民航甚高频通信互调干扰问题分析

民航甚高频通信互调干扰问题分析
民航甚高频通信互调干扰问题分析

民航甚高频通信互调干扰问题分析

发表时间:2018-07-02T16:41:46.200Z 来源:《科技新时代》2018年4期作者:赵赛仙

[导读] 摘要:近年来,随着民航事业呈跨越式发展态势,飞行流量也在逐渐攀升,对民航甚高频通信质量要求更为严格。因为民航甚高频的使用频点的不断增加,各类无线电通信系统愈来愈多,致使无线电互调干扰问题愈来愈严重。如何处理好高频互调干扰问题,确保民航甚高频通信质量在飞机飞行尤为必要。

摘要:近年来,随着民航事业呈跨越式发展态势,飞行流量也在逐渐攀升,对民航甚高频通信质量要求更为严格。因为民航甚高频的使用频点的不断增加,各类无线电通信系统愈来愈多,致使无线电互调干扰问题愈来愈严重。如何处理好高频互调干扰问题,确保民航甚高频通信质量在飞机飞行尤为必要。本文着重探讨民航甚高频通信中经常发生的互调干扰问题,并给出了科学有效的防御措施,以供相关人士参考。

关键词:民航;甚高频;通信;互调干扰问题;

引言

随着社会不断发展进步,我国民航事业已经呈现出高速发展态势,为公众日常出行提供更为便捷的条件,推动了我国经济的迅猛发展。在民航跨越式发展过程中,通信设备在地面-空中指挥通信中起到极其关键的作用,加入通信设备存在故障问题,势必会对航班的安全运行造成不利影响。所以,甚高频地空通信在交通管制工作以及空中交通指挥占据举足轻重的地位,它为地面-空中开展科学合理沟通提供了极大便利。然而,近些年来,随着科学技术水平的逐渐提升,无线通信的广泛普及使用,均会对甚高频通信带来不同程度的干扰,对航班飞行安全构成严重威胁。因此,本文着重分析探讨民航甚高频通信互调干扰问题,以提升甚高频通信质量,为航空事业科学、稳定发展提供可靠保障。

1.甚高频通信互调干扰问题概述

互调干扰主要是指2个或若干个频率信号在相同时段对信号进行接收或者发出,在电路的非线性作用下会有第3个频率出现,此频率会对一个时间段内的有效的类似频率是否可以正常通过发信机造成影响,将制约有效频率正常发射。互调干扰会导致空中及地面通信出现失真现象,严重阻碍航空指挥系统以及航空运行安全。一般来说,在相同的一个线性系统内常常有3阶互调存在,线性系统因为遭到非线性因素的作用,势必会导致系统内部某一信号的谐波产生变化,进而造成信号的不稳定性。在不稳定的信号的影响,其会和系统传递信号之间出现混频后形成第3个频率,此类频率一般被人们叫作寄生信号。正常情况下的3阶互调在寄生信号的影响下将会产生信号偏差,在互调中比自身更高阶位进行互调。此类干扰所产生的影响为最小的,因而在互调干扰及预防中大都将3阶互调当做最为主要干扰因素。

2.民航甚高频通信互调干扰的原因分析

一般而言,因为非线性为通信电路的主要特征,极易导致敏感的甚高频通信发生互调干扰的情况。针对这种现状,能够将产生民航甚高频通信互调干扰问题的原因分成3类,分别为发射机因素、外部因素以及接收机因素等引发的互调干扰,下面具体展开分析。

2.1因发射机产生的互调干扰

通常,地面信号需凭借某类机器与信道把信号发射至发射机的末级以及本机的接收器上,若在功放电路中进行发射,发射信号在互相加以调制后就会有新的频率组合形成,这种类型的频率组合在被接收机所接收以后将会形成不同程度干扰。

2.2外部因素造成的互调干扰问题

发射机在传输信号中,会由于别的无线电或别的节点的故障极易发生接触不良的状况,进而导致互调干扰。在设备发生强射频电场检波作业的过程中往往会产生互调干扰的问题。因而,在具体操作中,像此类外部因素所造成的互调干扰,常常具备比较复杂干扰特性,天气因素对通信产生的互调干扰较大,干燥与潮湿、白天与黑夜,甚至上午与下午干扰程度均有所差异。

2.3因接收机所产生的互调干扰

接收机主要功能是对前端电路接收,即在接收机内输入2个偏离接收频率干扰的信号,因为线路具备非线性特点,变频器以及高频放大器极易对其造成不同程度的影响,接着便会产生互调频率,在接收机频带内假如输入互调频率,极易使接收机内部形成互调干扰。

3.互调干扰产生的危害

互调干扰属于民航通讯系统的重点与难点。互调干扰会致使无线电通信信号产生失真现象,进而导致民航甚高频通信故障,例如一旦出现通讯中断现象,亦或是通讯失效等状况时,常常会导致空中交通管制人员与航班机组人员没有办法取得正常进行通讯,亦或是直接失去联系,这样极有可能会发生航空事故。

3.1对发射机的危害

一般而言,如果发射机工作频率在进行调试以后常常会被布设为电路最为理想的谐振状况。这个时候电流的数值往往最小,功耗也特别小。若碰到互调干扰,势必会在一定程度上致使电路发生紊乱、元器件不断发热,对发射机的正常运行产生不利影响。

3.2致使有效功率大幅下降

发射功率不但涵盖有效主频率,同时还涉及到所有频谱能量的总积分,涵盖2部分,主频率与互调产物功率。若无用的互调产物功率愈大,对总功率所造成的负担以及消耗势必也会有所增加,这个时候往往会致使发射机的效率大大下降。

3.3致使空间电磁波秩序紊乱

互调干扰极易致使空间电磁波的秩序出现紊乱现象。1台发射机所形成的互调干扰常常会与别的发射机形成一类新的互调产物。此类新的互调产物会和第3台发射机产生新的互调,以此类推,在数次的互调影响后,会产生诸多的无序频谱能量(背景噪声),影响空间电磁波的稳定秩序。

4.互调干扰防御措施

4.1降低发射机互调干扰频率

在对发射机引起的互调干扰问题进行处理时,为了尽可能避免别的信号或者入侵对发射信号造成干扰,一般来说,技术人员会对发射机与天线之间的配置方式做出优化调整。在优化时,通常会对发射机末级性能做出更改,确保发射机线性动态的范围能够进一步得以提升。民航中的甚高频率一般会凭借公用的天线系统来开展,因为隔离器具备损耗小的特征,可以把单相隔离器在发射机与天线之间进行配置布设,如此不但恩能够降低信号,并且可以很好的对外界的干扰信号进行抑制。再者,相关技术人员能够科学布局发射台,构建3阶互调

变压器无线电干扰技术要求

变压器无线电干扰技术要求 一.试验条件: 试验应在下列大气条件下进行: ——温度为5℃~35℃; ——气压为0.870×105Pa~1.070×105Pa; ——相对湿度为45%~75%。 注1:经用户与制造方协商同意,试验可以在其它的大气条件下进行。 注2:GB/T1 6927.1所述的大气条件修正系数,不适用于无线电干扰试验。 二.试验标准: GB 11604-1989 高压电器设备无线电干扰测试方法. CISPR 16-1:1993 无线电干扰和抗干扰测量设备及方法的技术要求第1 部分:无线电干扰和抗干扰测量设备 JB/T 3567-1999 高压绝缘子无线电干扰试验方法 IEC 60437:1997 三.试验回路: 图1: 无线电干扰电压测量电路 T1:被试变压器; S:防晕罩; C1:耦合电容; L1: 耦合电感; G:保护间隙; K: 切换开关; L2:支撑电感; R1:高压臂电阻; R2:低压臂电阻; M2:无线电干扰接收机;M3高频信号发生器; 四.试验设备: 1.无线电干扰测量仪器M2 1.1主要技术参数 测量范围:150KHz~30MHz 整机通带:9KHz 200Hz 输入阻抗:50Ω 检波器时间常数: 平均值:充放电时间常数小于100μS

准峰值:充电时间常数1ms±0.5ms 放电时间常数小于160ms 表头机械时间常数:160ms±80ms 过载系数检波前:≥30dB; 检波后:≥12dB 2.测量装置M1 2.1 支撑电感L2 2.2 放电保护间隙G 2.3分压电阻高压臂R1 高压无电阻 2.4分压电阻低压臂R2 高压无感电阻, 3.测试耦合阻抗Z1 3.1耦合电容器C1 无晕电容器,电容量:1000pF,可以用变压器的套管电容 当耦合电容 3.2耦合电感L1 根据耦合电容电容量的变化L1的值要不断地调整 4.高频信号发生器M3 能发生500kHz的高频脉冲信号,电压0到10V可调整,内阻最好在20k左右. 五.试验方法及要求 5.1 试验导线与地之间的阻抗Z1+(R1+R2)在测量频率下应为300Ω±40Ω,相 位角不超过20°。 5.2 耦合电感L1随着变压器套管电容的变化而可以调整.

航空无线电干扰分析

航空无线电干扰分析 无线电以及相关的技术和设备的快速发展,极大的颠覆了人们的通信方式,但是在实际的使用过程中,航空运行的安全却受到了影响和干扰,为了更好的实现对航空尤其是民航的运行安全的保障,有关部门应该加强对无线电的干扰分析。 关健词:无线电;干扰;分析 1 航空干扰产生的根源 飞机在飞行的过程中,一般处于两千米至一万米的高空,这种情况下,飞机的无线电信号也会形成几百公里的跨度范围,所以随着飞机的快速的飞行,无线电的信号也就会存在一定的误差,这种情况下,如果想要准确的定位飞机飞行过程中的干扰信号源,就具有相当大的难度,而且要想实现对这些干扰因素的排查,也需要相当大的人力和时间成本,因此,只有在飞机的飞行过程中,做好自身的防干扰工作,提升自己的抗干扰能力才是保证飞机的安全飞行的最重要的手段。 根据不同的飞机运行过程中干扰源,可以将飞机受到的无线电干扰分为自然干扰和人为干扰两大类,而在这两种干扰中,人为干扰占绝大多数,所以也是要重点预防的对象,一般来说人为的无线电干扰指的是在地面的无线电台发出的信号以及各种工业和科技以及医疗单位发出的无线电信号,还包括各类有线电信号的泄漏。 随着我国民航事业的不断发展,我国的民航通信整顿工作也取得了很大的进步和发展,这种情况下要想实现对民航的无线电干扰的预防,就必须要加强和提高自身无线电抗干扰的能力,以更好的应对各种大功率无线电设备在飞行过程中给飞机造成的飞机干扰,进一步保证飞机的飞行安全。在整顿工作结束后,我国的民航在飞行过程中出现的由于工业和科技以及医疗单位的无线电信号造成的干扰现象明显减少,即实现了对这种人为信号干扰很好的预防。但是值得注意的是,随着社会的发展和进步,人们的文化和娱乐生活的日益丰富,各种电台明显增多,这种情况下电台造成的调频信号也在运行过程中给飞机的飞行造成了严重的信号干扰,威胁了飞机的飞行安全和稳定。并且由于大部分电台的信号设置都位于海拔较高的山地,离飞机的航线更为接近,这无疑是对飞机飞行安全的一大威胁。这种情况下,有关部门应该针对广播电台的无线信号,认真的分析其运行的特点,做好对这些信号的抗干扰工作,因为这些广播信号的发射比较统一,大部分是由同一个天线发射和使用的,所以在实际的运行过程中信号比较集中,难以分离,所以危害更大。 2 航空电台通信干扰分析 2.1 航空电台受干扰地域分析

浅谈机场通信导航干扰

浅谈机场通信导航干扰 【摘要】随着无线电通信事业的迅猛发展,各种无线电台站数量日益增多,无线电干扰现象时有发生。民航飞行安全事关人们生命财产安全、事关经济社会发展稳定大局,有效地保障航空频率安全使用,无线电管理责无旁贷。本文在对机场通信导航干扰存在影响进行阐述的基础上,对航空通信导航产生干扰影响的主体因素进行探讨,并制定切实有效的应对策略。对有效预防干扰作用,提升可靠安全航空服务管理水平,确保飞机安全、畅通、准时的飞行,有重要地实践意义。 【关键词】机场;通信导航;干扰;安全 一、机场通信导航干扰所存在的影响 伴随通信领域的快速发展,各类无线电技术的创新应用,航空服务业务种类更为丰富,并令电磁空间变得较为拥挤,服务环境受到了一定影响,航空环境变得更为复杂,随之而来的无线电干扰也日益显著。该类干扰不但会对正常无线电通信形成负面影响,还密切关系到人民财产生命的健康安全,对航空通信导航形成了较大的干扰作用。保障航空导航通信的安全事关重大,是一项艰巨复杂的工作任务,事关我国的经济稳定发展、安全国防建设以及社会的和谐文明的提升。 二、机场通信导航干扰产生的因素分析 1、航空系统的内部因素 由干扰源划分,干扰影响包括非航空系统以及航空系统干扰。航空系统的内部因素是由于人们交通出行量的迅猛激增,令航班密集度显著提升,飞行流量快速增长,空管为有效的做好空中管制,机场之中与通信导航部门应用较多无线电设施辅助管理,进而形成了互相干扰问题,且有显著上升的势头。通常来讲,干扰源多为非航空因素,例如无线电通信设施、闭路电视等。该类仪器通常布设在一个机房中,进而令其形成了较为庞大、影响显著的电磁辐射体系。倘若兼容问题不良好的处置,将导致系统间的干扰影响,并有可能对飞行安全构成威胁。 2、航空系统的外部因素 航空系统的外部因素包括广电业务、医疗设施、工业生产等。广电业务特征在于应用大功率发射仪器持续的运行,通常台址设置在大城市区域,并位于高山的顶部布设差转台装置。由于业务应用频段同航空无线电相邻近,加之频率资源的限制,令其不断的上扩,而航空频率则持续下扩,进而令频段产生了拥挤现象,较易发生对航空业务的干扰影响。工业生产以及医疗设施应用产生的干扰影响,主体成因在于谐波以及杂散辐射。工业设施生产过程中,短期内的频率可靠稳定性不高,因此会形成显著的瞬时频偏现象。干扰信号同宽频偏以及低调频信号较为相近,该领域产生的干扰影响主体为噪声作用。再者,电力传输运行工作体系

甚高频通信系统

甚高频地空通信系统 一、无线通信基础 1、甚高频地空通信基础 通信以话音、图像、数据为媒体,通过光或电信号将信息传输到另一方。 甚高频通信系统供飞机与地面台站、飞机与飞机之间进行双向话音和数据通信联络。甚高频系统采用调幅工作方式,其工作的频率范围由118.000~151.975MHZ(实际使用最大频率为136MHZ),频率间隔为25KHZ,这是国际民航组织规定的频率范围和频道间隔。甚高频传输方式的特点是:由于频率很高,其表面波衰减很快,传播距离很近,通信距离限制在视线距离内,所以它以空间波传播方式为主,电波受对流层的影响大;受地形,地物的影响也很大。 2、通信的分类: (1)、模拟通信与数字通信 信道中传输的是模拟信号时称为模拟通信。 信道中传输的是数字信号时称为数字通信。 (2)、有线通信与无线通信 使用光缆、铜缆等进行连接的通信为有线通信。 使用电磁波、光波等连接的通信为无线通信。 3、甚高频收发信机分类: (1)、按设备分为:VHF便携收发信机, VHF 单体收发信机,VHF

共用天线系统。 (2)、按发射功率分为:塔台设备的发射功率不应超过10W,进近设备发射功率在25W,航路对空设备发射功率应在50W。 VHF 便携电台主要用于塔台指挥、校飞、电磁环境测量、应急等。 VHF 单体收发信机适用于通信波道少,有足够天线场地的机场使用。随着民航业务的发展,对VHF 的波道数量需求越来越多,对天线场地和电磁环境的要求越来越高,逐步由VHF 单体电台过渡到VHF 共用天线系统。 VHF 遥控台主要用于航路地空通信,通过设臵遥控台来解决航路或区域的全程通信覆盖,解决本场的VHF作用距离以外不能覆盖的通信。 二、甚高频调幅AM收发信机工作原理 1、发射机 调幅发射机一般由音频放大器、振荡器、混频(调制器)、前臵放大器、高频功率放大器等组成。 音频放大器的功能是将音频电信号进行放大,但是要求其失真及噪音要小。 混频器是将放大后的音频信号加在高频载波信号上面,形成的高频电磁波调制信号,其包络与输入调制信号呈线性关系,目的就是为了增强信息信号的抗噪声能力。调制原理:振荡器的主要作用是产生调制器所需的稳定的甚高频载波信号,一般都采用

19.无线电干扰电压(RIV)测量

无线电干扰电压(RIV)测量 1.适用范围 三相和单相电力变压器(包括自藕变压器)。 2.试验种类 特殊试验。 3.试验依据 GB 1094.1—1996《电力变压器第一部分总则》 GB 11604—1989《高压电器设备无线电干扰测量方法》 JB/T501—2006《电力变压器试验导则》 产品技术条件 4.试验设备 TESA—1250感应调压器 输入额定电压6kV,输入额定电流120A; 输出电压0~6.3kV,输出额定电流120A。 S9—5000/60中间变压器 标准电压互感器 标准电流互感器 参数见空载试验 5.测量仪器 D6000功率分析仪; COSφ=0.1低功率因数功率表; 平均值电压表; 方均根值电压表;

电流表; Protek3200射频场强分析仪。 6.一般要求 试验应在10℃~40℃环境温度,变压器的温度接近试验时的环境温度。 通常由被试品的低压侧施加额定频率的额定电压(应尽可能为对称的正弦波电压),其余绕组开路;如果施加电压的绕组是带有分接的,应使分接开关处于主分接的位置;如果被试品绕组中有开口三角形连接绕组,应使其闭和。运行中的地电位处(分级绝缘变压器其中性点、铁心、拉带等)和油箱或外壳应可靠接地。 7.试验前的准备 被试品油箱及测量仪器接地端必须牢固接地; 油浸变压器应放气(包括有载开关)。 8.接线原理图 3.试验方法

9.试验方法 试验电压应在1.1U m/√3相对地电压下测量。 升压过程按空载电流和空载损耗测量。 回路衰减系数B c的测定: 被试品不供电状态下,将内阻大于20 kΩ的高频正弦信号发生器,并联到试品两端。高频信号发生器在测试频率上,送出1V左右的信号,记下测量仪器的读数B1。 保持高频信号发生器输出电平不变,将C N、L2短路,记下测量仪器的读数B2 B c=B2-B1 电阻网络衰减系数B R: 测试结果是以试品的300Ω负载上的干扰电平来表示的, B R=20lg[300/(R1/2)] R1=50Ω B R=22dB 测量结果: 被试品在试验电压下仪器的读数为B m B=B m+ B R+ B c U=10(B/20)(μV) 10.判断准则 符合技术条件的要求。 11.注意事项 应注意带电部位的绝缘距离; 产品存在剩磁时,测量开始时电流偏大,注意设备及仪器是否过载。

航空通信无线电的干扰源分析及有效防护

航空通信无线电的干扰源分析及有效防护 无线电通信是航空的重要组成部分,其技术进步和性能稳定性直接关系到飞行的安全。本文根据目前民航地空通信受干扰情况,总结了民航无线电频率干扰的类型,并提出了几点应对航空无线电干扰的防护措施。 标签:航空通信无线电干扰源有效防护 在现阶段,我国无线电监测的重要組成部分之一就是确保空中通信的安全。起飞后,飞机通常会以2-10千米的高度飞行,因此飞机的无线电信号可以覆盖附近数百公里的区域,并且飞机的极高速飞行可能会导致飞机位置出现一些误差,这使得很难准确确定航空无线电干扰的主要来源区域。确定干扰源的困难主要是干扰的时间很难推算、确定干扰区域困难以及确定干扰性质的困难等。因此,查找航空无线电干扰源困难且成本高昂。但是,做好航空无线电保护具有重要意义,应努力克服各种困难,以取得良好的效果。对航空无线电干扰的主要来源进行科学分析,并在此基础上及时采取针对性的保护措施,对于消除航空无线电干扰、保护飞行安全、保护公民的个人财产具有重要意义。 1、目前民航地空通信受干扰情况 由于对民用航空地面和空中通信的干扰类型越来越多,因此越来越难以确定干扰源。根据中国民航网的数据,2016年,民航空管制系统收到1074例严重干扰射频的投诉,其中99%是高频地空通信干扰。 2、民航无线电频率干扰的类型 2.1调频广播对民航频率的干扰 FM广播的频段为87Mhz至108Mhz,航空导航、航空移动的频段为108Mhz 至137Mhz,这两个频段相邻且具有相同的传输特性。在FM广播的情况下,某些发射机设备和技术规范的质量较差,使其容易受产生杂散和外发辐射,再加上较高的发射功率,由于多级放大器的非线性,很容易产生互调,当互调信号落入空中频段时,可能会造成干扰。FM广播对民航通信造成的干扰在全国范围内屡见不鲜。 2.2“黑广播”对民航频率的干扰。 “黑广播”是指未经广播和电视当局批准并未获得合法广播许可证而私下建立的FM广播电台。所使用的频带通常也为87MHz至108MHz,发射功率通常为千瓦级。近年来,一些出于自己利益的不法分子私下购买城市高层住宅中的“黑广播”装置,从事非法活动。这类设备多数是通过网络渠道购买的,设备质量差,射频技术指标不合格,超出标准的杂散、谐波分量、互调频率,不仅会干扰民航频段,而且还会对各种合法正常的电台引起不同程度上的干扰,扰乱正常的

民航机场通信导航信号干扰问题分析

民航机场通信导航信号干扰问题分析 摘要:随着社会的进步以及民航事业的迅猛发展,人们生活水平得到极大提升,飞机出行已变得尤为普遍,随之而来的民航安全问题也受到公众的广泛关注。民 航通信系统作为民航的主要部门,近年来受到诸多无线电信号的干扰,成为民航 的主要安全隐患之一。为此,本文主要结合新疆哈密机场工作经验,首先对民航 机场通信导航信号干扰所产生的主要影响,接着对民航机场通信导航信号干扰问 题产生的主要原因展开分析,最后给出一些可行性应对措施,以供同行人士进行 参考。 关键词:民航机场;通信导航;信号干扰;应对措施 引言 近年来,我国民航事业呈跨越式发展态势,甚高频电台、仪表着陆系统、ADS-B等通信导航系统在民航机场通信导航中起到尤为重要的作用。然而,由于 科学的不断发展进步,,无线通信技术得到广泛普及应用,各种无线电台层出不穷,在很大程度上对民航机场通信导航信号造成干扰问题,不仅影响到民航通信 导航的正常、顺畅开展,而且更为严重的是会给民航带来安全隐患,威胁到国家 财产以及群众生命财产安全。因此,本文着重对民航机场通信导航信号干扰问题 进行分析探讨,以期促进民航事业的健康发展。 1.民航机场通信导航信号干扰带来的影响 随着通信领域的蓬勃发展,无线电技术已广泛应用于航空无线电通信、航空 无线电监视、航空无线电导航以及航空无线电监视以及其他航空服务,这致使电 磁空间尤其拥挤,空中服务环境变得越来越复杂,随之而来的无线电信号干扰问 题也不断加剧。通信导航信号干扰会影响正常的无线电通信,轻则造成航班延误,流量控制以及晚点等问题,重则会导致机毁人亡。所以,确保民航机场通信导航 系统的安全尤为重要,有必要及时分析引起机场通信导航信号干扰的主要因素, 并采取合理的方式妥善解决干扰问题,从而为机场民航安全运行提供可靠保障。 2.民航机场通信导航信号干扰问题形成的主要原因分析 2.1内部原因 民航机场通信导航信号干扰问题形成的内部原因主要是由于人们出行频率的 快速增长,导致机场飞行强度大幅增加,机场航班交通流量大幅增加。在民航机 场对空指挥系统以及空中交通管制方面,机场通信导航部门均会采取大量无线电 设施管理,进而造成相互干扰问题,并呈显著的上升趋势。无线电通信设施和闭 路电视通常安排在机房内,然后构成一个具有显著效果的大型电磁辐射系统。若 兼容性问题得不到妥善处理,会造成系统间的互相干扰,也会对航空飞行安全造 成极大威胁。 2.2外部原因 民航机场通信导航信号干扰问题形成的外部原因包括广播电视服务、医疗设 施以及工业生产等。广播电视业务的主要特点是采取大功率发射仪器连续操作。 一般来说,它大都布设在大城市,并在高山顶安装差转塔装置。一般因业务应用 频段与民航机场无线电比较接近,加上有限的频率资源,促使逐渐上扩,民航频 率逐渐下扩,频段显得非常拥挤,极易对民航机场航空业务造成信号干扰。医疗 设施和工业生产在应用过程最后会产生谐波和杂散辐射,进而对民航机场通信导 航信号造成不同程度的干扰。当工业设施在生产过程中,短时间内频率的稳定性 不够高,并且可能会出现比较显著的瞬时频移。干扰信号接近宽频率偏移和低频

浅谈无线电干扰对民用航空的危害与解决措施

浅谈无线电干扰对民用航空的危害与解决措施 摘要:民航无线电专用频率是民航系统运营的眼睛,是安全飞行的根本保证,但随着民用无线电的普遍应用,民航专用频段受到越来越多的干扰,甚至危及到民航飞行安全,因而无线电干扰已成为民航部门亟待解决的难题,本文从干扰的种类、分布、产生原因以及对策进行阐述,以期对工作有所建议。 关键词:无线电干扰民用航空危害对策 随着经济高速发展,无线电越来越多的应用于生产、生活、工作中,时常干扰民用航空无线电专用频率,而民航专用频率主要用于飞机调度、导航的通信频率,一旦受到强烈的干扰,将会带来不可遇见的灾难,小则停飞,重则引发事故、甚至造成空难,其后果严重性不言而喻。因此,预防民用无线电系统干扰民用航空已成为亟待解决的问题,必须引起有关部门的高度重视,以防不必要的灾难发生。 1.民用无线电干扰源种类。 从当前社会现状看,干扰民用航空无线电专用频率的种类主要用三类,一是没有任何审批手续,私自违法设置的无线电台站,二是尽管有相关手续,但因其设置不合理而产生互调干扰的无线电台站,三是少量的高档工业医疗设备。从当前情况看,主要干扰源是违法设置使用无线电台,细分一下,又可归为两小类,其一是非经许可的违法使用的大功率无绳电话;还有一种是擅自扩大功率的广播电视发射器。 2.干扰源分布特点。 随着大功率无绳电话的普及,农村乡镇人员已普遍使用,而当前民航的机场和飞行航道普遍在远离城区的农村乡镇,因而对民航的飞行安全危害性也越来越大。而非经许可擅自改装扩大功率的广播或电视发射机则集中分布于城区,但较大发射功率是其致命的问题,是形成互调干扰的主导因素,它的存在,严重制约其他无线电接收设备的正常接受,也是干扰民航专用频率的主要干扰源。 3.干扰源成因 究其产生原因,涉及多个方面,最主要还是历史原因造成,从军管到地方管理,在高速发展的同时,相关的管理制度和法律法规却没有同步,受利益驱使,个人使用大功率无绳电话和广播电视机构擅自扩大发射机输出功率产生干扰事件时有发生,年复一年,在无线电管理一直处于尴尬境地。 3.1大功率无绳电话

中国民航甚高频数据通信系统

中国民航甚高频数据通信系统 现在,当您在中国境内乘坐大型民航客机的时候,您可能还不知道,您已经在享受中国民航甚高频数据通信系统提供的服务了。这一系统是由中国民航总局及中国七大骨干航空公司共同组建、唯一覆盖全国航路的地空数据通信网络。实际上,它也是世界上的第三大地空数据通信网。 作用 从前,当民航客机离开机场进入航路的时候,飞机虽然可以与空管系统的地面站联络,但基本上就和航空公司失去了直接联系。因为一般话音电台的通信距离只有三四百公里,超过这一距离,飞行员就无法同起飞机场的地面通话了,或者无法同所属的航空公司保持直接的通信联系了。也就是说,飞机在飞行中出了问题不能立即报告所属航空公司,航空公司有什么重要事情也无法直接立即告诉飞行中的飞机。中国民航甚高频数据通信系统正是为了解决这一问题而建 立的。它可为航空公司、航空管制部门、航空行政管理部门、机场、信息服务机构和社会公众机构等,提供地面与飞机间的双向、实时、可靠的数据通信服务。比如,飞机在飞行途

中发生了一些意外的情况而又难以排除时,飞行员便可以借助中国民航的甚高频数据通信系统,把各种飞行参数以及发动机状态等内容及时传送给航空公司,以便各方面协调解决问题,杜绝事故隐患。此外,航空公司还可通过这一系统随时了解飞机所处的位置,以便对飞机进行实时监控,更好地调度本公司飞机的运营。这一系统对空管部门的作用更大,因为它是采用报文形式传输数据的,飞行员可以根据打印出来的报告来处理问题。在报告中,各种参数一目了然,也就杜绝了由于空管人员口误而造成的指挥错误。 组成 中国民航甚高频数据通信系统主要由飞机机载数据收发设备(ACARS)、远端地面站、网络管理与数据处理子系统、地面数据通信网络,以及用户网络五大部分组成。 飞机机载数据收发设备主要有两个作用:一是在飞机上接收航空公司传来的信息;二是从飞机上向航空公司发出信息。这套设备主要由安装在飞机驾驶舱内的多功能控制显示组件(MCDU)、管理组件(MU)、打印机,以及甚高频电台等组成。其特点是操作简单、可靠,大部分飞行参数是管理组件自动生成的,飞行员只需要按几个按键就可以把这些资料发送出去,极大地减轻了飞行员的工作压力,并且可以

民用航空导航信号的干扰分析

一、信号的干扰 近年来,由于通信事业飞速发展和无线电新技术、新业务、新制式的广泛应用,使得电磁空间越来越拥挤,电磁环境越来越复杂,各种无线电干扰也大量增加。这些干扰不仅影响到正常的无线电通信,关系到国家和人民生命财产的安全,也严重干扰了民航通信导航频率。保护航空无线电专用频率的使用安全是一项长期而艰巨的任务,事关国家经济发展、国防建设和社会稳定。 无线电干扰情况比较复杂,种类也比较繁多,必须具体情况具体分析。常见的产生干扰的原因有以下几种。 中频干扰:当干扰信号的频率等于或接近接收机的中频频率时,且前端电路的选择性不够好时,可能会使干扰信号加到混频器的输入端,进入中频并逐级放大,使输出失真,出现噪音,形成中频干扰。 交调干扰:若接收机的前置电路性能不好,使有用信号与干扰信号同时加到接收机的输入端,且这两种信号都受音频调制,就会出现交叉调制,即交调干扰。交调干扰的产生无需有用信号与干扰信号发生频率关系,只要干扰信号足够强,并且进入接收机的前端电路,就可能产生交调干扰。 互调干扰:互调干扰有接收机互调和发射机互调两种。两个或多个信号同时馈入接收机,具有宽频带特性接收机的高放电路的非线性作用产生了与有用信号相同或相近的频率分量,落入接收机通频带内造成互调干扰。存在两个发射信号时,由于发射系统的非线性,当一台发射机的输出级与另一台发射机的输出信号相互耦合时,产生互调干扰。 二、非航空系统干扰源 从干扰源的角度,干扰可以分为非航空源部干扰和民航内干扰两类。 非航空干扰:大致可以分为广播电视业务、工业、科学和医疗设备、移动通信业务、电力传输系统、有线电视传输系统,家用电子设备等。下面具体进行分析说明。 1.广播电视业务 广播电视业务基本特点是使用大功率的发射设备,连续工作,台址一般靠近大城市,多在高山顶峰设置差转台。广播电视业务所占频段与民航无线电业务频段紧密相邻,比如:74.6MHz~75.4MHz属民航导航(指点标)频段,76MHz~84MHz为广播电视业务,87MHz~108MHz为调频广播业务,108~117.975MHz属民航导航(ILS、VOR)频段,而117.975~137MHz为民航VHF通信频段。 由于广播电视及民航行业发展速度很快,但频率资源有限,造成广播频率日益向上扩展,民航频率向下扩展,使得频段内过于拥挤,因此极易对民航业务产生同频或邻频干扰。 广播电视业务的有害干扰主要表现在两个方面:一方面其残波辐射信号落入民航频段;另一方面两个或多个频率的广播信号在民航无线电接收机内形成互调,产生互调干扰频率落在民航频段内。 广播电视业务对航空导航信号产生干扰主要有如下几个原因。 设备质量差,广播电视部门从一些企业中选购的设备不符合无线电管理部门的无线电发射设备型号核准制度,造成了一些广播电台无发射设备型号核准证。 技术指标不合格,一些广播电台设备安装架设后,相关单位没有对其设备进行技术指标检测,由于发射机设备都是在大功率发射状态下工作,长年不进行维护保养,致使设备性能出问题或发生故障,干扰了民航通信导航。 台站设置不合理,一些单位在架设广播电视台时为架设方便或降低成本,没有考虑到台站的合理布局问题。 发射功率大,一些单位为达到既少设站,又提高信号覆盖范围而降低投入成本的目的,普遍采用在制高点(高山、高楼、高塔)用大功率发射的方法。不同广播电视台(有时甚至是同一个广播电台)在同一制高点甚至同一铁塔上设置频率相近发射台,满足了信号幅度足够大、间距足够小、一定频率关系这三个产生互调干扰的条件。 2.工业、科学和医疗设备 工业、科学和医疗设备(ISM)干扰主要由其谐波和杂散辐射产生。工业设备的短时间频率稳定性较差,会出现很大的瞬时频偏,因此其干扰信号类似于宽频偏、低调制频率的调频信号,工业、科学和医疗设备造成的干扰主要表现为噪声干扰。 3.电力传输系统 电力传输系统的电晕效应和间隙放电引起的无线电噪声,对民航无线电台站的电磁环境造成影响。有的高压线传输的载波控制信号,采用民航频段专用频率,也易对民航业务造成干扰。另外高压输电线路作为金属物体,对无线电导航信号会产生反射和再辐射,会改变导航信号的空中场型,容易形成无源干扰。 4.有线电视电缆传输系统 有线电视节目是用载波通过电缆系统传输,有的载波已占用了民航频段,如电视增补1、2、3频道,其图像载频分别为112.25MHz、120.25MHz、136.25MHz,伴音载频分别为118.75MHz、126.75MHz、142.75MHz,与民航VHF通信频率重合,因此可能发生由于射频能量泄漏造成对导航信号干扰,表现亦如广播电视业务,会有广播话音出现。 5.移动通信业务 社会上大量存在的无绳电话,有些厂家或用户会出于某种目的,将其额定功率提高,若其在机场附近或某些特殊区域(如高山)使用,极易对地面台或飞机造成电话话音干扰。 6.家用电子设备等 比如一些割草机等也会对航空导航信号产生干扰。 三、民航系统内部干扰源 现代民用机场特别是大型国际机场,由于航班密度高、飞行流量大,空管部门为了实施有效的空中管制,机场及通信导航台站内部各种无线电设备及非无线电设备之间产生的相互干扰,这类干扰同样影响到民航通信导航台站的正常工作,危及飞行安全。随着机场及通信导航台站各种电子设备的不断增加,此类干扰有不断上升的趋势。对民航无线电专用频率造成干扰的干扰源,绝大部分属于非航空干扰源。 现代民用机场配备的无线电通信导航设备和电子设备主要有如下几类: 无线电通信设备:比如短波电台主要用于远距离无线电通信;VHF超短波电台主要用于机场地空及地面通信调度和传递飞行数据;微波通信设备主要用于机场与通信导航台站的数据传输业务等。 各类雷达:主要用于监视飞机在空中的飞行状况。 各类导航设备:用于引导飞机起飞降落以及沿航线正确飞行。 计算机管理系统:用于多通道数字同步记录仪及雷达数据和飞行数据处理。 闭路电视系统:播放航班信息和电视节日。 以上这些设备,很多都放置在同一机房,使得整个机房成为一个庞大而又复杂的电磁辐射系统,如果系统间电磁兼容问题处理不好,势必造成系统间的相互干扰。严重时有可能危及飞行安全。 机场及通信导航台站的大量电子设备,都会产生电磁辐射,要完全消除机房内电磁辐射是不可能的。但如果其电磁兼容问题处理不好,对设备使用管理不当,都容易对通信导航系统造成有害干扰。因此认真研究和处理机房内部电磁兼容问题是十分必要的。应该从机房建设、设备布局、台站管理及其它技术层面统筹考虑,积极采取各种有力措施,处理好台站内部电磁兼容问题,消除内部干扰隐患,以保障飞行安全。 下面对通信导航台站产生的内部电磁干扰常见情况进行具体分析。常见情况有: 民航数据传输设备对通信导航频率造成的干扰。干扰源为通信导 民用航空导航信号的干扰分析 杭州萧山国际机场有限公司信息导航管理部任轶 [摘要]通信技术的飞速发展,使得电磁环境越来越复杂,各种无线电信号严重干扰了民航通信导航。本文给出了电磁干扰的分类 及其电磁干扰的具体情况。对民航内部干扰和非航空源干扰两类主要干扰源进行了具体的分析,并给出了消除两类干扰应当采取 的技术措施和行政措施来减少干扰,保障民用航空飞行的安全。 [关键词]导航干扰电磁环境 343 ——

民航通信系统预防和查找无线电干扰的方法

浅谈民航通信系统预防和查找无线电干扰的方法

————————————————————————————————作者:————————————————————————————————日期: 2

<> 论文关键词:民航通信系统无线电干扰预防检测重要性方法 论文摘要:航空业的发展速度越来越快,国内机场和航线以及航班的次数逐年上升,无线电台的数量也在日益攀升,而在民航通信系统中,无线电干扰给飞机造成严重的飞行影响,也会给国民经济的发展带来巨大的损失。加强民航通信系统的无线电干扰的预防和查找能力是一项需要长期完善的工作。主要论述民航通信系统无线电干扰的类型和预防、查找无线电干扰的方法,以期能够为相关实践提供些许理论参考。 长期阻碍民航通信系统和导航系统高效运作的主要因素就是无线电的干扰。以某机场的航空通信系统为例,笔者分析了互调干扰和串扰这两种无线电干扰的类型,并相应提出了预防的解决办法,最后提出了可以借鉴国外的监测与查找办法来不断提高我国的无线电干扰的查找与监测能力。 1、民航通信系统无线电干扰的类型 根据某航空公司的具体设置情况和无线电干扰情况,总结出两种常见的干扰类型。 其一,互调干扰。它的涵义是如果收信机和发信机同时被输入两个以上(包含两个)的频率信号时,电路产生非线性特征,倘若另外还有一个信号正好与有用的信号频率相似或相等,这个信号也能通过收信机和发信机,进而就会对有用的信号产生干扰。带来的结果就是会降低通话的质量,甚至使接受到的信号失真,发生这种情况的时候,空中的飞行人员很难取得与地面控制中心的联系,这就容易造成民航地空指挥通信系统不能正常工作,飞机的飞行安全得不到应有的保障。这种互调干扰的影响还会波及到航空设备的正常运作。例如发射机在进行

民航甚高频通信电台干扰及预防分析

民航甚高频通信电台干扰及预防分析 【摘要】在民航空中交通管制中,甚高频设备是管制员的耳朵和嘴巴,管制员通过甚高频电台与飞行员交流,下达指令,明确飞机的飞行状态。因此,甚高频设备在民航空交通管制、航务管理和对空广播通信中起到重要作用。甚高频通信设备台的干扰对于民航通信系统的安全使用影响巨大。因而,研究民航甚高频通信电台的干扰及其预防措施具有非常重要的意义。本文从甚高频通信设备的原理出发,分析了民航甚高频通信设备存在的干扰,并在此基础上重点介绍了民航甚高频通信设备干扰预防措施,主要包括:频之间的干扰,邻频之间的干扰,杂散辐射干扰以及互调干扰及预防措施。 【关键词】民航;交通管制;甚高频;滤波器;干扰 一、前言 随着我国民航的快速发展,民航系统所使用的甚高频通信设备数量不断的增加。研究甚高频通信设备干扰及预防措施成为一个重要课题。所谓无线电干扰是指在无线电通信过程中,由一种或者多种发射、辐射、感应或组合所产生的无用能量,这些能量对于通信系统的发射端和接收端都产生非常大的影响,并通过直接耦合或间接耦合方式进入接收设备信道或自体的电磁能量,直接导致无线电通信性能下降、质量恶化,严重的将造成通信断续甚至中断。因此,研究干扰方式及预防措施对于提高通信性能具有非常大的意义。本文从分析了民航甚高频通信设备存在的干扰,并在此基础上重点介绍了民航甚高频通信设备干扰预防措施。 二、甚高频通信设备干扰种类及其预防措施 根据民航局对甚高频信号的覆盖要求,同一地区的甚高频信号至少要达到两重覆盖,我国沿海地区以及中西部的繁忙干线都达到了三重以及多重覆盖。空管甚高频设备的密集布点,以及其它无线电设备的架设都对甚高频信号的抗干扰能力提出了挑战。目前甚高频通信设备干扰主要包括:同频之间的干扰,邻频之间的干扰,杂散辐射干扰以及互调干扰。 1.同频之间的干扰及其预防措施 所谓同频干扰是指由其它信号源发出与有用信号的频率相同并以同样的方法进入收信机中频通带的干扰。从同频干扰的概念来分析,同频干扰经常会出现差拍干扰,失真干扰以及阻塞干扰。另外,由于网络电磁兼容性分析计算上疏忽或失误等原因也会造成同频干扰。 为避免同频干扰现象,最直接有效的方式就是要求通信网络设计部门在通信网络设计时,应对电磁兼容性进行充分的考虑,做好每一步的设计。 2.邻频之间的干扰及其预防措施

无线电干扰处理工作规范201006

江苏省无线电监测站 无线电干扰处理办法 1、总则 1.1为使无线电干扰处理工作规范化,搞好相关部门间的协调和衔接,提高工作效率,促进科学管理,根据有关规定,结合我省实际制定本办法。 1.2本办法包括无线电的申诉受理、干扰监测调查和干扰处理。 1.3无线电干扰监测程序见图一 省、市无线电监测站处理出现的无线电干扰,按照以下工作流程进行: 1、用户干扰申诉和受理 2.1用户受到干扰提出申诉或监测业务中发现干扰须进行处理时,均应填写“无线电干扰申诉受理单”。(见表1) 2.2 监测科负责接待受理 2.3接待用户干扰申诉时应注意了解干扰特征,干扰信号类型,干扰出现的时间规律,了解受扰台使用频点,工作方式,本通信网内各台受扰程度差别,受扰台邻近有何无线电台等情况,以判断干扰原因,为进一步进行调查测试提供线索。 2.4收到干扰申诉受理单后监测科应在干扰登记表上(见表2)进行登记,并安排有关人员做好初步调查。 2.5 初步调查内容: 2.5.1 核查受扰台手续是否齐全,频率管理费是否拖欠,有否擅自改变设台参数及其他违章情况,作好记载,对可能引起干扰的问题应先予纠正。 2.5.2 检查核对实际干扰情况,检查设备工作是否正常,抗扰性指标是否合格,属受扰台自身原因引起的干扰,可在表1“受理人意见”栏签署意见,由受扰单位自己解决。 用户使用无线电台(站)时发现台站受到干扰,以书面材料向无线电监测站

提出干扰申诉,紧急情况下可先电话申诉,再补书面申诉材料。 无线电监测站收到用户干扰申诉后,向申诉方了解与干扰有关的详细信息,包括:干扰频率、现象、时间、地点等,请其填写《无线电干扰申诉受理单》(见附件),根据干扰严重程度及时向主管领导汇报。 2、监测中主动发现干扰 监测人员进行重点频率保护性监测时,如发现用户使用的频率上出现异常信号,经分析确定为非用户台站正常发射的信号,且可能对用户台站产生干扰,则需与用户联系,了解台站当前使用情况,如出现干扰则需填写用户干扰申诉受理单;如用户反映没有出现干扰,则监测人员填写监测值班日志,并将监测情况报主管领导。 3、确定干扰处理等级,安排干扰查找任务 主管领导根据干扰情况,确定干扰等级,并安排监测人员分析干扰原因、查找干扰源。对于I、II级干扰,需立即报?领导,对干扰源地址可能不在本区域内的,需向上级业务部门汇报,组成联合干扰查找小组。 (1)干扰处理等级 依据突发事件无线电干扰的类型、严重程度,应对突发无线电干扰所需应急监测资源等因素,无线电干扰由高到低划分为Ⅰ、Ⅱ、Ⅲ、Ⅳ四个等级。 ①.Ⅰ级无线电干扰 设置使用的无线电台(站)、无线电发射设备,以及辐射无线电电波的非无线电设备,产生的有害干扰对奥运会举办、奥运会开闭幕式等重大活动的指挥调度及非奥运会生命安全服务(主要包括奥运会安保、消防、医疗、交通、民航等)无线电通信业务产生重大影响或危及国家安全和人民生命财产安全;恶意造成较大政治影响的无线电插播干扰。使用的无线电频率受到干扰造成如下重大影响: 举办奥运会重大活动或奥运会开闭幕式受到严重影响; 奥运会比赛活动被严重影响; 核心应用(安保、消防、医疗、交通、民航等指挥调度和无线电通信;竞赛部门直接应用的无线电通信)受到严重影响,核心服务受干扰全部阻断,完全瘫痪,没有临时解决方案; 重要媒体转播服务受到严重影响;

无线电干扰对航空器及地面导航设备的影响及原因分析

无线电干扰对航空器及地面导航设备的影响及原因分析 近年来,我国航空业发展迅猛,新建机场以及新开辟航线也如雨后春笋般不断涌现,使得人们的出行更加便利,很多人的生活方式也随之改变。目前,随着航空业规模的不断扩大,航空器及地面导航设备的数量也在不断增多。然而在实际工作中,航空器及地面导航设备受无线电干扰的情况也在近来频繁出现,严重时,甚至导致通讯及通信系统均无法完全处于安全运行的状态。因此,文章从无线电干扰对航空器及地面导航设备的影响进行分析,找出航空器及地面导航设备受到无线电干扰的原因,并提出几点针对性的解决方案。 标签:无线电干扰;航空器;导航设备;飞行;影响 目前,随着通信领域的飞速发展,各类无线电技术也呈现出日新月异的发展态势。这本是一件科技引领社会进步的好事,但在这样的背景下,许多未经批准的电台投入使用、无线电爱好者私下自行组装设备等状况频频发生,导致无线电干扰日益突出,航空业的安全运行环境面临严重威胁。无线电干扰不仅影响航空器及地面导航设备的正常运行,给航空安全问题造成负面影响,同时也给国民经济带来巨大损失。在航空领域,通信与通讯安全至关重要,这不仅关系到我国社会经济的进步,同时也与社会文明息息相关。在航空器运行过程中,一旦受到无线电干扰,其后果是非常严重的。所以,文章从以下几个方面对航空器及地面导航设备的无线电干扰问题进行探讨。 1 无线电干扰对航空器及地面导航设备的影响 1.1 互调干扰 互调干扰指的是发信机与收信机同时被输进两个或两个以上的频率信号时,电路就会呈现非线性特征。如果此时有另一个信号与当前信号的频率相同,那么也有可能通过发信机以及收信机,从而使有用信号受到干扰。互调干扰不仅能够降低通话质量,更严重者,甚至导致飞行员在飞行过程中无法与地面管制员取得联系,使得飞机安全无法得到全面的保障。不仅如此,互调干扰还可能导致机载电路失灵,从而影响设备正常运行甚至造成发射机的烧毁烧坏,给飞行安全带来严重隐患。 1.2 带外干扰 帶外干扰指的是接收机的杂散响应与发射机的杂散辐射产生的干扰。其中,杂散响应指的是接收机不仅可以收到有用的信号,还可以收到其他同相或同频率的信号。通常,杂散响应与接收机自身振动的频率有极大的关联。而杂散辐射干扰在UHF与VHF低频段出现[1],通常发射机通过晶体振荡器来获得高频率稳定度。要得到发射频率,主振频率要经多次倍频。倍频放大器与倍频器之间的非线性作用产生大量谐波,谐波的频率是主振频率的整数倍。如果倍频异常,谐波就会对接收机造成干扰。当机载或地面导航设备发生故障时,其工作频率会发生

影响民航航空导航信号的因素分析及管控措施

影响民航航空导航信号的因素分析及管控措施 近年来,随着民航事业的迅猛发展,航空无线电技术在民航通信中发挥着极其重要的作用,一旦民航无线电受到干扰,常常会影响导航信号的接收情况,阻碍民航航空通信工作的正常进行,对航空飞行安全构成严重威胁。基于此,为了确保民航航空导航的正常运行,应认真分析影响民航航空导航信号的因素,并及时采取科学有效的管控措施进行应对,以期为民航事业的健康、稳定发展提供可靠保障。 1.民航航空导航信号常见干扰类型 目前,民航航空导航系统信号干扰类型主要包括互调干扰、邻频道干扰、同频干扰、带外干扰。 1.1互调干扰 互调干扰主要指2个以上的频率信号同时发出或接收到信号,在电路的非线性影响下会有第3个频率产生,该频率会对同一时间段内有用的相似频率能否顺利通过发信机产生影响,在很大程度上将会阻碍有用频率的正常发射。互调干扰常常导致信号质量不良或者丢失,造成塔台与航空器之间的沟通联系受阻,甚至是无法连通的情况,对民航导航系统的正常运行产生影响,存在十分严重的航空安全隐患。互调干扰还会对设备造成损坏,在调式好发射机后,只有确保工作频率在输出电路的最佳谐振点上,才能保证电流电量最小,互调干扰信号会增加工作线路中失谐,增加了电流值,使得元器件发热严重,很容易造成发射机出现故障,影响航空飞行的安全可靠性。 1.2邻频道干扰 干扰台邻频道功率落入接收邻道接收机通带内造成的干扰通常称为邻频道干扰。民航通信电台较为接近的频段内极易出现邻频道干扰,发射机在信号发射的过程中,会有一定带宽的信号出现,在这些发射的信号中就有一部分较少的信号存在于民航通信导航电台频段内,进而被民航导航系统所接受,此时就会有邻频道干扰信号出现。

论文-无线电骚扰限值及测量方法解析

无线电骚扰限值及测量方 法解析 张大为 2012-6-8 信息技术类设备,家用电器、电动工具类器具,电气照明类似设备的无线电骚扰限值和测量方法

无线电骚扰限值及测量方法解析 ---张大为 2012.06.08 目录 一、前言 二、无线电骚扰介绍 三、信息技术设备的无线电骚扰限值和测量方法 四、家用电器、电动工具和类似器具的无线电骚扰限值和测量方法 五、电气照明和类似设备的无线电骚扰限值和测量方法 六、总结 关键词:EMI,电磁兼容,无线电骚扰限值 一、前言: 地球上各种各样的电磁波充斥着我们人类的生活空间,打雷、电视、收音机、电脑、电力线、电动机、汽车引擎、手机、医疗设备、电磁炉、微波炉、电热毯、电视广播发射台..等等。随着科技的发展我们对电磁波也有了越来越多的认识,被电子电气产品包围着的我们在享受快捷、高速、方便的同时也越来越多的暴露出了电磁辐射对生活的影响。广播电视接收质量下降,通话质量下降,视力下降... 如果有心人去网络上搜索“电磁辐射的危害”会看到形形色色的疾病和状况都好像和电磁辐射有关,这引发了更多的人对电磁兼容(EMC:Electromagnetic Co mpatibility)相关检测的关注,对人类所生存的电磁环境的担忧。他包含两个方面:一是,设备等本身产生的电磁波不能骚扰其它设备而导致其功能的丧失与降低;二是,其自身也应该具有相同的能力,承受其它设备所产生的干扰这就是“兼容”。 为此各国相继制订了电磁兼容的相关要求,来保护本国的电磁环境。根据产品特性不同电磁兼容所规定内容也差异很大,本篇文章主要是针对人们日常接触最频繁的小家电、电气照明设备以及信息技术设备的无线电骚扰标准中规定的检测

民航飞机的通信系统

民航飞机的通信系统 通信系统的主要用途是使飞机在飞行的各阶段中和地面的航行管制人员、签派、维修等相关人员保持双向的语音和信号联系,当然这个系统也提供了飞机内部人员之间和与旅客联络服务。 它主要分为:甚高频通信系统、高频通信系统、选择呼叫系统和音频系统。 (本页插图以空中客车320驾驶舱为例,是目前较为先进的一套,其他现代化民航客机均类似。只是名称、面板设计、功能强弱有所不同) A320无线电管理面板 (部分) RMP :Radio Management Panel 1.甚高频通信系统( VHF : Very High Frequency ) 使用甚高频无线电波。它的有效作用范围较短,只在目视范围之内,作用距离随高度变化,在高度为300米时距离为74公里。是目前民航飞机主要的通信工具,用于飞机在起飞、降落时或通过控制空域时机组人员和地面管制人员的双向语音通信。起飞和降落时期是驾驶员处理问题最繁忙的时期,也是飞行中最容易发生事故的时间,因此必须保证甚高频通信的高度可靠,民航飞机上一般都装有一套以上的备用系统。 甚高频通信系统由收发机组、控制盒和天线三部分组成。收发机组用频率合成器提供稳定的基准频率,然后和信号一起,通过天线发射出去。接收部分则从天线

上收到信号,经过放大、检波、静噪后变成音频信号,输入驾驶员的耳机。天线为刀形,一般在机腹和机背上都有安装。 甚高频所使用的频率范围按照国际民航组织的统一规定在118.000~ 135.975MHZ ,每25KHZ为一个频道,可设置720个频道由飞机和地面控制台选用,频率具体分配为: 118.000~121.400MHZ、123.675~128.800MHZ和132.025~135.975MHZ三个频段主要用于空中交通管制人员与飞机驾驶员间的通话,其中主要集中在 118.000~121.400MHZ; 121.100MHZ、121.200MHZ用于空中飞行情报服务; 121.500MHZ定为遇难呼救的全世界统一的频道。 121.600~121.925MHZ主要用于地面管制; 值得注意的是通信信号是调幅的,通话双方使用同一频率,一方发送完毕,停止发射等待对方信号。 2.高频通信系统(HF:High Frequency ) 是远距离通信系统。它使用了和短波广播的频率范围相同的电磁波,它利用电离层 的反射,因而通信距离可达数千公里,用于飞行中保持与基地和远方航站的联络。使用的频率范围为2-30MHZ ,每1KHZ为一个频道。大型飞机一般装有两套高频通信系统,使用单边带通信,这样可以大大压缩所占用的频带,节省发射功率。高频通信系统由收发机组、天线耦合器、控制盒和天线组成,它的输出功率较大,需要有通风散热装置。现代民航机用的高频通信天线一般埋入飞机蒙皮之内,装在飞机尾部,不过目前该系统很少使用。 3.选择呼叫系统(SELCAL ) 它的作用是用于当地面呼叫一架飞机时,飞机上的选择呼叫系统以灯光和音响通知机组有人呼叫,从而进行联络,避免了驾驶员长时间等候呼叫或是由于疏漏而不能接通联系。每架飞机上的选择呼叫必须有一个特定的四位字母代码,机上的通信系统都调 在指定的频率上,当地面的高频或甚高频系统发出呼叫脉冲,其中包含着四字代码,飞机收到这个呼叫信号后输入译码器,如果呼叫的代码与飞机代码相符,则译码器把驾驶舱信号灯和音响器接通,通知驾驶员进行通话。 A320音频控制面板(部分) ACP:Audio Control Panel

相关文档
最新文档