德士古水煤浆气化4种灰水

德士古水煤浆气化4种灰水
德士古水煤浆气化4种灰水

德士古水煤浆气化4种灰水(黑水)系统对比

王建军,张国连,丛玉梅(兖矿贵州能化有限公司开阳合成氨项目筹备处,贵阳 550300) 2007-04-16

自从德士古第1套水煤浆加压气化装置在鲁南化肥厂投料开车以来,国内最近10多年又陆续新建了10多套装置,并且都已取得成功。德士古水煤浆气化装置的灰水(黑水)系统主要有4种工艺流程,各有优、缺点,现对比如下。

1 流程(一)(图1)

1.1 流程简介

(1)黑水系统

气化炉激冷室排出的黑水和洗涤塔锥体底部排出的黑水分别由各自的管道通过1开1备的节流减压阀进入高压闪蒸罐,高温液体降压膨胀后,水蒸气和溶解的酸性气(如CO2,H2S等)被迅速闪蒸出来。高压闪蒸罐操作压力0.71 MPa,由靠近换热器出口管道上的压力控制阀进行调节控制。

高压闪蒸后的黑水经高压闪蒸罐液位调节阀送入中压闪蒸罐,进行第2级降压膨胀闪蒸;罐内操作压力为0.13 MPa,罐底部含固黑水由液位控制阀控制进入真空闪蒸罐。

入真空闪蒸罐的黑水在负压下操作(绝对压力0.05MPa),酸性气体和水汽迅速膨胀逸出水面,真空闪蒸罐锥底排出的黑水经液位调节后自流进入重力沉降槽。

(2)闪蒸系统

高压闪蒸罐顶排出的闪蒸气分两路分别进入高压罐顶换热器(Ⅰ)和高压罐顶换热器(Ⅱ)的管间。在高压罐顶换热器(Ⅰ)内加热来自中压罐顶换热器换热后的灰水,加热后的灰水去文丘里洗涤器。在高压罐顶换热器(Ⅱ)内加热冷凝液,然后作为洗涤塔塔板洗涤水。进入2台高压罐顶换热器的闪蒸气流量由出高压罐顶换热器(Ⅰ)的灰水温度给定温度调节器控制调节三通阀进行分配。

1.2 特点

灰水(黑水)系统采用了三级闪蒸,经过相关企业10多年的运行,暴露了不少问题:管道容易磨损泄漏;换热器容易结垢堵塞且不易清理;灰水系统备车增加;闪蒸气直接送火炬放空,对大气有污染。但该系统是国内较早投运的装置,有多年的生产运行经验,比较成熟。

1.3 缺点

(1)因闪蒸罐气相(废气)均由火炬放空,开、停车过程中压力、液位(闪蒸罐)较难控制。

(2)系统结垢严重,尤其是该系统使用的大部分是U形管换热器,运行周期短,一般检修后运行3个月便严重堵塞,换热器列管堵塞比例高达三分之二;闪蒸罐清理难度大,罐内汽液分离器短时间内无法彻底清理,有时被迫拆下清理,检修周期过长。

(3)管道和阀门更换频繁,检修费用较高。

2 流程(二)(图2)

2.1 流程(二)简述

从气化炉和碳洗塔排出的高温黑水减压后进高压闪蒸器,闪蒸出大部分溶解的合成气;含尘液体再经低压闪蒸、真空闪蒸被浓缩后进入澄清槽,并加入絮凝剂使其加速沉淀;澄清槽底部的细渣浆经泵抽出送往过滤机给料槽,经由过滤机给料泵加压后送至真空过滤机脱水,渣饼外送。

高压闪蒸器闪蒸出的高压气体经过灰水加热器回收热量之后,通过气液分离器除去冷凝液,然后进入变换工段气提塔。

低压闪蒸器闪蒸出的低压气体(约120℃)直接送至洗涤塔给料槽作脱氧器热源;真空闪蒸器闪蒸出的气体经真空闪蒸冷凝器冷凝后由蒸汽喷射泵及真空泵抽出进分离器,气体放空,冷凝液回用。

澄清槽上部清水溢流至灰水槽,由灰水泵送至洗涤塔给料槽,少量灰水作为废水送废水处理。

洗涤塔给料槽的水补入变换来的冷凝液,加入原水后在0.2 MPa下进行脱氧,脱氧后经给料泵加压与高压闪蒸器顶排出的热气体换热

后送碳洗塔循环使用。

2.2 特点

灰水(黑水)系统采用四级闪蒸,能更有效地闪蒸出黑水中的酸性气体,加入絮凝剂更有利于黑水沉降,但工艺流程较复杂,增加了不少设备投资。闪蒸气入变换工段气提塔,不通过火炬排放,有利于环境保护。

3 流程(三)(图3)

3.1流程(三)简述

来自气化炉、旋风分离器、水洗塔的洗涤黑水经液位、流量串级调节控制并减压后送入蒸发热水塔蒸发室,水蒸气及部分溶解在黑水中的酸性气(CO2及H2S等)被迅速闪蒸出来;然后通过上升管进入蒸发热水塔上部热水室,与低压灰水泵来的灰水直接接触,低压灰水被加热;经换热后未冷凝的闪蒸气体经酸性气冷凝器冷凝、分离器进行气液分离后,未冷凝的酸性气体排放至火炬燃烧,酸性冷凝液送入灰水槽。初步浓缩后的黑水通过蒸发热水塔下部蒸发室液位调节阀控制后送入真空闪蒸器闪蒸,闪蒸后的气体经真空闪蒸换热器换热降温,分离后气体排入大气,液体自流入灰水槽。再次浓缩的黑水通过静态混合器与絮凝剂混合后进入澄清槽,加入的絮凝剂在澄清槽中用以强化浓缩黑水中固体颗粒的沉降。进一步浓缩沉降后的黑水质量浓度达30%以上,经澄清槽底流泵送入压滤机系统压滤处理,滤饼运出界外,滤液自流入滤液受槽。澄清槽中澄清后的灰水溢流至灰水槽,灰水经低压灰水泵分3路,第1路输送至蒸发热水塔热水室,加热后经高温热水泵提压至5.2MPa返回水洗塔作为洗涤水;第2路作为锁斗的排渣冲洗水;第3路少量灰水送废水处理装置处理后外排。

3.2 特点

合成气经旋风分离器、水洗塔二级除尘、降温,有利于气体的净化;灰水系统采用二级闪蒸,结构更加紧凑,流程简便,操作方便;经过二级闪蒸,也能有效地分离出黑水中的酸性气体,节省了设备投资;但闪蒸分离的酸性气体排放至火炬燃烧,不利于环保。

4 流程(四)(图4)

4.1 流程简述

出气化炉激冷室的黑水和出第1旋风分离器底部的黑水经减压后分别进入高压闪蒸罐,闪蒸出水中溶解的气体。闪蒸后的黑水与来自渣池泵的黑水一起进入真空闪蒸罐进一步闪蒸。二级闪蒸后的黑水经沉降槽给料泵送至沉降槽沉降分离细渣。沉降槽底部的沉降物含固量约20%(质量分数),由沉降槽底流泵送至真空过滤机,经脱水后的滤饼装车外运,滤液自流回沉降槽。沉降槽上部溢流清液自流至灰水槽,灰水槽中的一部分灰水经低压灰水泵、锁斗冲洗水冷却器冷却后,送至锁斗冲洗水罐作为锁斗排渣的冲洗水;一部分灰水经废水冷却器冷却后排至污水处理系统进行处理,达标后排放;另一部分灰水经高压灰水泵在灰水加热器中与高压闪蒸气换热后送至高压冷凝液罐,作为系统洗涤补充水、循环水使用。

高压闪蒸罐顶的闪蒸气经灰水加热器、脱盐水加热器与灰水和脱盐水分别换热,再经高压闪蒸冷凝器冷却后进入高压闪蒸分离罐,分离后的气体去变换工段冷凝液气提塔,分离后的冷凝液供除氧器使用。真空闪蒸罐顶的闪蒸气经真空闪蒸罐顶冷凝器冷却后进入真空闪蒸分离罐,分离后的气体经真空泵和真空泵分离罐分离后放空。真空闪蒸分离罐分离后的冷凝液自流至灰水罐,真空泵分离罐分离的水返回至滤液地下槽。

4.2 特点

合成气经过二级除尘效果更佳,水系统许多设备可以共用,减少了部分设备投资,提高了设备的使用率,设备运行更科学、合理。二级闪蒸系统工艺流程更加简便,闪蒸气去变换冷凝液气提塔,有利于环保。

不足之处:真空闪蒸罐的黑水经沉降槽给料泵送至沉降槽,增加了设备投资,运行成本增加,而且给料泵管道易堵塞,难以处理,且泵的机封易泄漏,增加了维修量;闪蒸系统的换热器过多。建议真空闪蒸罐移位至高处,靠自流进入沉降槽。

5 4种灰水(黑水)系统的对比

(1)流程(一)与流程(二)的区别不大,但流程(二)优于流程(一),主要在于低压闪蒸气液相无换热器,高压闪蒸气送入变换冷凝液气提塔。

(2)与前3种流程相比,流程(四)的缺点在于装置中的换热器偏多,会造成灰水、冷凝液的运行压降大,增大了设备检修费用及周期;真空闪蒸罐内黑水不自流入沉降槽,沉降槽给料泵运行的好坏将直接影响整个系统的正常运行。

(3)流程(三)比较理想,使用蒸发热水塔减少了换热器的配置,闪蒸废气去火炬,闪蒸罐压力不受其它系统的影响。1台旋风分离器与水洗塔配置,也能有效地保证粗煤气含尘量指标的稳定。灰水(黑水)系统流程简单,易操作,投资费用少。

(4)无论采用哪一种流程,都是为了降低合成气的灰分,以免带到变换系统和避免系统堵塞,减少疏通管道的劳动强度,降低检修费用,从而降低单位产品成本,为企业增加效益。

(5)操作时避免炉温过低,操作人员应根据煤种变化及灰熔点分析及时调整炉温;防止因烧嘴雾化效果不好而造成黑水中含碳颗粒大量增加、粘度增大,从而造成在设备、管道的大量沉淀,引起堵塞。

(6)严格控制出真空闪蒸罐的黑水温度不能过高。因为温度过高不利于黑水中固体颗粒的沉降,造成沉降效果差,从而使水系统在循环时夹带大量的固体颗粒,引起设备、管道的结垢堵塞。

(7)设备和管道内壁轻微结垢的问题仍未得到彻底解决,因此还需要进一步研究和开发更为理想的用于黑水沉降的化学药剂,来改善黑水的沉降效果,以便更加有效地阻止结垢现象的发生。

对于国内引进的各种煤气化技术,要创造性地加以吸收和利用,同时注意利用各种新技术、新设备来改进灰水系统,比如:如何实现在线调整灰水的pH值,降低灰水的碱性;换热器和减压阀的选型是否合理;如何在不大量排水的情况下调整 Cl-含量;采用哪种酸洗方式、哪几类酸进行配比既能起到酸洗效果又可减少对系统的损害;新上项目要结合国内灰水(黑水)系统的运行情况,总结各企业生产和实践经验,探索出可操作性强、运行更为稳定、更节能和更环保的灰水运行方式。

煤化工系统灰水结垢处理

煤化工灰水结垢处理 目录: 一.煤化工灰水系统和垢样分析 二.灰水系统结垢的原因 三.解决方案 1.煤化工灰水系统和垢样分析 在气化系统中,我们通常将没有经过闪蒸的高温高压水称为黑水,经过闪蒸之后的水称为灰水。 灰水垢样分析 1. 以外排水换热器E0803为例, 垢片成分如下(ppm): 2. 灰水系统的垢以钙离子为主,其余元素的含量很低,除去上述物质,其余成分可 认为是C和O。所以,水垢的主要成分为碳酸钙。 2.灰水系统结垢原因 2.1 灰水为什么硬度高? 1. 煤中含(钙), 煤气化过程产生(约18%)CO2,加上水, 三者在气化炉/水洗塔中 反应产生Ca(HCO3)2 ; 2. 气化炉/水洗塔的高温高压环境,促进以上化学反应,碳酸氢钙易溶于水,导致灰 水的硬度很高。 2.2 灰水为什么容易结垢?

1. 碳酸氢钙易溶于水,灰水中Ca 离子含量约 4000ppm ; 2. 碳酸氢钙很不稳定,压力降低时,CO2析出, 碳酸氢钙 转化为 碳酸钙,碳酸钙 难溶于水, 溶解度仅为: 1340ppm (@30度) ; 水溶液变成过饱和状态, 多余的离子在管壁上结晶,形成水垢 ; 3. Ca (HCO3)2 = CaCO3+CO2+H2O ; 这个反应在常温下就能不断进行 。 2.3 灰水系统水垢在哪里形成? 1. 灰水始终处于过饱和状态,CaCO3水垢会在灰水流过的所有地方结垢 ; 2. 流速慢或者压力低的地方 ,比如阀门附近,水泵的入口, 沉淀池;结垢会比较严 重。 总结: 灰水系统水垢的特点 1. 灰水水垢主要成分是碳酸钙,钙来自煤 ; 2. 灰水循环使用,新的钙不断加入水系统, 灰水始终处于过饱和状态 ; 3. 灰水硬度过高,灰水的处理强度要比普通循环冷却水高出很多倍,所以,传统的阻 垢方案效果都不理想 。 3. 解决办法 调频阻垢仪 采用电磁阻垢, 它是由一台电磁信号发生器 和 缠绕在管道上的1-电缆线圈 和 2-脉冲 环组成, 线圈产生感应磁场;脉冲产生交变电 场,处理水中的带电离子,解决结垢问题 。 黑水阶段: 气化炉和水洗塔中, 钙,二氧化碳,水三者反应, 形成碳酸氢钙水溶液 。灰水阶段: 压力降低, CO2析出, 碳酸氢钙变成碳酸钙,碳酸钙难溶于水,多余的离子不断结晶析出形成水垢,绵延整个灰水管路 。

电渗析技术对煤气化灰水的处理

龙源期刊网 https://www.360docs.net/doc/fd833812.html, 电渗析技术对煤气化灰水的处理 作者:张磊王海谦 来源:《中国化工贸易·上旬刊》2017年第01期 摘要:近年来,在经济高速发展和技术飞速进步的背景下,我国煤化工业在国家和政府 的支持下,通过行业人员的不断创新和发展,目前已经取得了一系列重大突破。其中,电渗析技术的发展对煤气化灰水的处理有着极其重要的意义。文章将对现如今我国煤化工业的状况进行讨论,深入剖析电渗析技术对煤气化灰水的处理方法,指出此项技术的发展前景。 关键词:电渗析技术;煤气化灰水 如今,飞快发展的社会对于资源利用提出了更加严苛的要求、而煤炭资源的大量使用却又无可避免的要伤害或者损坏我们所拥有的生活环境。这就要求提出或者创新啊更多先进的技术和方法来提高资源的利用率和处理的洁净率,在如此要求下,电渗析技术对煤气化灰水的处理取得了极其重要的成绩。 1 背景 上个世纪50年代,电渗析技术发展起来,起初人们将次技术应用于海水淡化,而在后期技术的不断发展和改进中,电渗析技术已经广泛应用于多个行业,例如化工、冶金、造纸、医药等,并且其重要性也是与日俱增。在煤化工中,灰水和黑水一般是指气流床高压粉煤气化工艺中水循环中的水,水中含细灰。由激冷室、碳洗塔、渣池出来的水浊度较大被称为黑水,经处理后由泵再打入系统的水浊度较小称为灰水。 电渗析是在外加直流电场的作用下,利用离子交换膜的选择透过性,使离子从一部分水中迁移到另一部分水中的物理化学过程。目前电渗折技术己发展成一个大规模的化工单元过程,在膜分离领域占有重要地位,甚至在某些地区已成为饮用水的主要生产方法。具有能量消耗少,经济效益显著;装置设计与系统应用灵活,操作维修方便,不污染环境,装置使用寿命长,原水的回收率高等优点。 2 介绍 实质上,电渗析可以说是一种除盐技术,因为各种不同的水(包括天然水、自来水、工业废水)中都有一定量的盐分,而组成这些盐的阴、阳离子在直流电场的作用下会分别向相反方向的电极移动。如果在一个电渗析器中插入阴、阳离子交换膜各一个,由于离子交换膜具有选择透过性,即阳离子交换膜只允许阳离子自由通过,阴离子交换膜只允许阴离子以通过,这样在两个膜的中间隔室中,盐的浓度就会因为离子的定向迁移而降低,而靠近电极的两个隔室则分别为阴、阳离子的浓缩室,最后在中间的淡化室内达到脱盐的目的。

水煤浆气化黑灰水系统降硬研究

一第23卷第6期 洁净煤技术 Vol.23一No.6一一2017年 11月 Clean Coal Technology Nov.一 2017一 水煤浆气化黑灰水系统降硬研究 王晓雷,陈一权,仝胜录,霍卫东 (北京低碳清洁能源研究所,北京一102211) 摘一要:为了解决水煤浆气化黑灰水系统结垢二堵塞问题,对系统现状二机理进行分析,通过模拟计算二搭建小试装置进行试验研究,验证了NaOH +CO 2和Ca (OH )2+Na 2CO 3两种方案处理效果,核算药剂用量,为现场中试试验提供技术指导,寻找有效可行的改造措施三试验得出NaOH +CO 2二Ca (OH )2+Na 2CO 3两种药剂方案处理效果良好,均可将硬度降低到300mg /L 以下,均能满足灰水回用要求三NaOH +CO 2和Ca (OH )2+Na 2CO 3方案药剂费用分别为2.38二1.62元/t 三关键词:水煤浆;气化;黑灰水;降硬;中试试验 中图分类号:TQ546;X78一一一文献标志码:A一一一文章编号:1006-6772(2017)06-0113-05 Decrease of hardness of the coal water slurry gasification black ash water system WANG Xiaolei,CHEN Quan,TONG Shenglu,HUO Weidong (National Institute of Clean -and -Low -Carbon Energy ,Beijing 一102211,China ) Abstract :In order to solve the problem of scaling and clogging of coal water slurry gasification black ash water system,the present status and processing mechanism of system were analyzed,and studies were carried out by simulating and a lab -scale device experiment.The treatment effects of two schemes of NaOH +CO 2and Ca(OH)2+Na 2CO 3were verified,and the dosage of reagent was checked.The techni-cal guidance was provided for a field pilot test,and effective and feasible modification methods were found.The experimental results show that the two treatment schemes of NaOH +CO 2and Ca(OH)2+Na 2CO 3have good treatment effect.Two schemes both could reduce the hardness to less than 300mg /L.This can meet the requirements of ash water reuse.The costs of NaOH +CO 2and Ca (OH)2+Na 2CO 3schemes are 2.38and 1.62Yuan /t respectively. Key words :coal water slurry gasification;black ash water;reduce hardness;pilot test 收稿日期:2017-04-26;责任编辑:孙淑君一一DOI :10.13226/j.issn.1006-6772.2017.06.021基金项目:神华科技创新资助项目(ST930014SH07) 作者简介:王晓雷(1978 ),女,内蒙古通辽人,硕士,从事节能环保技术及工业水处理研究工作三E -mail :wangxiaolei@https://www.360docs.net/doc/fd833812.html, 引用格式:王晓雷,陈权,仝胜录,等.水煤浆气化黑灰水系统降硬研究[J].洁净煤技术,2017,23(6):113-117. WANG Xiaolei,CHEN Quan,TONG Shenglu,et al.Decrease of hardness of the coal water slurry gasification black ash water system[J].Clean Coal Technology,2017,23(6):113-117. 0一引一一言 煤炭是我国的主要能源,其产量和消费量长期占我国能源的70%左右三煤炭高效二清洁利用及转化技术对于提高我国能源利用效率二减轻能源匮乏压力二改善生态环境具有重要意义三近年来我国新型煤化工发展迅速,但项目都具有较大的耗水量和废水排放量,且大部分集中在煤炭资源丰富二水资源短缺的西部北部地区,导致这些地区生态环境恶化三处理好煤化工水资源短缺及污染排放问题是煤化工企业的重中之重三煤化工污水处理系统若要最大程 度的循环利用,处理后达标排放,取决于高效的水处理技术三煤气化技术是煤炭能源转化的基础,是煤化工最关键二最重要的工艺过程之一三其中,水煤浆加压气化工艺是美国德士古石油公司开发的,20世纪80年代投入工业化,后被GE 公司收购又称GE 水煤浆气化工艺,由于其具有技术成熟,碳转化率高,消耗低,运行稳定二可靠等优点,被广泛应用于煤化工厂,但水煤浆气化渣水处理系统普遍存在着结垢二堵塞问题[1-4]三王小玲等[1]在材质二管道设备布置方面提出优化措施,郑亚兰等[5]从煤种二部件的材料使用二工艺改进二操作管理等方面进行优化改 3 11

水煤浆气化及变换操作

水煤浆气化及变换操作知识问答 1 煤气化的基本概念是什么? 答:煤的气化是使煤与气化剂作用,进行各种化学反应,把煤转变为燃料用煤气或合成用煤气。 2 煤气化必备的条件是什么? 答:煤炭气化时,必须具备三个条件,即气化炉、气化剂、供给热量,三者缺一不可。 3 简述煤气化工艺的分类。 答:煤气化工艺按照操作压力分为常压气化和加压气化;; 1)按照操作过程的连续性分为间歇式气化和连续气化;; 2)按照排渣方式分为液态排渣和固态排渣;; 3)按照固体原料(煤)反应物料在炉内的运动过程状态分为固定床、流化床、气流床和熔融床(熔渣池)。 4 气流床煤气化工艺按照气化炉的进料状态都有哪些分类?其代表技术有哪些? 答:气流床煤气化工艺按照气化炉的进料状态分为干法粉煤进料和湿法水煤浆进料。 国外技术:干法粉煤进料的代表技术为荷兰壳牌干煤粉气化工艺(SHELL Process),德国未来能源公司的GSP气化技术;湿法水煤浆进料的代表技术为美国GE公司的水煤浆气化工艺(GEGP)。另外,德国未来能源公司的GSP气化技术,能够以干煤粉和水煤浆两种进料方式进料。 国内技术:湿法水煤浆进料的技术有西北化工研究院的多元料浆技术和华东理工大学的四喷嘴对置气化技术,干法煤粉进料的技术为西安热工研究院的两段式气化技术。 5 气流床气化技术有哪些特点? 答:气流床气化技术的主要特点: (1)采用干粉形式或水煤浆形式进料;; (2)加压、高温气化;;

(3)液态排渣;; (4)气化强度大;; (5)气化过程中不产生有机污染物,具有良好的环保效应。 6 试简要叙述煤气化技术发展的趋势。 答:随着技术的不断进步,煤气化技术由常压固定床向加压气流床气化技术发展的同时,气化炉能力也向大型化发展,反应温度也向高的温度(1500~~1600℃)发展,固态排渣向液态排渣发展,这主要是为了提高气化效率,碳转化率和气化炉能力,实现装置的大型化和能量高效回收利用,降低合成气的压缩能耗或实现等压合成,降低生产成本,同时消除或减少对环境的污染。 7 水煤浆加压气化工艺装置由哪儿部分组成? 答:水煤浆加压气化工艺主要由水煤浆制备和储存、水煤浆加压气化和粗煤气的洗涤、灰水处理和粗渣/细渣的处理等四部分组成。 8 煤的工业利用价值通过哪些项目来判断?其各自包含哪些内容? 答:煤的工业利用价值可通过工业分析和元素分析测定判断。 工业分析的内容包括水分Mt(内水M in 、外水M f )、灰分(A)、挥发分(V)、固定 碳(FC)、硫分(S)、发热值(Q)、可磨指数(HGI)、灰熔点(IT/F1;DT/F2;ST/F3;FT/F4)等。 元素分析包括C、H、O、N、S、Cl以及灰分中各种金属化合物的含量。 9 水煤浆加压气化的技术经济指标有哪些?它们各自的含义是什么? 答:水煤浆加压气化的技术经济指标主要有碳转化率、冷煤气效率,比煤耗、比氧耗、氧耗、有效气产率、气化强度、O/C原子比。 各自的含义为: (1)碳转化率煤气中携带的碳占入炉总碳的比率,% (2)冷煤气效率煤气的高位热值与入炉煤的高位热值的比率,% (3)比煤耗每生产1000Nm3有效气消耗的干煤量,kgCoal/kNm3(CO+H 2 ) (4)比氧耗每生产1000Nm3有效气消耗的氧气量,Nm3O 2/kNm3(CO+H 2 ) (5)氧耗单位重量的煤气化所需要消耗的氧量,Nm3O 2 /Tcoal (6)有效气产生率单位体积的煤气中有效气CO+H 2 所含的比例,% (7)气化强度单位容积的反应器在单位时间生产的干煤气量,Nm3/m3·h

煤气化灰水电化学处理技术介绍及其应用

第6期2017年11月 中氮肥 M-Sized Nitrogenous Fertilizer Progress No. 6 Nov. 2017 煤气化灰水电化学处理技术介绍及其应用 傅承1肖东2,周俊波1陈宝生2,金志娜2,夏子辉2,何燕南2 (1.北京化工大学,北京100029; 2.北京京润环保科技股份有限公司,北京100085) [摘要]近年来新型煤气化技术应用广泛,但其工艺系统运行过程中会产生大量的气化灰水,这些气化灰水温度高,且含大量C a2+、M g2+,易造成系统结垢和堵塞。利用电化学处理技术(即电絮凝技术)对气化灰水进行处理研究,并对电化学处理技术与煤气化工艺系统中现有灰水处理工艺进行对比分析,探讨其处理效果、运行成本及应用前景。结果表明,电化学处理技术在悬浮物、浊度平均去除率达到90%以上的情况下,硬度去除率也能达到60. 5%,处理后的灰水完全符合系统回用的标准。 [关键词]煤气化;气化灰水;电化学处理技术;药剂絮凝处理技术;试验研究;应用 [中图分类号]T Q546. 5 [文献标志码]B[文章编号]1004 -9932(2017)06 -0067 -03 〇引言 煤炭是我国的主要能源,蕴藏量居世界第三 位[1]。2016年,中国原煤产量34. 1x l08t,煤 炭消耗量占能源消费总量的62.0%。近年来,我国新上煤化工项目以坑口布局为主,多分布在 西北、华北地区,并且与水资源(我国水资源 的分布格局为“东多西少、南富北贫”呈逆向 分布——我国北方地区煤炭资源量占全国总量的 90%以上,而其水资源量仅占全国总量的21% [2]。2012年,煤气化行业新鲜水消耗量占 煤化工行业新鲜水总消耗量的比例高达43% [3],因此亟需通过水处理工艺技术的应用减少新鲜水 的消耗。 近年来,在多方力量的推动和协作下,我国 开发出多种类型的煤气化炉并得到大量应用,但 这些煤气化工艺与其他国内外煤气化工艺一样,气化过程中会产生含有大量细碎煤渣的污水,这 些污水经过高温闪蒸、真空闪蒸处理后,成为 “黑水”,之后经加药絮凝沉降,出水成为“灰 水”,污水的循环利用系统被称作渣水系统。气 化黑水具有高温、高悬浮物、高浊度等特点,同时黑水中会携带大量Ca2+、M g2+,而现有的药 剂絮凝处理技术对水中Ca2+、M g2+的去除效果 差,只有靠加入大量的高温分散剂、阻垢剂予以 [收稿日期]2017-04-08 [作者简介]傅承(1991一)男,河北赵县人,北京化工大学动力工程及工程热物理专业在读硕士研究生。缓解,而即使这样气化灰水中的Ca2+、M g2+浓 度仍然较高,易造成后续设备与管路结垢、堵 塞,且大量循环使用后灰水总硬度不断升高,使 系统在高结垢倾向下运行[-5];同时,为维持系 统盐分浓度的稳定,需外排大量污水,并补充等 量的新鲜水。 本文利用电化学处理技术对某套航天粉煤气 化系统(航天炉)气化灰水处理进行研究,即用电絮凝技术代替药剂絮凝处理技术对气化灰水 进行处理,并与现有气化工艺系统的灰水处理工 艺进行对比分析,探讨其处理效果、运行成本及 应用前景。 1电化学处理技术的工作原理 在煤气化灰水电化学处理设备反应池中设置 电化学反应器,采用金属铁或铝合金材料,通过 对反应器加电,使原位产生Fe3+或Al3+,Fe3+或Al3+进入水中与OH-结合生成Fe(OH)或 A1(0H)以及其他单核羟基配合物、多核羟基 配合物和聚合物等[6_8],电极原位产生絮凝核,絮凝核具有极强的吸附性,形成的胶核滑动层带 负电,易吸附水中的Ca2+、M g2+等结垢性离子,提高硬度的去除率[-2]。同时,在离子进入电 场后,其内部电荷重新进行分配,发生离子极化 现象,流动过程中正、负电荷相互吸引,重新组 合成新的粒子,在不断曝气的搅拌作用下,粒子 相互吸引、碰撞,最终能成长为原来粒径103?104倍的粒子,粒径由100 ~ 1 000 A 增大至0.1

脱盐水处理工艺

脱盐水处理工艺 脱盐水处理工艺,又称纯水处理工艺或深度脱盐水,一般系指将水中易于去除的强导电质去除又将水中难以去除的硅酸及二氧化碳等弱电解质去除至一定程度的水。脱盐水处理工艺很多,主要有电渗析法、离子交换法、反渗透法、EDI法等目前市场上的石化行业脱盐水处理系统中,已成熟的几种工艺都存在着这样或那样的缺点,企业如果选择了不利于本地水质或不利于本厂实际情况的处理方案,就会造成不可弥补的损失。针对这种情况,笔者将传统的离子交换处理方案与先进的膜法处理方案进行经济技术比较,以供大家参考。 一、脱盐水处理工艺简单介绍 1:离子交换工艺 早期人们所熟知的脱盐水处理 工艺主要为预处理+阳床+阴床+混床的全离子交换工艺,即传统法处理流程。对于地表水,常规的预处理方法多是多介质过滤+活性炭过滤,用阳床+阴床+混床的全离子交换可确保出水水质稳定达标。长期实践已证明,传统法处理工艺是一种成熟有效的水处理工艺。但传统法因预处理和离子交换工艺的局限,存在着设备占地面积大、系统操作维护频繁复杂、出水水质呈周期性波动的缺陷,并且需要投加絮凝剂和耗费大量的酸碱,不利于环境保护;同时,离子交换器多为直径较大的罐体,体积大、重量大,不便于运输及安装调试,施工周期长。 2:膜法工艺 膜法工艺是指超滤+反渗透+混床除盐(EDI)的脱盐水处理工艺,该工艺主要采用膜分离技术制取脱盐水。 超滤原理是一种膜分离过程原理,超滤是利用一种压力活性膜,在外界推动力(压力)作用下截留水中胶体、颗粒和分子量相对较高的物质,而水和小的溶质颗粒透过膜的分离过程。通过膜表面的微孔筛选可截留分子量为3×10000~1×10000的物质。当被处理水借助于外界压力的作用以一定的流速通过膜表面时,水分子和分子量小于300~500的溶质透过膜,而大于膜孔的微粒、大分子等由于筛分作用被截留,从而使水得到净化。也就是说,当水通过超滤膜后,可将水中含有的大部分胶体硅除去,同时可去除大量的有机物等。超滤对原水的适应性好,浊度在200以下的地表水均可有效处理,对于胶体硅的去除率大大高于传

水煤浆气化装置灰水系统除硬技术探究

水煤浆气化装置灰水系统除硬技术探究 摘要:近年来,随着我国经济的不断发展和社会的不断进步,各个领域都有了 一定上的技术提升。这些化肥生产的公司也在生产的装置上,以及技术上进行了 相应的改变。随着我国节能环保的不断推出,以及绿色发展的不断进行水煤浆气 化系统结垢装置方面存在的问题,严重的干扰的相关企业的正常发展。下面将结 合河南的某化肥公司进行水煤浆气化装置中灰水槽的钙含量以及硬度进行相应的 分析,同时,针对三种除应技术进行对比,分别包括电絮凝除硬技术、酸性气除 硬技术以及膜吸收除硬技术,通过对比后最终选用的处理技术为酸性气除硬技术。关键词:水煤浆;灰水系统;除硬技术 引言:用于水煤浆气化工艺可以更好地利用资源,为企业创造更多的经济效益, 因此备受关注。但是在水煤浆气化灰水系统的运行中发现,水煤浆企划装置系统 存在着严重的结垢问题。为了更好地解决存在的污垢问题,维持系统的长时间稳 定运转,提高企业的经济效益,就要对灰水系统的除硬技术进行研究,在原有的 雏鹰基础上进行相应的提升,降低水煤浆气化装置长时间的结垢难题。下面将对 水煤气化装指灰水系统除应技术进行相应的研究和分析,并提出自己的观点,以 供相关企业参考。 一、水煤浆气化灰水系统 1.1水煤浆气化灰水系统中存在的问题 由于我国能源分布存在着缺少石油天然气,但存在着丰富的煤的特点,因此,基 于我国的能源分布更好地利用煤炭资源,降低在使用过程中的污染问题,是现阶 段符合我国国情发展以及能源多元化的重要手段,利用一定的技术进行煤炭资源 的清洁利用处理,是推动我国能源更好地利用以及经济发展的重要手段。这其中 最常出现的就是水煤浆气化灰水系统的使用。但水煤浆气化灰水系统的应用过程 中还存在着大量的问题。由于在水煤浆系统运行的初期所需要的补水量非常大, 系统经过一次脱盐用的水量高达每小时125立方米,这个过程中,造成氨水的量 消耗的极大,同时,在废水排除系统外管道出现了严重的腐蚀和结垢现象。这些 问题主要表现在以下几个方面: (1)水煤浆系统的系统补水和系统的各处冲水所需要用的水量巨大。在进行拖 延补水的过程中,大量高品质的水被补入灰水系统内,造成了高品质水的浪费。(2)高压闪蒸系统在实际的运行中达不到所要求的设计参数。由于达不到实际 工作所需,因此水中的酸性物质在高压闪蒸的过程中,不能被有效地处理,因此 导致设备的运行期间都处于酸性状态,对设备造成了一定的腐蚀性。 (3)灰水系统的处理中,排水过程没有相应的设置工艺指标。在进行灰水系统 的工艺指标设计时,是根据相关设备的液体位置进行分析来调整灰水系统的高低,没有根据相应的指标进行设计,因此导致灰水系统存在着浓缩性倍数整体较低的 情况。 (4)灰水系统中所使用的水质情况不够稳定。由于回水系统中的水质不够,稳定,存在着波动较大的情况,因此导致药剂的浓度波动也偏大,不能够更好地处 理水中的钙和镁离子美的聚集情况,对后期的管道和设备出现结垢的情况创造了 一定条件。 (5)灰水系统的水资源利用率较低。在实际运行的过程中,由于系统的补水量 消耗大,因此导致对水资源的利用率较低。例如在实际应用的过程中一吨安的取 水情况约为15立方米,而排出的水则达到七立方米,因此,在系统的应用过程

水煤浆气化工艺对原料煤的要求

水煤浆气化工艺对原料煤的要求 水煤浆气化炉工艺原则上在高于灰熔点5O~100~C以上的温度下操作,以便于顺利排渣,根据德士古水煤浆气化厂的生产经验,水煤浆加压气化用煤选择原则应以煤的“气化性能及稳定运行性能”为主。 2.1煤的灰分含量 灰分是煤中的无用形式成分,为使其能顺利地以液态形式排出水煤浆气化炉,必须将温度升至其灰熔点以上,无谓的增加了氧气消耗有资料表明,在同样的气化反应条件下,灰分每增加l%,氧耗增加0.7%~0.8%,煤耗增大1.3%一1.5%;其次灰分增加,使烧嘴和耐火砖的磨损加剧,寿命大大缩短,同时灰、黑水中的固含量升高,系统管道、阀门、设备的磨损率大大加剧,设备故障率提高。灰分含量高对成浆性能也有一定的影响,除使煤浆的有效成分降低之外,还使煤质的均匀性变差,消弱了煤浆分散剂的分散性能,在相同的情况下,对提高煤浆浓度不利。建议所选煤样的灰渣干基含量不高于l3%。 2.2煤的最高内水含量 煤的内水含量对气化过程的主要影响表现在对成浆性能的影响,一般认为煤的内水含量越高,煤中的O/C越高,含氧官能团和亲水官能团越多,空隙率越发达,煤的制浆难度越大。煤质对成浆性能的影响是多方面的,各影响因素之问密切相关。煤的内在水含量越高时所制得的煤浆浓度越低,而且使添加剂的消耗、煤耗、氧耗均有一定的增加,综合技术与经济方面考虑,水煤浆加压气化原料用煤的最高内在水含量以小于8%为宜. 2.3煤渣的熔融特性

煤灰的熔融特性是煤的灰熔点(还原条件下),煤的灰熔点以低于反应温度50~100~C为宜(熔融温度)。若煤的灰熔点提高,为使气化炉顺利排渣,必须将气化炉的反应温度提高至煤的灰熔点以上,温度提高使气化炉耐火砖的寿命相应缩短(气化炉的操作温度每提高100~C,耐火砖的磨蚀速率增加2倍),氧耗、煤耗增加。为了降低操作温度必须加入助熔助,而助熔剂的加入会增加煤中惰性物质含量,使耐火砖磨蚀加剧,提高了制浆成本,固体灰渣处理量增加,灰渣水系统的结垢量上升。煤的灰熔点以低于l300℃为宜,考虑到煤的气化效率及耐火砖的使用周期等方面的因素,最好的煤种灰熔点在1250~l300℃,如果原料煤的灰熔点太低,由于生产条件下煤灰的黏度降低,也会加剧对耐火砖的侵蚀,较低灰熔点的煤种可以通过配煤来解决。 2.4灰的粘温特性 黏度是衡量流体流动性能的主要指标,要实现气化温度下灰渣以液态顺利排出气化炉,黏度应在合适的范围之内,既要保证在耐火砖表面形成有效的灰渣保护层,又要保持一定的流动性。根据国内外对液态排渣锅炉的研究指出,灰渣的黏度应在25~40Pa·S之间方可保证顺利排渣,水煤浆气化炉在操作温度下灰渣黏度控制在25~3OPa·S 为宜。影响灰渣黏度的主要因素是煤灰的组成,即灰成分。煤灰的主要矿物质成分是Al2O3、SiO2、MgO等,通过调查研究表明:A12O3是灰渣熔点升高、黏度变差的主要成分。Al2O3含量越高,煤灰的流动温度越高;A1203含量高于40%时,煤灰的流动温度大于l500℃。MgO含量一般很少,MgO又和SiO2形成低熔点的硅酸盐。起到降低灰融熔温度的作用。SiO2是煤灰成分中含量最高的组分,使煤的灰熔融特性变差,黏度升高,但它与其它的组分(CaO)可以形成低熔点的

反渗透水处理设备工艺说明讲解.doc

【奥凯反渗透设备】流程说明:Reverse osmosis equipment advantage In 1, the recovery rate of >75%RO machine design; In 2, RO inlet low pressure protection, prevent the high-pressure pump water idling; In 3, RO system boot automatic flushing, automatic flushing system to run continuously for 1hours; 4, pretreatment, backwash regeneration RO system for automatic shutdown; raw water pump auto start; In 5, the water level is low or the pure water tank water level when the RO machine automatically shut down, the pure water tank level low when RO machine automatic boot; 6, fault alarm indication; In 7, the built-in PLC lights, easy maintenance; 反渗透设备优点 1、RO 机设计回收率>75%; 2、RO 进水低压保护,防止高压泵缺水空转; 3、RO 系统开机自动冲洗,系统连续运行1小时自动冲洗; 4、预处理再生、反冲洗时RO 系统自动关机;原水泵自动启动; 5、原水箱水位低或纯水箱水位高时RO 机自动关机,纯水箱水位低时RO 机 自动开机; 6、设置故障报警指示; 7、内置PLC 有灯示,维护更容易;

德士古水煤浆气化技术概况与发展讲解

毕业设计(论文) 题目德士古水煤浆气化技术概况与发展 专业 学生姓名 学号 小组成员 指导教师 完成日期 新疆石油学院 1、论文(设计)题目:德士古水煤浆气化技术概况与发展

2、论文(设计)要求: 3、论文(设计)日期:任务下达日期 完成日期 4、系部负责人审核(签名): 新疆石油学院 毕业论文(设计)成绩评定 1、论文(设计)题目:德士古水煤浆气化技术概况与发展 2、论文(设计)评阅人:姓名职称 3、论文(设计)评定意见:

成绩:5、论文(设计)评阅人(签名): 日期:

德士古气化技术概况与发展 摘要本文简要介绍了德士古气化技术现状、原理、工艺流程,以及一些存在的问题。 煤气化,即在一定温度、压力条件下利用气化剂(O2、H2O或CO2)与煤炭反应生成洁净合成气(CO、H2的混合物),是对煤炭进行化学加工的一个重要方法,是实现煤炭洁净利用的关键。1984年我国建设了我国第一套Texaco水煤浆气化装置,气化炉是水煤浆加压气化技术的关键设备之一。目前,国内外最常用的水煤浆气化炉是德士古气化炉。Texaco气化炉由喷嘴、气化室、激冷室(或废热锅炉)组成。其中喷嘴为三通道,工艺氧走一、三通道,水煤浆走二通道。介于两股氧射流之间。水煤浆气化喷嘴经常面临喷口磨损问题,主要是由于水煤浆在较高线速下(约30 m /s)对金属材质的冲刷腐蚀。喷嘴、气化炉、激冷环等为Texaco水煤浆气化的技术关键。 最后是对德士古气化技术的展望,还有新型煤气化技术发展前景,及发展重要意义。从我国经济发展全局出发,结合我国的能源资源结构和分布,寻求行之有效的替代石油技术,以缓解我国石油进口的压力.水煤浆代替燃油技术在国内外已经成熟,用水煤浆代替原油对我国国民经济发展具有重要的战略意义. 关键词德士古煤气化,水煤浆,气化炉,工艺烧嘴

除盐水处理工艺

除盐水处理工艺 除盐水处理工艺介绍 1 前言 目前除盐水处理工艺主要有蒸馏法、离子交换法及膜分离法等,除盐水处理工艺是根据不同的入水水质和出水要求而设计的,针对不同的原水水质特点而设计水处理方案才是最经济有效的方案,同时也是出水水质长期稳定达到要求的保证。本文就除盐水处理工艺(离子交换法和RO膜分离法)对比介绍各自的特点: 在70年到80年代末离子交换法在我国除盐水处理领域得到广泛应用。 离子交换法处理有以下特点: 优点: ◇预处理要求简单、工艺成熟,出水水质稳定、设备初期投入低; ◇由于制水原理类同于用酸碱置换水中离子,所以在原水低含盐量的应用区域运行成本较低。 缺点: ◇由于离子交换床阀门众多,操作复杂烦琐; ◇离子交换法自动化操作难度大,投资高; ◇需要酸碱再生,再生废水必须经处理合格后排放,存在环

境污染隐患; ◇细菌易在床层中繁殖,且离子交换树脂会长期向纯水中渗溶有机物 ◇在含盐量高的区域,运行成本高 从80年末开始,膜法水处理在我国得到了广泛应用,反渗透就是除盐处理工艺的膜法水处理工艺之一。 反渗透法处理有以下特点: 优点: ◇反渗透技术是当今较先进、稳定、有效的除盐技术; ◇与传统的水处理技术相比,膜技术具有工艺简单、操作方便、易于自动控制、无污染、运行成本低等优点,特别是几种膜技术的配合使用,再辅之经其他水处理工艺,如石英砂、活性炭吸附、脱气、离子交换、UV杀菌等 ◇原水含盐量较高时对运行成本影响不大 ◇缺点: ◇预处理要求较高、初期投资较大 本文以地下水为原水,生产250m3/h除盐水(5MΩ.cm)为例,就离子交换和反渗透两种处理方法在工艺、占地方面、和运行成本作简要比较。 2 除盐水处理工艺比较 2.1离子交换法 1)离子交换处理工艺流程:

5-多喷嘴气化装置灰水处理工段运行问题探讨-校

多喷嘴气化装置灰水处理工段运行问题探讨 步建军 (江苏索普集团公司,江苏镇江212006) 摘要:重点阐述了灰水处理系统运行以来出现的一些问题,并对问题进行了分析,从工艺优化及设备操作方面提出了一系列的改进方法与措施。 关键词:气化炉,多喷嘴,灰水处理,运行问题 1. 前言 多喷嘴对置式水煤浆气化技术由华东理工大学和兖矿集团有限公司共同开发,于2006年1月8日通过中国石化协会组织的专家鉴定,具有完全自主知识产权,已实现产业化,可以与国际任何先进煤气化技术相竞争。 江苏索普(集团)有限公司日处理1500吨煤的多喷嘴对置式新型气化炉装置,与引进的GE水煤浆气化装置相比,最大的区别之一在于闪蒸-灰水处理系统上:多喷嘴的第一级闪蒸系统蒸发热水塔采用直接换热方案回收黑水余热,热传递效率高,闪蒸汽大多数在上塔被冷却回到系统;GE采用的是间接换热方案回收黑水余热,换热器易结垢堵塞。多喷嘴对置式新型气化炉装置自2009年9月在索普投料运行至今,灰水处理系统总体运行平稳,但也暴露了一些问题,对气化装置的长周期运行存在影响。 图1 多喷嘴气化灰水处理工序示意流程图 1-蒸发热水塔;2-低压闪蒸罐;3-真空闪蒸罐;4-澄清槽;5-灰水槽

2. 灰水处理工序工艺流程简述 灰水处理工序的作用是将多喷嘴对置式气化及煤气初步净化工序产生的黑水所含的固体和溶解的气体分离出来,并将黑水所含的热量加以回收。 来自气化炉洗涤冷却室、旋风分离器及水洗塔底部的黑水,分别经过减压送入蒸发热水塔下部蒸发室。蒸发热水塔蒸发室中,一部分水蒸发为蒸汽,连同少量溶解气体,进入蒸发热水塔上部热水室,与低压灰水泵来的灰水直接接触,加热灰水,自身大部分冷凝。热水室的热水流入高温热水罐,经高温热水泵进入水洗塔中部。热水室未冷凝的蒸汽经换热、冷凝、分离后,气相至火炬放空,冷凝液进入灰水槽。蒸发热水塔蒸发室底部被浓缩的黑水经液位调节由底侧部排出,进入低压闪蒸罐。黑水被再次减压,产生的低压蒸汽送往脱氧槽,黑水进入真空闪蒸罐。来自渣池的含渣水经渣池泵也送入真空闪蒸罐。真空闪蒸罐内进行真空闪蒸,大量溶解的气体释放出来,黑水进一步浓缩,含固量增大,温度进一步降低。真空闪蒸汽经换热、冷凝、分离,出分离器顶部的不凝性气体,送往水环式真空泵。真空闪蒸罐底部的黑水经液位控制泵送至静态混合器,与絮凝剂混合后流入澄清槽。澄清槽上部设置一台缓慢转动的刮渣机,将沉降的固体推到澄清槽底部出口,澄清槽上部澄清水溢流至灰水槽。为了防止管道和设备结垢,在灰水槽中加入分散剂,再分别经低压灰水泵和锁斗冲洗水/废水泵,送至蒸发热水塔和锁斗冲洗水罐、渣池、废水处理使用。澄清槽底部的细渣和水经澄清槽底流泵,送往压滤机处理,滤饼送出界区外,滤液进入研磨水槽。 3. 运行过程中出现的问题 3.1 闪蒸系统各角阀磨损严重(LV1304、LV1306、LV1307、PV1304、PV1305、PV1306及阀后放大筒和底板) 气化装置运行1600h后停车,检查时发现气化炉至蒸发热水塔黑水压力调节阀PV1304缓冲罐底部冲击盲板磨损严重,表面的碳化钨涂层几乎完全剥落,在缓冲罐根部有约10cm高的环带,表面碳化钨涂层被冲击成蜂窝状的小坑。这种情况在其他引进水煤浆加压气化装置的厂家也很普遍。 分析其原因主要有:(1) 黑水经过PV1304减压后,节流后的黑水以很高的速

GE水煤浆气化工艺操作规程

GE水煤浆气化操作规程 编写:陈广庆冯长志赵旭清 审核:李美喜仇庆壮 审定:董忠明 批准:石集中 新能能源公司气化车间 二○○八年十二月 目录 第一章:工艺说明 4 一、岗位任务 4 二、岗位管辖范围 4 三、工艺原理7 四、工艺流程8 五、联锁说明15 第二章:工艺参数34 一、重要设计数据34 二、正常操作数据38 三、仪表报警值及联锁值38 第三章:操作规程39 一、开车39 1原始开车(第一套气化系统开车)39 2正常开车(第二套气化系统开车)64 3倒气化炉系统65 4短期停车后开车65 5长期停车后开车65 二、正常操作65 1正常维护操作65 2加减负荷操作66 三、停车67 1 正常停车(第一套气化系统停车)67 2 正常停车(第二套气化系统停车)74 3长期停车(大修停车)76

4紧急停车76 四、事故处理78 第四章:安全与环保91 一、人身安全91 二、设备安全92 三、环保92 附录:92 表1.设备一览表92 表2.安全阀一览表92 表3.工艺参数控制报警连锁一览表92 图1.GE水煤浆气化工艺流程图 129 第一章工艺说明 一、岗位任务 气化岗位是把煤浆制备工序生产的合格水煤浆与空分装置生产的氧气(纯度>99.6%)在一定的工艺条件下进入气化炉内进行部分氧化反应,生成以CO、H2、CO2为主要成份的合成气,经增湿、降温、除尘后送入下游变换工序;同时,将系统中产生的黑水送入闪蒸、沉降系统处理,以达到回收热量及灰水再生、循环使用的目的,产生的粗渣及细渣送出界区外。二、岗位管辖范围 岗位的管辖设备: 序号设备名称设备位号数量(台)备注 1 气化炉R1201A/B/C 3 2 洗涤塔T1201A/B/C 3 3 研磨水槽V1105 1 4 烧嘴冷却水槽V1201 1 5 烧嘴冷却回水分离罐V1202A/B/C 3 6 事故烧嘴冷却水罐V1203 1 7 激冷水过滤器V1204A~F 6 8 气化炉密封水罐V1205A/B/C 3 9 消音器水封罐V1206A/B/C 3 10 锁斗冲洗水罐V1207A/B/C 3 11 锁斗V1208A/B/C 3 12 渣池V1209A/B/C 3 13 高压氮气贮罐V1210A/B 2 14 集渣池V1211 1 15 高压闪蒸罐V1301A/B/C 3 16 高压闪蒸分离器V1302A/B/C 3 序号设备名称设备位号数量(台)备注 17 低压闪蒸罐V1303A/B/C 3 18 真空闪蒸罐V1304A/B/C 3 19 第一真空闪蒸分离器V1305A/B/C 3 20 第二真空闪蒸分离器V1307A/B/C 3 21 除氧器V1309 1 22 沉降槽V1310 1

GE水煤浆气化技术工艺烧嘴的探讨

GE水煤浆气化技术工艺烧嘴的探讨 为了在开车投料期间更好更迅速的工艺烧嘴,保证气化的投料成功以及平稳运行。文章对工艺烧嘴的管口方位的设置以及与工艺烧嘴所连接管道的设计中需要注意的地方做出了探讨和阐述。 标签:气化;工艺烧嘴;工艺 1 前言 我国是一个“富煤、贫油、少气”的国家,这样的能源特点决定了我国需要充分利用煤炭资源优势,大力发展现在煤化工。而煤气化装置是整个煤化工企业的一个核心装置。目前我国已投产和在建的气化炉多达近200台,而其中主要使用的德士古水煤浆加压气化技术。 水煤浆加压气化装置长周期安全运行对企业有着重要的意义,但是由于工艺烧嘴的使用寿命多在100天作用,最好的运行周期也仅仅只有140天。因此在生产过程中不可避免的要频繁更换烧嘴,因此烧嘴的更换速度特别对于企业的长周期平稳运行有重要的意义。 本文以某采用GE水煤浆加压气化技术的60万吨/年甲醇项目的为例,说明如何设置烧嘴管口方位以及周围管道布置以满足快速更换烧嘴的需要。 2 工艺烧嘴更换原理 在气化炉开车投料之前,需要用预热烧嘴替换工艺烧嘴对气化炉进行升温。当气化炉内温度达到1000~1200℃后,需要对气化炉烧嘴进行更换,首先将预热烧嘴卸下用其中设备吊出气化炉顶部,其次用起重设备将工艺烧嘴吊装入气化炉顶部后与气化炉顶部法兰安装,然后待工艺烧嘴安装完毕后开始连接相应的氧气、煤浆和烧嘴冷却水管道。在更换烧嘴的过程中,由于气化炉炉温温降非常快,因此更换烧嘴时间的必须尽量的短,如果气化炉炉温将至1000℃以下,则需要重新用预热烧嘴对气化炉经行升温。 3 工艺烧嘴管口方位的设置 工艺烧嘴共有5个管口,从上到下依次为中心氧气进口、水煤浆进口、外环氧进口、烧嘴冷却水进口和烧嘴冷却水出口。在更换烧嘴的时候,气化炉燃烧室的温度约为1000~1200℃,为了保护工艺烧嘴,在工艺烧嘴吊装、安装过程中需要用金属软管连接烧嘴冷却水系统,如图1。而工艺烧嘴本身只有1000kg,而所连接金属软管的重量相对与烧嘴本身,重量约为烧嘴的50%。而在吊装烧嘴为必须保证烧嘴左右平衡,因此必须将烧嘴冷却水进出口成180°对称布置。另外由于烧嘴冷却水盘管有一段是深入气化炉内(如图2)因此烧嘴的必须竖直向上抬起一段高度后才能左右移动,而烧嘴冷却水进口管口均连接有阀门,因此烧嘴

德士古气化废水处理的措施

煤气化废水处理 关键词:煤气化,废水处理,活性污泥法,全面进行了分析王润滨(延长中煤榆林能源化工甲醇气化) 摘要 煤气化是减少燃煤污染的有效途径,但气化过程中产生的废水会 对环境造成污染。本文针对煤气化废水中主要污染物的不同,对其处理方法、治理技术、工艺分别进行了论述,并提出了建议。分别介绍了煤气化废水中有用物质的回收,生化处理方法以及深度处理方法,同时还介绍了如何维护和有效使用耐火砖。具体介绍了废水中酚和氨的回收,采用活性污泥法、生物铁法,炭—生物铁法、缺氧—好氧(A—O)法对废水进行处理,采用活性炭吸附法和混凝沉淀法对废 水进行深度处理,另外统计了数家煤气化厂家对耐火砖的使用对比。 前言 本文一些数据均由厂家提供,本人在煤化工前辈章荣林,唐卫兵,杜柏和等高人的指点下,总结出提供同行前来指点学习,另外还有环保水处理的王春荣老师。

煤化工是以煤为原料,经过化学加工使煤转化为气体,液体,固体燃料以及化学产品的过程,主要分为煤炭焦化、煤气化、煤气化合成氨、煤气化合成其他产品及直接液化等。 本人从2003年开始至今,先后从事过20万、40万、30万吨煤制甲醇的项目筹建、设备订货安装、原始开车和试车工作,180万吨煤制甲醇原始开车和试车工作,曾经先后学习考察过20万吨合成氨、30万吨尿素,20万吨、60万吨、30万吨、120万吨甲醇项目,16亿方煤制天然气项目;先后从事过天辰、惠生、五环、华陆等设计院所设计的煤气化工艺。 概述 煤气化是煤化工产业发展最重要的单元技术,采用空气、氧气、CO2和水蒸气为气化剂,在气化炉内进行煤的气化反应,可以产生不同组分不同热值的煤气。主要用于生产各种燃料气,是干净的能源,有利于提高人民生活水平和环境保护;还可以合成液体燃料和很多化工产品。 煤气化废水是煤制焦炭、煤气净化及焦化产品回收过程中产生的高浓度有机废水,属于焦化废水的一种。水质成分复杂,污染物浓度高。废水中含有大量的酚类、联苯、吡啶、吲哚和喹啉等有机污染物,还含有氰、无机氟离子和氨氮等有毒有害物质,污染物色度高,属较难生化降解的高浓度有机工业废水。对煤气化废水的处理,单纯靠物

纯水处理工艺流程-基础-培训版

给水处理的目地和对象 。给水处理的目的与任务是什么? 答:目的与任务是对从水源取得的水进行适当的净化处理,得到质量符合用户要求的水质。 。天然水杂质按它们在水中存在的状态分为哪三类? 答:分为悬浮物、胶体杂质和溶解物三类。 悬浮物 1.什么是悬浮物 --指杂质颗粒直径在10-4㎜以上的微粒。它们常悬浮于水中,产生浑浊现象。2. 悬浮物的构成 --漂浮的:如草本植物等; 悬浮的:如一些动植物的微小碎片,纤维或死亡的腐烂产物等; 沉降的:如泥沙、粘土之类的无机化合物。 3. 悬浮物的特点 --在水中很不稳定,分布也很不均匀,是一种比较容易除去的杂质。 悬浮物是造成水质浊度、色度、气味的主要来源。它们在水中的含量也不稳定,往往随着季节、地区的不同而变,这些杂质凭肉眼可以看见。水静止的时候,较重的微粒(主要是沙子和泥土一类的无机物质)会沉淀下去,轻的微粒(主要是动植物及其残骸的一类有机化合物)会浮在水面上,这些用过滤分离的方法可以除去。 一、沉降类的混砂、粘土的危害: (1)使水浑浊,沉积于各配管装置系统的锅炉,热交换器中; (2)产生粘泥; (3)沉积在树脂中,影响离子交换,使工交下降。 二、漂浮、悬浮类的藻类、微生物的危害: (1)产生色度,并有臭味; (2)产生粘泥。 三、还有某些有机物的危害: (1)产生沉积; (2)污染树脂; (3)进入锅炉,发生起泡现象,从而产生汽水共腾现象,影响蒸汽品质。

胶体 1.什么是胶体 --分散质粒子在1nm—100nm之间的分散系;胶体是一种分散质粒子直径介于粗分散体系和溶液之间的一类分散体系,这是一种高度分散的多相不均匀体系。 通俗的讲,用一束激光从胶体射出,如果能看到一条光亮的通路,那就是胶体。 2. 胶体的构成 --分散剂类:气溶胶,固溶胶,液溶胶; 分散质类:分子胶体、粒子胶体; 1、气溶胶:烟、云、雾; 固溶胶:烟水晶、有色玻璃; 液溶胶:蛋白溶液,淀粉溶液,肥皂水,人体的血液。 2、分子胶体:淀粉胶体,蛋白质胶体; 粒子胶体:土壤。 3. 胶体的特点 --能发生丁达尔现象,聚沉,产生电泳,可以渗析。 刚才胶体的通俗讲法所用检验方法就是丁达尔现象。 最大的危害就是容易堵塞反渗透膜,十分不利于RO的清洗工作。 (天然水中的胶体等大多带有负电荷,这种胶体由带正电的胶核与带负电荷的外层所构成,由于胶体的多层结构及水化作用,因而胶体能悬浮于水中,由于胶体带负电荷的外层与其他胶体带正电荷的胶核相互吸引,使许多带有相同电荷的胶体粒子同时存在,但粒子之间并不实际接触。) 地下水及地表水均含有铁、铝、硅、有机质等物质,它们和预处理时加入的混凝剂、助凝剂、阻垢剂等形成胶体沉积在膜表面造成胶体污染。 胶体物污染难处理是由于带有同种电荷,比较稳定,不易沉降,易污染膜,导致水通量下降。一般这种趋向用污染指数(SDI)进行评价。通常当SDI<3时,膜表面不产生此类污;当SDI>3时,会发生污堵。 给水处理前后期对象 。给水处理中,前期净化要去除的对象是什么? 答:悬浮物和胶体杂质。 。给水处理中,后期淡化和除盐的对象是什么? 答:水中各种溶解盐类包括阴阳离子。

相关文档
最新文档