输出热量求得热效率。 3.2 热损失法 又称:反平衡法。 即由确定各项热量损失求得热效率。 4概念的介绍 4.1 输入热量 随每千克煤输入锅炉能量平衡系统的总热量。 4.1.1 煤的收到基低位发热量 4.1.2 物理显热 4.1.3 用外来热源加热燃料或空气时所带入的热量 4.2 输出热量 相对每千克煤,工质在锅炉能量平衡系统中所吸收的总热量。 4.3 各项热损失 4.3.1 包括5项损失 4.3.2 排烟热损失 锅炉排烟热损失为末级热交换器后排出烟气带走的物理显热占输入热量的百分率

1)干烟气带走的热量 2)烟气中含水蒸气的显热 4.3.3 可燃气体未完全燃烧热损失 该项热损失由排烟中的未完全燃烧产物(CO、H2、CH4和C m H n)的含量决定,系指这些可燃气体成分未放出其燃烧热而造成的热量损失占输入热量的百分率4.3.4 固体未完全燃烧热损失 燃煤锅炉的固体未完全燃烧热损失,即灰渣可燃物造成的热量损失和中速磨煤机排出石子煤的热量损失占输入热量的百分率 4.3.5 散热损失 锅炉散热损失q5,系指锅炉炉墙、金属结构及锅炉范围内管道(烟风道及汽、水管道联箱等)向四周环境中散失的热量占总输入热量的百分率。热损失值的大小与锅炉机组的热负荷有关。 4.3.6 灰渣物理热损失 灰渣物理热损失,即炉渣、飞灰与沉降灰排出锅炉设备时所带走的显热占输入热量的百分率 4.4 锅炉的额定蒸发量(ECR) 锅炉在额定蒸汽参数、额定给水温度、燃用设计煤种并保证效率时所规定的蒸发量。 4.5 锅炉的最大蒸发量(BMCR) 锅炉在额定蒸汽参数、额定给水温度、燃用设计煤种,安全连续运行时能达到的最大蒸发量。 4.6 基准温度 指各项输入与输出能量的起算点。 规定为锅炉送风机入口处空气温度。一般可认为是冷空气温度。 4.7 燃料分析 燃料的工业分析和元素分析。 5锅炉机组热平衡系统

锅炉热效率计算

一、锅炉热效率计算 10.1 正平衡效率计算 10.1.1输入热量计算公式: Qr=Qnet,v,ar+Qwl+Qrx+Qzy 式中: Qr__——输入热量; Qnet,v,ar ——燃料收到基低位发热量; Qwl ——加热燃料或外热量; Qrx——燃料物理热; Qzy——自用蒸汽带入热量。 在计算时,一般以燃料收到基低位发热量作为输入热量。如有外来热量、自用蒸汽或燃料经过加热(例: 重油)等,此时应加上另外几个热量。 10.1.2饱和蒸汽锅炉正平衡效率计算公式: 式中:η1——锅炉正平衡效率; Dgs——给水流量; hbq——饱和蒸汽焓; hgs——给水焓; γ——汽化潜热; ω——蒸汽湿度; Gs——锅水取样量(排污量); B——燃料消耗量; Qr_——输入热量。 10.1.3过热蒸汽锅炉正平衡效率计算公式: a. 测量给水流量时: 式中:η1——锅炉正平衡效率; Dgs——给水流量; hgq——过热蒸汽焓; hg——给水焓; γ——汽化潜热; Gs——锅水取样量(排污量); B——燃料消耗量; Qr——输入热量。 b. 测量过热蒸汽流量时: 式中:η1——锅炉正平衡效率; Dsc——输出蒸汽量; Gq——蒸汽取样量; hgq——过热蒸汽焓; hgs——给水焓; Dzy——自用蒸汽量;

hzy——自用蒸汽焓; hbq——饱和蒸汽焓; γ——汽化潜热; ω——蒸汽湿度; hbq——饱和蒸汽焓; Gs——锅水取样量(排污量); B——燃料消耗量; Qr——输入热量。 10.1.4 热水锅炉和热油载体锅炉正平衡效率计算公式 式中:η1——锅炉正平衡效率; G——循环水(油)量; hcs——出水(油)焓; hjs——进水(油)焓; B——燃料消耗量; Qr——输入热量。 10.1.5电加热锅炉正平衡效率计算公式 10.1.5.1电加热锅炉输-出饱和蒸汽时公式为: 式中:η1——锅炉正平衡效率; Dgs——给水流量; hbq——饱和蒸汽焓; hgs——给水焓; γ——汽化潜热; ω——蒸汽湿度; Gs——锅水取样量(排污量); N——耗电量。 10.1.5.2电加热锅炉输-出热水(油)时公式为: 式中:η1——锅炉正平衡效率; G——循环水(油)量; hcs——出水(油)焓; hjs——进水(油)焓; B——燃料消耗量; Qr_——输入热量 二、锅炉结焦的危害、原因及预防方法是什么? 在炉子的燃烧中心,火焰温度高达1450~1600℃,因此煤灰基本上处于溶化状态。当与受热面碰撞后,溶渣就会粘附在管道或炉墙上,这就叫结焦。 如果炉内结了焦,炉膛部分的吸热量就要减少,到过热器部分的烟温就会增高,而造成个别管子的外壁温度超过它的允许范围,引起爆管,同时还会使主汽温度超温。结焦严重时,会使吸热量的减少而减负荷,甚至停炉。结焦还会使排烟热损失q2和机械热损失q4及风机耗电增加。

燃煤锅炉热效率效率计算

燃煤锅炉热效率效率计算

————————————————————————————————作者:————————————————————————————————日期:

燃煤锅炉的热效率热效率计算 根据《关于发展热电联产的规定》(计基础〔2000〕1268号)文件,热效率=(供热量+供电量×3600千焦/千瓦时)/(燃料总消耗量×燃料单位低位热值) ×100%,供热量就是热力产品(热水、蒸汽)根据供热流量、压力、温度的参数进行焓值计算后得出的焦耳热值当量年度产量,加上年发电量换算成焦耳热值当量(kWh乘以3600),二者的和就是热电厂年产品总量(电+热)。 分母是热电厂的燃料消耗,如果是燃煤电厂,就用所耗煤种的低位热值(可以查到)*年耗煤吨量;如果是燃气电厂,就用天然气的热值*年耗气量。 电厂出口的总产品热值比上输入的各种一次能源消耗热值,就是热效率。 如何求解热效率 当前,能源日逐紧张。如何节能,如何提高能源的利用效率已是摆在人们面前的一个突出而现实的问题。热效率的计算也成为中考热点问题。如何求解热效率,下面通过一些典例进行分析归纳。 一、燃具的效率 例1、小明学习了热学的有关知识后,他想估算一下自己家煤炉的效率是多少。于是小明仔细记录了他家每天烧水、煮饭、炒菜需要的时间,并把它折算成了烧水的时间,相当于每天将30Kg20℃的水烧开。小明家实际平均每天需要烧4块蜂窝煤,按每块蜂窝煤含煤0.5Kg算,他家每天实际用煤2Kg.普通煤的热值为3×107J/Kg,则他家煤炉的效率是多少? [分析与解]:煤炉烧水,化学能转化为内能,水吸收的热量是有用能量,完全燃烧煤所放出的热量是总的能量。煤炉的效率可用η=Q有用/Q总×100%=cmΔt/m'q×100%计算。 Q有用=cmΔt=4.2×103×30×(100-20)J=1.008×107J Q总=mq=2×3×107J=6×107J η=Q有用/Q总×100%=1.008×107J/6×107J=16.8% 二热机的效率 例2、小兵同学想知道一辆小汽车的实际效率是多少。他从驾驶员那了解到:该汽车行驶100Km的耗油量约7Kg。从书上查得汽油的热值q=4.6×107J/Kg。他又测出在平直公路上,用644N的水平拉力可使汽车匀速前进。若空气阻力不计,试求该小汽车的效率是多少? [分析与解]:小汽车行驶,化学能转化为内能后又转化为机械能,对汽车做功是有用的能量,完全燃烧汽油放出的能量是总能量。小汽车的效率可用η=Q 有用/Q总×100%=FS/mq×100%计算。 Q有用=FS=644×105J=6.44×107J Q总=mq=7×4.6×107J=3.22×108J

工业燃煤导热油锅炉运行热效率计算

工业燃煤导热油锅炉运行热效率计算 工业燃煤导热油锅炉运行热效率热效率简单计算公式 前言:工业锅炉中多为燃煤导热油锅炉,约占68%,且2吨(1.4Mw)以下的锅炉占燃煤锅炉总量的70%左右,这些锅炉热效率普遍低下,造成严重的烟尘大气污染和煤炭浪费。为了保护环境,实现可持续发展,应加强对燃煤锅炉运行的监测和环保治理力度。提高锅炉运行热效率,降低污染物排放成为燃煤锅炉技改的重要课题。作为关键的技术经济指标,运行热效率的测试与计算显得尤为重要,本文就此展开分析和研究。 一、锅炉运行热效率简单计算公式的推导 1、锅炉燃料消耗量的计算 锅炉运行时,燃料送入锅炉的热量与锅炉有效利用热量及各项热损失的和相等,即我们所说的热平衡: Qr=Q1+Q2+Q3+Q4+Q5+Q6(1) Qr:燃料送入锅炉的热量(一般就是燃料应用基低位发热量,即Qr=Qydw),kj/kg Q1:锅炉有效利用热量,kj/kg Q2:排烟带走的热量, Q3:气体不完全燃烧损失的热量,kj/kg Q4:固体不完全燃烧损失的热量,kj/kg Q5:锅炉向周围空气散失的热量,kj/kg Q6:燃料中灰渣带走的热量,kj/kg 将公式(1)两边分别除以Qr得: 1=Q1/Qr+Q2/Qr+Q3/Qr+Q4/Qr+Q5/Qr+Q6/Qr q1=Q1/Qr×100% q2=Q2/Qr×100% q3=Q3/Qr×100% q4=Q4/Qr×100% q5=Q5/Qr×100% q6=Q6/Qr×100% q1=100-(q2+q3+q4+q5+q6)%(2) q1:锅炉有效利用热量占燃料带入锅炉热量的百分数,即热效率η,% q2:排烟热损失,% q3:气体不完全燃烧热损失,% q4:固体不完全燃烧热损失,% q5:锅炉散热损失,% q6:其它热损失,% 锅炉有效利用热量一方面:Q1=η×Qr(3) 另一方面:Q1=QGL/B(4) B:锅炉每小时燃料消耗量,kg/h QGL:锅炉每小时有效吸收热量,kj/h 蒸汽锅炉QGL=D(iq-igs)×103+DPS(ips-igs)×103 热水锅炉QGL=G(i2-i1)×103 D:锅炉蒸发量,t/h iq:蒸汽焓,kj/kg igs:锅炉给水焓,kj/kg

燃煤工业锅炉热效率的计算问题

燃煤工业锅炉热效率的计算问题 采用正平行的方法,通过查阅项目实施前一年锅炉运行,记录,统计报表和测试报告,核实相关数据,按以下公式计算单台锅炉热效率。 蒸汽锅炉热效率 )1() 100(. ar ner g b a BQ rw h h D - -= η 热水锅炉热效率 )2()(. ar ner g b a BQ h h D -= η 式中: a η—锅炉热效率,单位为 %; D —蒸汽锅炉给水量/热水锅炉循环水量,单位为 千克/小时(kg/h ); h b —饱和蒸汽焓,单位为 千焦耳/千克(kJ/kg ); h c —热水锅炉出水焓,单位为千焦耳/千克(kJ/kg ); h g —热汽锅炉给水焓或热水锅炉给水焓单位为千焦耳/千克(kJ/kg ); B —燃煤消耗量,单位为千克/小时(kg/h ); Q ner.ar —燃料收到基低位发热量,单位为千焦耳/千克(kJ/kg ); ω—蒸汽湿度,单位 %; γ—汽化潜热,单位为千焦耳/千克(kJ/kg )。

热水锅炉运行热效率的检测计算方法 1.热水锅炉(采暖锅炉)运行的特殊性,决定了它的运行热效率不同于平行运行的蒸汽锅炉。 (1)如图1 热水温度、回水温度均速上升的情况的计算方法。 7050300 T 2T 1 图1 (2)如图2 热水温度、回水温度上升呈不规则曲线时的计算方法。 705030 T 2T 1 图2

首先现场需要记录的数据 A.出水、回水随时间的原始记录。 b.锅炉循环水的管径(内径)、流速、(流速需用仪器测量)。 c.计量锅炉在一个运行周期内的燃煤量。 d.取煤样化验煤的低位发热量。 2.热效率的计算方法 如图1、如图所示,t n 表示锅炉停止燃烧,但循环水仍在循环时刻。 t m 表示循环水温度回到原始状态的温度的时刻。 T 0表示热水锅炉开始运行的时刻。 (1)如图1、热水、回水温度均速上升时的热效率计算 []ar net n m n a Q B D t t t C T T .212)2(60)()(21?????-++=水 水水ρπυη 式中: a η—热水锅炉运行热效率 %; 水υ—循环水流速,单位 米/秒(m/s); D —循环水管内直径,单位 米(m ); 水ρ—水的比重,单位为 公斤/立方米(kg/m 3 ); (2)矩形法(如图3) 将(ab )分成若干个相等的小区间每个区间的长为 △X= n a b - y 12 图3 n-1

燃煤锅炉的热效率热效率计算

燃煤锅炉的热效率热效率计算 根据《关于发展热电联产的规定》(计基础〔2000〕1268号)文件,热效率=(供热量+供电量×3600千焦/千瓦时)/(燃料总消耗量×燃料单位低位热值) ×100%,供热量就是热力产品(热水、蒸汽)根据供热流量、压力、温度的参数进行焓值计算后得出的焦耳热值当量年度产量,加上年发电量换算成焦耳热值当量(kWh乘以3600),二者的和就是热电厂年产品总量(电+热)。 分母是热电厂的燃料消耗,如果是燃煤电厂,就用所耗煤种的低位热值(可以查到)*年耗煤吨量;如果是燃气电厂,就用天然气的热值*年耗气量。 电厂出口的总产品热值比上输入的各种一次能源消耗热值,就是热效率。 如何求解热效率 当前,能源日逐紧张。如何节能,如何提高能源的利用效率已是摆在人们面前的一个突出而现实的问题。热效率的计算也成为中考热点问题。如何求解热效率,下面通过一些典例进行分析归纳。 一、燃具的效率 例1、小明学习了热学的有关知识后,他想估算一下自己家煤炉的效率是多少。于是小明仔细记录了他家每天烧水、煮饭、炒菜需要的时间,并把它折算成了烧水的时间,相当于每天将30Kg20℃的水烧开。小明家实际平均每天需要烧4块蜂窝煤,按每块蜂窝煤含煤0.5Kg算,他家每天实际用煤2Kg.普通煤的热值为3×107J/Kg,则他家煤炉的效率是多少? [分析与解]:煤炉烧水,化学能转化为内能,水吸收的热量是有用能量,完全燃烧煤所放出的热量是总的能量。煤炉的效率可用η=Q有用/Q总×100%=cmΔt/m'q×100%计算。 Q有用=cmΔt=4.2×103×30×(100-20)J=1.008×107J Q总=mq=2×3×107J=6×107J η=Q有用/Q总×100%=1.008×107J/6×107J=16.8% 二热机的效率 例2、小兵同学想知道一辆小汽车的实际效率是多少。他从驾驶员那了解到:该汽车行驶100Km的耗油量约7Kg。从书上查得汽油的热值q=4.6×107J/Kg。他又测出在平直公路上,用644N的水平拉力可使汽车匀速前进。若空气阻力不计,试求该小汽车的效率是多少? [分析与解]:小汽车行驶,化学能转化为内能后又转化为机械能,对汽车做功是有用的能量,完全燃烧汽油放出的能量是总能量。小汽车的效率可用η=Q 有用/Q总×100%=FS/mq×100%计算。 Q有用=FS=644×105J=6.44×107J Q总=mq=7×4.6×107J=3.22×108J

锅炉效率计算方法

锅炉效率计算方法 锅炉是工业生产中常用的热能设备,它能够将燃料燃烧产生的热能转化为水蒸汽或热水。锅炉的效率是衡量其能源利用率的重要指标,决定着燃料的消耗量和能源的利用程度。本文将介绍几种常见的计算锅炉效率的方法。 我们需要了解几个与锅炉效率相关的概念。燃料的热值是指单位质量的燃料所释放的热能,通常以千焦或千卡为单位。燃料的利用率是指锅炉将燃料中的化学能转化为热能的程度,用百分比表示。锅炉的热效率是指锅炉从燃料中获取的有效热能与燃料热值之比,也用百分比表示。 一种常见的计算锅炉效率的方法是通过测量烟气中的含氧量来确定燃料的利用率。烟气中的含氧量越低,说明燃料的利用率越高。通过在锅炉烟气排放口处安装含氧量测定仪器,可以实时监测烟气中的氧含量,并根据测量结果计算燃料的利用率。 另一种常用的计算锅炉效率的方法是通过测量烟气中的二氧化碳和一氧化碳含量来确定锅炉的热效率。这种方法需要在锅炉烟气排放口处安装二氧化碳和一氧化碳分析仪,通过分析仪器测得的数据,可以计算锅炉的热效率。二氧化碳的含量越高,热效率越低,而一氧化碳的含量越高,表示燃烧不完全,热效率也会降低。 除了烟气分析法外,还有一种常用的计算锅炉效率的方法是通过测

量锅炉进出口水的温度和流量来确定热效率。这种方法被称为热平衡法。通过测量锅炉进出口水的温度差和流量差,可以计算出锅炉的热损失,再将热损失与燃料输入的热能进行比较,即可得到锅炉的热效率。这种方法简单实用,但需要准确测量进出口水的温度和流量。 除了以上几种常见的计算锅炉效率的方法外,还有一些特殊情况下的计算方法。例如,在燃煤锅炉中,可以通过测量煤粉的燃烧损失和飞灰的含碳量来计算锅炉的热效率。在燃气锅炉中,可以通过测量燃气的流量和热值来计算锅炉的热效率。 计算锅炉效率是衡量锅炉能源利用率的重要手段,可以帮助我们评估锅炉的性能和优化能源利用。通过测量烟气中的含氧量、二氧化碳和一氧化碳含量,以及锅炉进出口水的温度和流量,我们可以得到准确的锅炉效率数据,为工业生产提供更可靠的能源支持。同时,我们也应该注意锅炉的日常维护和管理,保持锅炉的高效运行,提高能源利用效率,实现可持续发展的目标。

锅炉效率计算方法

锅炉效率计算方法 锅炉效率是指锅炉利用燃料产生蒸汽的能力。提高锅炉效率可以减少能源浪费和环境污染。本文将介绍锅炉效率的计算方法。 我们需要了解几个关键参数: 1. 锅炉的热效率(η) 锅炉的热效率是指所产生蒸汽的热量与所消耗燃料的热量之间的比值。热效率越高,锅炉越节能。 2. 锅炉的燃料效率(ηf) 锅炉的燃料效率是指燃料的热值与所消耗燃料的热量之间的比值。燃料效率越高,锅炉越节能。 3. 锅炉的汽化效率(ηv) 锅炉的汽化效率是指燃料中的水分被蒸发所产生的蒸汽量与燃料中的水分之间的比值。汽化效率越高,锅炉越节能。 4. 锅炉的传热效率(ηh) 锅炉的传热效率是指锅炉内部传热的效率。传热效率越高,锅炉越节能。

根据上述参数,锅炉的总效率(ηt)可以通过以下公式计算: ηt = η × ηf × ηv × ηh 其中,η表示锅炉的热效率,ηf表示锅炉的燃料效率,ηv表示锅炉的汽化效率,ηh表示锅炉的传热效率。 锅炉的热效率可以通过以下公式计算: η = Q1 / (Q1+Q2) 其中,Q1表示所产生蒸汽的热量,Q2表示燃料的热量。 锅炉的燃料效率可以通过以下公式计算: ηf = Q1 / (m×CV) 其中,m表示所消耗的燃料质量,CV表示燃料的热值。 锅炉的汽化效率可以通过以下公式计算: ηv = (m1-m2) / m 其中,m1表示燃料中的水分质量,m2表示燃烧后残留的水分质量,m表示所消耗的燃料质量。 锅炉的传热效率可以通过以下公式计算:

ηh = Q1 / (m×Cp×(T1-T2)) 其中,Cp表示水的比热容,T1表示蒸汽的温度,T2表示进水的温度。 通过以上公式,我们可以计算出锅炉的总效率。提高锅炉效率是节约能源和减少环境污染的重要途径,希望本文能对大家有所帮助。

锅炉热效率测定计算的简易快捷方法

锅炉热效率测定计算的简易快捷方法 点击次数:6448 发布时间:2009-10-27 锅炉热效率测定计算的简易快捷方法 ㈠采用简易方法测试锅炉热效率的可行性 依据现有标准进行锅炉热工测试和计算热效率的结果也存在一定误差,并非 完全精确。我局湘质监特发[2009]99号文件附件3统计,市州特检机构按正规的热工测试方法进行测试需要采购配备大量仪器和设备,需要投入66.84万元。恕我直言,目前地市级特种设备检验所经济实力不强的情况下,花费近七十万元购买锅炉热效率测试的设备仪表(还不含煤质、飞灰和炉渣可燃物含量的测量设备——测量这两项还要取样送到长沙等检测单位进行)是不现实的。本人建议,只要配备6.5万元的先进分析仪和设备(还包含相应煤质分析、飞灰和炉渣可燃物含量的测量设备),采取简易而快捷的方法对燃煤锅炉的热效率进行检测,就可以尽快对燃煤锅炉进行热效率测试;不必花费大量资金、配备大量仪器和设备做为投入,使得燃煤锅炉能效测试工作滞后,影响高耗能锅炉节能监察工作的开展。本人持有这种想法的根据如下: 在对在用燃煤锅炉进行热效率测试时,只要在现场测量锅炉排烟温度ex,烟气中一氧化碳的含量CO,氧含量O,冷空气温度t l.a,测定换算得到炉膛的过量空气系数α,如果锅炉运行中有蒸汽喷入炉膛,则记录喷口尺寸和蒸汽压力;然后取回煤样、炉渣和飞灰样返回到检验机构检测出煤的收到基低位发热量Q net, ,煤的灰分收到基质量百分数A ar,飞灰可燃物C f.a,炉渣可燃物含量(含碳量)C sl ar 等,就可以根据燃用煤的化验分析数据,按照下面所述的方法计算燃煤锅炉的热效率(误差在1.5%左右)和耗煤量,推导锅炉的运行状况。 而燃油、燃气锅炉的热效率测试就更容易进行,只需要在现场进行测量锅炉排烟温度,烟气中一氧化碳的含量、氧含量,冷空气温度,测定换算得到炉膛的过量空气系数就行了,无须采样分析。 这是因为按照常规,燃气供应单位应该向也应向使用单位提供燃气的成分(如果燃料供应单位确实无法出具燃料的成分分析资料,只好取样送到具备燃料

锅炉热效率的简易计算

锅炉热效率的简易计算与分析 对锅炉而言,影响煤耗的因素主要有三类:煤质、运行工况和锅炉自身热效率。查找煤耗偏高的原因,需要对各影响因素进行定量测定分析。测定锅炉热效率,通常采用反平衡试验法。本文对此方法进行了介绍,并简化了计算过程,可用于日常锅炉效率监控。 1 反平衡法关键参数的确定 众所周知,反平衡法热效率计算公式为: η = 100-(q2+q3+q4+q5+q6) 计算的关键是各项热损失参数的确定。 1.1 排烟热损失q2 排烟热损失q2是由于锅炉排烟带走了一部分热量造成的热损失,其大小与烟气量、排烟与基准温度、烟气中水蒸汽的显热有关。我厂燃煤介于无烟煤和贫煤之间,计算q2可采用如下简化公式: q2 =(3.55αpy+0.44)×(tpy-t0)/100 式中,αpy——排烟处过量空气系数,我厂锅炉可取为1.45 tpy——排烟温度,℃ t0 ——基准温度,℃

1.2 化学不完全燃烧热损失q3 化学不完全燃烧热损失q3是由于烟气中含有可燃气体CO造成的热损失,主要受燃料性质、过量空气系数、炉内温度和空气动力状况等影响,可采用下列经验公式计算: q3 =0.032αpy CO×100% 式中,CO——排烟的干烟气中一氧化碳的容积含量百分率,% 我厂锅炉q3可估算为0.5%。 1.3 机械未完全燃烧热损失q4 机械未完全燃烧热损失q4主要是由锅炉烟气带走的飞灰和炉底放出的炉渣中含有未参加燃烧的碳所造成的,取决于燃料性质和运行人员的操作水平,简化计算公式为: Q4 =337.27×Aar×Cfh/[ Qnet.ar×(100-Cfh)] 式中,Aar——入炉煤收到基灰分含量百分,% Cfh——飞灰可燃物含量,% Qnet.ar——入炉煤收到基低位发热量,kJ/kg 1.4 散热损失q5

火力发电厂燃煤锅炉效率的计算方法

火力发电厂燃煤锅炉效率的计算方法 摘要:作为火力发电厂三大主机之一,锅炉的运行状态直接关系到电厂的经 济效益,锅炉的热效率越高,电厂的经济效益越高。在实际运行的过程中,锅炉 效率会随燃煤的质量、空燃比、给水质量、灰渣及烟风的排放等因素而发生变化。本文简要介绍了如何在实际运行时采用直接法和间接法计算锅炉效率,并对两种 计算方法的优缺点进行了论述。 关键词:燃煤锅炉;锅炉效率;热电厂 1 简介 锅炉是火力发电厂最重要的热能动力设备,也是整个火力发电厂的人员。按 工作介质的运行路线,可以将锅炉分为“锅”和“炉”,其中“炉”侧的运行流 程为:送风机将空气送至锅炉“炉”侧燃烧器燃烧,并通过预热器对空气进行预 热以干燥煤粉。燃料和空气的混合物将在炉膛中燃烧,通过燃烧,锅炉吸收热量 后加热给水产生特定压力和温度的蒸汽。烟气通过锅炉、省煤器、空气预热器、 烟气处理系统(含脱硫、脱硝、除尘等系统)后,通过引风机引至烟囱排放至大气。“锅”侧的运行流程为:“锅”侧吸收“炉”产生的热量加热给水,给水被加热 后在锅筒处产生饱和蒸汽,饱和蒸汽经过过热器进一步加热后温度升高至过热状态。干燥的过热蒸汽进入汽轮机做功,汽轮机驱动发电机进行发电,在汽轮机中 做功后的蒸汽流入冷凝器冷凝成冷凝水后再次用作锅炉给水,整个过程完成了水 -蒸汽-水的循环。

锅炉效率直接影响锅炉的运行和维修。导致锅炉效率和蒸发率的降低一般是由于结垢、燃烧状况不佳、运行和维护不当等因素,燃料和给水的质量也可能导致锅炉效率降低。正常运行时,锅炉主要的热损失是由烟气和灰渣带走的。 锅炉的运行是一个持续且不断变化的过程,锅炉效率是衡量锅炉性能的最直观和最有效的参数之一,因此计算锅炉效率是非常必要的。计算锅炉效率时可采用直接法和间接法,本文主要结合一个参考工程论述采用直接法及间接法计算锅炉效率的优点及其局限性。 2 计算方法介绍 采用直接法的原理是取锅炉输出的热量和锅炉燃料输入热值的比值,而间接法主要考虑各项热损失之和与燃料输入热值的比值,最终扣除总损失占比后的数值即为锅炉热效率。 煤的发热量分高位发热量(Q gr )和低位发热量(Q net ),高位发热量通常可用氧弹 热量计直接测定。低位发热量则高位发热量扣除掉燃烧产物中水蒸气的汽化潜热后燃料的发热量。本文后续计算中主要用到的发热量为高位发热量(Q gr ,单位为kJ/kg)。 3 直接法计算锅炉热值 直接法,也称为投入产出法,其原理是将工作介质的能量和燃料的能量进行比较,这只需要得到热输出(蒸汽)和热输入(燃料)的热量即可计算热效率。按此法计算的热效率即为热量输出/热量输入。 燃料煤的输入测量包含其燃料热值及质量流量,这需要在锅炉房上安装专门的测量设备。在测量的过程中,需要将燃料样品密封送往实验室进行检测分析和热值计算。质量流量的测定则可以通过在炉前料斗处安装称重装置进行测量。 根据直接法计算锅炉效率的表达式为:

锅炉效率反平衡计算法—简易计算

锅炉效率反平衡计算法-简易计算对我厂锅炉而言,影响煤耗的因素主要有三类:煤质、运行工况和锅炉自身热效率。查找煤耗偏高的原因,需要对各影响因素进行定量测定分析。测定锅炉热效率,通常采用反平衡试验法。本文对此方法进行了介绍,并简化了计算过程,可用于日常锅炉效率监控。 1 反平衡法关键参数的确定 众所周知,反平衡法热效率计算公式为: η = 100-(q2+q3+q4+q5+q6) 计算的关键是各项热损失参数的确定. 1.1排烟热损失q2 排烟热损失q2是由于锅炉排烟带走了一部分热量造成的热损失,其大小与烟气量、排烟与基准温度、烟气中水蒸汽的显热有关.我厂燃煤介于无烟煤和贫煤之间,计算q2可采用如下简化公式: q2 =(3。55αpy+0。44)×(tpy-t0)/100 式中,αpy——排烟处过量空气系数,我厂锅炉可取为1.45 tpy——排烟温度,℃ t0——基准温度,℃ 1.2化学不完全燃烧热损失q3 化学不完全燃烧热损失q3是由于烟气中含有可燃气体CO造成的热损失,主要受燃料性质、过量空气系数、炉内温度和空气动力状况等影响,可采用下列经验公式计算: q3 =0。032αpy CO×100% 式中,CO--排烟的干烟气中一氧化碳的容积含量百分率,%

我厂锅炉q3可估算为0。5%. 1。3机械未完全燃烧热损失q4 机械未完全燃烧热损失q4主要是由锅炉烟气带走的飞灰和炉底放出的炉渣中含有未参加燃烧的碳所 造成的,取决于燃料性质和运行人员的操作水平,简化计算公式为: Q4 =337.27×Aar×Cfh/[ Qnet。ar×(100-Cfh)] 式中,Aar—-入炉煤收到基灰分含量百分,% Cfh——飞灰可燃物含量,% Qnet.ar—-入炉煤收到基低位发热量,kJ/kg 1.4散热损失q5 散热损失q5是锅炉范围内炉墙、管道向四周环境散失的热量占总输入热量的百分率,计算公式为:Q5 =5。82×De0。62/D 式中,De——锅炉的额定负荷,t/h D——锅炉的实际负荷,t/h 1.5灰渣物理热损失q6 灰渣物理热损失q6包括灰渣带走的热损失和冷却热损失.我厂锅炉为固态除渣炉,且燃料的灰分含量Aar

相关主题
相关文档
最新文档