弹性介质地震波场的数值模拟
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
弹性介质地震波场的数值模拟
地震正演模拟分两方面:数学模拟和物理模拟,正演是地震数据采集、处理、解释三大环节的分析基础。本文主要论述地震波场数值模拟,地震波场数值模拟是勘探地震学的重要研究课题之一,也是认识地震波传播规律,检验各种处理方
法正确性的重要工具,是地震反演的基础。所以,该技术在我们对油气田的勘探开发有着重要的意义。地震数值模拟技术的研究方法主要包括三类积分方程法、射线追踪法以及波动方程法。
积分方程法是建立在以Huygens原理为基础的波叠加原理基础上的;射线追踪法主要理论基础是几何光学,属于几何地震学方法,在高频近似条件下,地震波的主能量沿射线轨迹传播,主要优点是计算速度快,所得地震波的传播时间比较
准确,但缺少地震波的动力学信息;波动方程数值模拟方法是以地震波波动方程为基础的,相比射线追踪法保留了地震波的运动学与动力学特征。本文首先介绍了地震波场波动方程方法的基础波动理论,对于波动方程的各种求解方法做了比较全面的论述,并分别对求解公式做了推导。我们选择了具有编程简单、运算速度快,而且能够得到完整的弹性波场信息的交错网格有限差分法进行了理论研究。将推导出的关于速度-应力的一阶段波动方程组在等边长网格上离散,得到定义
的网格点上的差分波动方程组。
进而讨论差分离散格式的相容性、收敛性以及稳定性,从而得到了差分波动方程组的稳定条件,达到保证数值解收敛于真实解。在波动数值模拟中震源和边界条件的处理相当的重要,接下来着重在均匀各向同性介质模型中讨论了震源和边界的处理方法。建立各种不同的模型并对其波场进行分析。编写的计算机程序可计算二维复杂的非均匀介质的p波、p-sv波的合成地震记录,包括vsp记录、共炮点记录、共中心点抽道记录和地震叠加剖面,理论和实际模型的计算结果令人满意。