MRI基本概念
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.1.1 脉冲序列的概念
MR图像的信号强度取决于射频脉冲的发射方式、梯度磁场的引入方式和MR信号的读取方式等。为不同成像目的而设计的一系列射频脉冲、梯度脉冲和信号采集按一定时序排列称作脉冲序列。
2.1.2 脉冲序列的构成
一般脉冲序列的一个周期中包括射频脉冲、梯度脉冲和MR信号采集。射频脉冲包含用以激发氢质子的激发脉冲、使质子群相位重聚的复相脉冲以及反转恢复序列等;梯度脉冲包括层面选择梯度、相位编码梯度、频率编码梯度(也称读出编码),用以空间定位;形成的MR信号也称为回波。完成一个层面的扫描和信号数据采集需要重复多个周期。
2.1.3 脉冲序列的基本参数
在一个脉冲序列中有许多的变量,这些变量统称为序列成像参数。在成像中选用不同的成像参数可以得到不同类型的图像,这里我们介绍几个主要的序列成像参数。
2.1.
3.1重复时间(repetition time;TR)
重复时间是指脉冲序列的一个周期所需要的时间,也就是从第一个RF激发脉冲出现到下一周期同一脉冲出现时所经历的时间间隔。在单次激发序列中,由于只有一个激发射频脉冲,TR等于无穷大。TR时间影响被RF激发后质子的弛豫恢复情况,TR长、恢复好。TR延长,信噪比提高,可允许扫描的层数增多,T2权重增加,T1
权重减少,但检查时间延长;TR时间缩短,检查时间缩短,T1权重增加,信噪比降低,可允许扫描的层数减少,T2权重减少。
2.1.
3.2回波时间(echo time;TE)
回波时间是指从激发脉冲与产生回波之间的间隔时间。在多回波序列中,激发RF 脉冲至第1个回波信号出现的时间称为TE1,至第2个回波信号的时间叫做TE2,依次类推。在MRI成像时,回波时间与信号强度成反相关,TE延长,信噪比降低,但T2权重增加。TE缩短,信噪比增加,T1权重增加,T2对比减少。
2.1.
3.3有效回波时间(effective echo time;ETE)
有效回波时间是指与最终图像对比最相关的回波时间。对于具有多个回波的快速成像序列,不同回波分别填充到k空间的不同位置,每个回波的TE值是不同的,填充到k空间中央的回波决定图像的对比,其TE值为ETE。
2.1.
3.4反转时间(inversion time;TI)
反转时间是指反转恢复类脉冲序列中,180°反转脉冲与90°激励脉冲之间的时间间隔。
2.1.
3.5翻转角(flip angle)
在射频脉冲的激发下,质子磁化矢量方向将发生偏转,其偏离的角度称为翻转角或激发角度。翻转角的大小是由RF能量所决定的。常用的翻转角有90°和180°两种,相应的射频脉冲分别被称为90°和180°脉冲。在快速成像序列中,经常采用小角度激励技术,其翻转角小于90°。
6.1.3.6信号激励次数(number of excitations;NEX)
信号激励次数又叫信号采集次数(number of acquisitions;NA)。它是指每一个相位编码步级采集信号的重复次数。NEX增大,有利于增加图像信噪比和减少图像伪影,但是所需的扫描时间也相应延长。
2.1.
3.7回波链长度(echo train length;ETL)
回波链长度是指每个TR时间内用不同的相位编码来采样的回波数。ETL是快速成像序列的专用参数。对于传统序列,每个TR中仅有一次相位编码,在快速序列中,每个TR时间内可进行多次相位编码,使数据采集的速度成倍提高。
2.1.
3.8回波间隔时间(echo spacing;ES)
回波间隔时间是指快速成像序列回波链中相邻两个回波之间的时间间隔。ES长短影响TE时间的长短。
2.1.
3.9视野(FOV)
视野由图像水平和垂直两个方向的距离确定的。最小FOV是由梯度场强的峰值和梯度间期决定的。
2.1.
3.10图像采集矩阵
代表沿频率编码和相位编码方向采集的像素数目,图像采集矩阵=频率编码次数×相位编码次数,例如频率编码次数为256,相位编码次数为192,则矩阵为256×192。
2.1.
3.11接收带宽
序列的接收带宽是指接收信号的频率范围,即读出梯度采样频率的范围。采用低频率编码梯度和延长读出间期可获得窄的带宽。
2.2自旋回波脉冲序列
2.2.1自旋回波脉冲序列(spin echo,SE)
自旋回波序列简称SE序列,是目前磁共振成像最基本的脉冲序列。SE序列采用90°激发脉冲和180°复相脉冲进行成像。SE序列的过程是先发射一个90° RF脉冲,Z轴上的纵向磁化矢量M0被翻转到XY平面上;在第一个90°脉冲后,间隔TE/2时间后再发射一个180°RF脉冲,可使XY平面上的磁矩翻转180°,产生重聚焦的作用,此后再经过TE/2时间间隔就出现回波信号。从90° RF脉冲到接受回波信号的时间称回波时间,即TE时间,两个90°RF脉冲之间的时间称重复时间,即TR 时间。
2.2.2 T1加权像
T1加权图像主要反映组织T1值差异,简称为T1WI。在SE序列中,T1加权成像时要选择较短的TR和TE值,一般TR为500ms左右,TE为20ms左右,能获得较好的T1加权图像。
2.2.3 T2加权像
主要反映组织T2值不同的MRI图像称为T2加权图像,简称为T2WI。在SE序列中,T2加权成像时要选择长TR和长TE值,具体地说,TR为2500ms左右,TE为100ms 左右。
2.2.4质子密度加权像N(H)加权像
质子密度反映单位组织中质子含量的多少。在SE序列中,一般采用较长TR和较短TE时可获得质子密度加权图像,一般TR为2 500ms左右,TE为20ms左右时,SE序列成像可获得较好的质子密度加权图像。各种软组织的质子密度差别大多不如其T1或T2值相差大,所以目前许多情况下医生更重视T1或T2加权图像。
在具体工作中,可采用双回波序列,第一个回波使用短TE,形成质子密度加权图像,第二个回波使用长TE,形成T2加权图像。
2.3反转恢复脉冲序列
2.3.1反转恢复脉冲序列的理论基础
反转恢复序列(inversion recovery,IR)包括一个180°反转脉冲、一个90°激发脉冲与一个180°复相脉冲组成。第一个180°脉冲激发质子,使质子群的纵向磁化矢量M0由Z轴翻转至负Z轴。当RF停止后磁化矢量将逐渐恢复,之后,使用一个90°脉冲对纵向磁矩进行90°翻转,180°脉冲与此90°脉冲之间的时间间隔为反转时间TI。90°脉冲后就和SE序列一样在TE/2时间再使用一个180°脉冲实现横向磁矩再聚焦和信号读出。
IR序列的成像参数包括TI、TE、TR。TI是IR序列图像对比的主要决定因素,尤其是T1对比的决定因素。TI的作用类似于SE序列中的TR,而IR序列的TR对T1加权程度的作用相对要小,但TR必须足够长,才能容许在下一个脉冲序列重复之前,使M z的主要部分得以恢复。由于IR序列对分辨组织的T1值极为敏感,所以传统IR序列一直采用长TR和短TE来产生T1WI。TE是产生T2加权的主要决定因