深海海洋平台基础简介_张建红

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

深海海洋平台基础简介

张建红 林小静

(清华大学水利水电工程系,岩土工程研究所)

摘 要 本文介绍了目前深海海洋油气开发中海洋平台系锚系统的岩土工程设计方法。主要讨论了深海

油气开发中两种主要的基础形式细长锚桩和吸力式锚桩的工程应用。

关键词 岩土工程勘探 细长锚桩 吸力式锚桩

近海工程中并没有一个严格的界限水深来区分浅海和深海,一般认为大于500m 的水深为深海,因为深海中技术和经济上面临的挑战显著增加。目前在美国的墨西哥湾,人们可以在3000m 的海水中进行油气开采。

重力式平台和桩基导管袈平台(图1)是浅海中普遍使用的海洋平台形式。为了适应在越来越深的海水中进行海洋油气开发的需要,工程界更多地采用了象张力腿平台(TLP)、立柱式(Spars),船形浮式系统(FPSO)和半潜式平台[3]等,如图2所示。与浅海平台相比,深海平台的系锚荷载显著增加,其主要荷载不再是压载,而变为上拔和水平荷载。这类平台目前最常用的三种基础形式为细长锚桩、吸力式锚桩和竖向承载板。本文主要介绍工程界目前

采用的前两种基础形式的设计方法。

图1 重力式和导管架平台

1 地球物理勘探和场地调查

深海区域油气开发要求进行较详细的场地调查和地球物理勘探。深海的地球物理勘探主要包括地面(如测海学和声纳扫描)和地基(地质剖面和高分辨率3维地震分析)勘探。目的在于获得海底地基

的地质条件、预测地质灾害。导致地质灾害的原因有很多,如浅埋断层的活动、地震的发生、海底陡坡导致海底滑坡等,这些地质灾害的危害很大,主要影响系锚系统本身的稳定性。此外,如果采油区出现天然气和石油渗透和涌出,则可能引发火灾、或者使

浮动结构丧失浮力,甚至危及整个工程。

针对基础设计进行的场地调查通常限于泥面下100m 的深度范围。场地调查过程中获取的土样则通过一系列物理力学特性测试,可以提供给设计所需的土层剖面,土的长期力学特性、土动力学特性和土的各向异性强度。深水平台要求对基础周围土性有更准确地把握,从而能够更好地评价在动荷载、长期荷载(如土的蠕变、偏移和固结)作用下系锚结构的承载能力。

深水平台结构系锚的位置相距很远,如图2b 所示。进行现场地球物理勘探时,每个系锚位置至少需要进行一个钻孔或者触探试验(如静力触探)。如果地质条件复杂,需要补充钻孔。如果系锚的结构在勘探完后改变,或者大型系锚系统中最终锚固位置偏离初始设设计的位置,已获得的地球物理勘探资料可能不再适用。

钻孔深度最小要等于系锚结构的埋置深度加上影响深度,影响深度取决于基础可能的破坏模式。从工程勘探造价看,竖向承载锚(VLAs)和吸力锚桩因埋置深度小,比较经济。

通过深水钻孔取样,然后对岩样或土样进行室内测试,可以获得岩层和土层分布、土层类型和连续

性;土层容重;应力历史;土的静动、各向异性、不排水、非扰动样和重塑土的强度剖面;渗透和固结特性。长桩和吸力式锚桩设计特别要求测试土的各向异性和动强度,如通过三轴试验或者动单剪试验获得。值得注意的是,进行土体的强度参数测试时要选择与实际荷载环境一致的加载路径,以期正确反映土的力学响应。

19

图2 深海平台

(a)张力腿平台;(b)立柱式平台和分散系锚;(c)船形浮式系统;(d)半潜式平台

2 细长锚桩的岩土工程设计

图3为用于深水结构的细长锚桩。其设计方法与浅海相应结构没有很大区别。然而深水中,细长锚桩所受的拉力和动荷载增大,因此更严格的岩土

和结构分析有助于进行可靠和经济的锚桩设计。细长锚桩是张力腿平台的主要基础形式,在抵抗不利荷载方面最为可靠。然而,自钻式桩的稳定性和水下锤击入桩的造价,是深水基础面临较大的困难。液压式水下锤击的深度一般限制在2000m

以内。

图3 细长锚桩类型

细长锚桩的轴向和水平向的承载力是分别考虑的,这主要是因为竖向承载力主要是由桩的下部提供的,而水平承载力是由桩的上部提供的。研究表明,两者之间没有很强的相互作用。细长锚桩的轴向承载力通常采用极限平衡方法分析,在分析其水平向承载力时,将细长锚桩考虑为一个梁。

张力腿平台的基础桩如果直接连接张力腿,由于桩上部受横向荷载发生挠曲,使得桩上部周围土体可能出现软化,甚至形成空隙。目前设计中忽略上部10m 内的竖向和水平向承载力,竖向承载力会因此减少百分之几,水平向承载力会显著降低。当然更合理的方法是确定发生软化的深度范围。如果张力腿平台的桩间距小,需要考虑群桩效应。2.1 持续荷载的影响

深水中的锚桩必须承受比浅水更高的张力和动荷载。与大多数浅海环境不同,持续时间较长的荷载,例如在墨西哥湾的持续数日之久的环流造成的基础上的荷载(持续荷载),通常是深海中锚桩设计的控制荷载。除了荷载幅值增加,这类荷载引起土中的0蠕变0效应。另一种持续荷载是TLP 张力腿中的预应张力。不过,预应张力只占设计荷载中很小的一部分,设计中可能不会太多关注。另有研究表明,如果桩承受的荷载中30%为长期的拉拔荷载,也会因土的蠕变导致破坏。关于这一问题还需要做更进一步的研究。

如果考虑桩在持续拉拔荷载作用下的性能,就要研究对土在这种荷载作用下的特性。长期荷载对土的影响主要表现在排水和蠕变两方面。由于排水的影响在这一条件下可能不显著,因此大部分设计者都忽略了细长桩桩端的反向承载力(见下一部分对吸力式锚桩的讨论)。另一方面,桩端土在长时间剪切作用下达到很高的固结度,由此提高了桩端土的强度,但是在设计中,人们并没有考虑这种因素。为了在桩的设计中考虑蠕变的影响,需要通过试验确定在荷载作用下强度随时间降低的情况,并且把蠕变视为一种强度丧失。2.2 循环荷载的影响

循环荷载会导致土的强度参数的降低。为了描述持续荷载和循环荷载共同作用时所产生的负面影响,通常做出平均和循环应力与破坏前的最大振次的关系等值线图。这张图需要高质量的无扰动原状现场土的室内试验结果。在设计风暴中,循环荷载

20

相关文档
最新文档