新人教版八年级数学上册总复习课件

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2):全等三角形的周长相等、面积相等。
(3):全等三角形的对应边上的对应中线、角平分 线、高线分别相等。
知识回顾: 包括直角三角形
一般三角形 全等的条件:
1.定义(重合)法;
解题 2.SSS;
中常 3.SAS;
不包括其它形
用的 4种
4.ASA;
状的三角形
方法 5.AAS.
直角三角形 全等特有的条件:HL.
∴ ∠A= ∠C
∴ DC∥AB
练习5: 如图,小明不慎将一块三角形模具打碎为 两块,他是否可以只带其中的一块碎片到商店去, 就能配一块与原来一样的三角形模具呢?如果可以, 带那块去合适?为什么?
A B
6、如图,已知AC∥EF,DE∥BA,若使△ABC≌△EDF,还需要补
充的条件可以是 AB=ED
变式:以上条件不变,将
△ABC绕点C旋转一定角度 (大于零度而小于六十度), 以上的结论还成立吗?
∴ BE=AD
9、如图,已知E在AB上,∠1=∠2, ∠3=∠4,那么AC等于AD吗?为什么?
C
3
AE
1 2
4
D
解:AC=AD
B
理由:在△EBC和△EBD中
∠1=∠2 ∠3=∠4 EB=EB ∴ △EBC≌△EBD (AAS) ∴ BC=BD 在△ABC和△ABD中 AB=AB ∠1=∠2 BC=BD ∴ △ABC≌△ABD (SAS) ∴ AC=AD
A
O
在Rt△ABO和Rt△ACO中
OB=OC
AO=AO
C
∴ Rt△ABO≌Rt△ACO (HL)
∴ ∠BAO=∠CAO
∴ AO平分∠BAC
4、如图,AC和BD相交于点O,OA=OC,OB=OD
求证:DC∥AB
D
C
证明:在△ABO和△CDO中
O
OA=OC
A
B
∠AOB= ∠COD
OB=OD
∴ △ABO≌△CDO (SAS)
或 AC=EF
或 BC=DF
或 DC=BF
D
C
A
E
F
B
7:已知 AC=DB, ∠1=∠2. 求证: ∠A=∠D
A 1
B
D 证明:在△ABC和△DCB中
AC=DB
2 C
∠1=∠2 BC=CB
∴ △ABC≌△DCB (SAS)
∴ ∠A=∠D
8、如图,已知,AB∥DE,AB=DE,AF=DC。 请问图中有那几对全等三角形?请任选一对 给予证明。
A
F
E
C
D
答: △ABF≌△DEC
△ABC≌△DEF △CBF≌△FEC
B
9、如图,已知E在AB上,∠1=∠2, ∠3=∠4,那么AC等于AD吗?为什么?
C
3
AE
1 2
4
D
解:AC=AD
B
理由:在△EBC和△EBD中
∠1=∠2 ∠3=∠4 EB=EB ∴ △EBC≌△EBD (AAS) ∴ BC=BD 在△ABC和△ABD中 AB=AB ∠1=∠2 BC=BD ∴ △ABC≌△ABD (SAS) ∴ AC=AD
(3)已知两角---
找两角的夹边(ASA) 找夹边外的任意边(AAS)
二.角的平分线:
1.角平分线的性质: 角的平分线上的点到角的两边的距离相等.
用法:∵ QD⊥OA,QE⊥OB, 点Q在∠AOB的平分线上 ∴ QD=QE
2.角平分线的判定:
角的内部到角的两边的距离相等的点 在角的平分线上。
用法: ∵ QD⊥OA,QE⊥OB,QD=QE. ∴点Q在∠AOB的平分线上.
回顾知识点:
边边边:三边对应相等的两个三角形全等(可简写成
“SSS”)
边角边:两边和它们的夹角对应相等两个三角形全等
(可简写成“SAS”)
角边角:两角和它们的夹边对应相等的两个三角形全等 (可简写成“ASA”)
角角边:两角和其中一角的对边对应相等的两个三角形 全等(可简写成“AAS”)
斜边.直角边:斜边和一条直角边对应相等的两个直角
A
解: AD=AE
D B
理由: 在△ACD和△ABE中
∠B=∠C E
AB=AC
∠A=∠A
C
∴ △ACD≌△ABE (ASA)
∴ AD=AE
3、如图,OB⊥AB,OC⊥AC,垂足为B,C,OB=OC
AO平分∠BAC吗?为什么?
答: AO平分∠BAC
B源自文库
理由:∵ OB⊥AB,OC⊥AC
∴ ∠B=∠C=90°
新人教版八年级上册 期末总复习
第十一章全等三角形(复习)
一.全等三角形:
1:什么是全等三角形?一个三角形经过哪些变 化可以得到它的全等形?
能够完全重合的两个三角形叫做全等三角形。一个三角 形经过平移、翻折、旋转可以得到它的全等形。
2:全等三角形有哪些性质? (1):全等三角形的对应边相等、对应角相等。
三角形全等(可简写成“HL”)
方法指引
证明两个三角形全等的基本思路:
找第三边 (SSS)
(1)已知两边---- 找夹角 (SAS)
找是否有直角 (HL)
已知一边和它的邻角
(2)已知一边一角---
找这边的另一个邻角(ASA)
找这个角的另一个边(SAS) 找这边的对角 (AAS)
已知一边和它的对角
找一角(AAS) 已知角是直角,找一边(HL)
总结提高
学习全等三角形应注意以下几个问题:
(1)要正确区分“对应边”与“对边”,“对应角”

“对角”的不同含义;
(2)表示两个三角形全等时,表示对应顶点的字 母要写在对应的位置上;
(3)要记住“有三个角对应相等”或“有两边及其 中一边的对角对应相等”的两个三角形不一定全等;
(4)时刻注意图形中的隐含条件,如 “公共角” 、 “公共边”、“对顶角”
10、已知,△ABC和△ECD都是等边三角形,且点B,C,D在一
条直线上求证:BE=AD 证明:
E
∵ △ABC和△ECD都是等边三角形
A
∴ AC=BC DC=EC ∠BCA=∠DCE=60°
∴ ∠BCA+∠ACE=∠DCE+ ∠ACE
B
D
即∠BCE=∠DCA
C
在△ACD和△BCE中
AC=BC ∠BCE=∠DCA DC=EC ∴ △ACD≌△BCE (SAS)
10、已知,△ABC和△ECD都是等边三角形,且点B,C,D在一
条直线上求证:BE=AD 证明:
E
∵ △ABC和△ECD都是等边三角形
A
∴ AC=BC DC=EC ∠BCA=∠DCE=60°
练习1:如图,AB=AD,CB=CD. 求证: AC 平分∠BAD
A
证明:在△ABC和△ADC中
AC=AC
AB=AD
CB=CD
∴ △ABC≌△ADC (SSS)
C
∴ ∠BAC= ∠DAC
B
D
∴ AC平分∠BAD
2、如图,D在AB上,E在AC上, AB=AC ,∠B=∠C, 试问AD=AE吗? 为什么?
相关文档
最新文档