现代光学前沿新兴分支学科——二元光学技术与应用
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020/8/8
2.二元光学元件的设计方法
二元光学元件的设计问题是去构造一个新的分布函数
G ( u ) , G(u) = G(u) exp( i (u ))
它满足以下三个条件:
பைடு நூலகம்
(1) G (u ) = 1 , (纯 相 位 型 元 件 , 振 幅 为 常 数 );
(2) (u ) 是 L 等 级 量 化 的 (二 元 光 学 元 件 ); (3) G (u)的 夫 琅 和 费 衍 射 花 样 g(x) =F T { G (u) } 的 强 度 分 布 g ( x ) 2 以 高 精 度 地 逼 近 已 知 的 强 度 信 号 : f ( x ) 2
2020/8/8
1.二元光学概述
二元光学技术
是利用计算全息方法与大规模集成 电路技术和微细加工技术相结合,从而
在任意片基材料上制作出位相深度为2
的多台阶微浮雕结构的衍射微光学元件, 是一门新兴的前沿交叉综合学科和
高技术。
2020/8/8
1.二元光学概述
二元光学元件特点 以光的衍射为基本原理,具有微型
2020/8/8
3. 二元光学元件的制作方法
P reM paarsik ng1 LithogCra lepahR nyiInEgExam Substrate
Mask 2Coating Mask 3Coating
2020/8/8
3. 二元光学元件的制作方法
Mask 1
substrate Mask 2
六十年代,随着计算机制全息图以及相 息图的发明和成功的制作,引起了观念 上的重大变革。 人们认识到应用这些新型的衍射光 学元件,可方便灵活的控制光路以实现 多种光学功能,开辟光学系统设计的新 天地。
2020/8/8
1.二元光学概述
七十年代,在可见光和近红外光波段内 制作具有高衍效的超精细结构元件仍面 临困难,因而限制了这些元件的应用范 围。 与此同时,微电子工业在制作技术 方面也经历了一场革命,光学和电子束 制版以及干刻蚀技术逐渐发展成熟,已 成为制作精细结构元件的完善工具。
Mask 3
2020/8/8
4. 二元光学元件的应用
衍射光学元件以其能够灵活的变换波前、 集多种功能于一体和可复制等优良特性, 促使光学系统和器件走向轻型化、微型 化和集成化。这种新型的光学元件的应 用极为广泛。
2020/8/8
4. 二元光学元件的应用
微小光学系统中的微型元件 光学及神经网络计算、光学平行处理系
化、轻型化、可复制、价格低、可设计 产生任意形状的波前、 可把多种功能集 中于一个器件上等其他器件不可比拟的 特点。
发展迅猛,成为二十一世纪的前沿 学科。
2020/8/8
2. 二元光学元件的设计方法
二元光学元件示意图
2020/8/8
2. 二元光学元件的设计方法
2020/8/8
2. 二元光学元件的设计方法
2020/8/8
1.二元光学概述
传统光学 基于光波的折射和反射原理,利用透镜、
反射镜和棱镜等元件进行设计和实现各 种光学功能。 衍射效应总是导致光学系统的分辨率受 到限制,除了光波的色散性质可应用于 光谱学之外,传统光学总是尽量的避免 衍射效应造成的不利影响。
2020/8/8
1.二元光学概述
光学应运而生,并已成为二十一世纪光 学中的前沿研究领域之一。
2020/8/8
1.二元光学概述
1984年,在美国国防部及空军的支持下, 启动了一个名叫“二元光学” (binary optics) 的项目,极大地推动了衍射光学 的发展。 此后,衍射光学的研究日益活跃。
2020/8/8
1.二元光学概述
g
(
x
)
2
f (x x0) 2, 0,
x FW x FW
2020/8/8
2. 二元光学元件的设计方法
二元光学元件的设计步骤: (1) 编码过程 将原先振幅分布中所携 带的信息,尽可能多的编码到相位分布 中去。 在这个过程中将会引进编码噪声 (2) 量化处理 对连续分布的相位进行 分级量化处理。此时又会引起位相量化 噪声。 主要有:G-S算法、Y-G算法及 SA(Simulation Annealing)算法。
2020/8/8
1.二元光学概述
二元光学:是衍射光学的主要分支学科,
是研究微米、亚微米级特征尺寸光学元 件的设计、 微细加工技术及利用该元件 以实现光束的发射、聚焦、传输、成象、 分光、图象处理、光计算等一系列功能 的理论和技术的学科,是光学与微电子、 微计算机相互融合、渗透而形成的前沿 交叉学科。
从1990年起,美国光学学会年会和国际 光学工程协会设有衍射光学与二元光学 专题讲座和衍射光学专题会议;美国和 欧洲的重要光学杂志分别出版衍射光学 专集。 作为一个新学科领域已经形成
2020/8/8
1.二元光学概述
1992年5月美国商业性杂志“ Photonics” 刊登一篇专题文章:“衍射光学大量产 生新一代的产品和拥有数百万美元的市 场” 表明:衍射光学产业正在形成
现代光学前沿新兴分支学科 ——二元光学技术与应用
徐平
E-mail: xuping@szu.edu.cn Tel.6557246
2020/8/8
主要内容:
1.二元光学概述(含义发展背景,国内 外发展状况,特点)
2. 二元光学元件的设计方法 3. 二元光学元件的制作方法 4. 二元光学元件的应用(重点介绍) 5.深蚀刻二元光学元件 6. 结束语
统中的光互连元件 宽场及红外成象系统中的元件 光学滤波和材料加工系统中的衍射元件 抗反射和偏振态控制的亚波长光栅结构 光束整型、光束列阵发生器、微型光通
信
2020/8/8
4. 二元光学元件的应用
外科医疗仪器中的双聚焦内窥透镜 光盘读出头的 NEC 衍射元件 能矫正色差畸变的 Redimax 热聚焦透镜 用于材料加工的高效能系列长寿命的
2020/8/8
1.二元光学概述
八十年代,各种新型的加工制作方法不 断涌现,能够制作高质量和多功能的衍 射光学元件。 随着元件尺寸的缩小,其精细结构 周期可与波长相比较时, 传统的衍射标 量理论不再适用,促使了衍射矢量理论 的发展,极大地推动了衍射光学的发展。
2020/8/8
1.二元光学概述
近年来, 更高级的设备 先进的制作技术 正确有效的理论模型 设计衍射光学元件的各种方法 由此一门新兴的光学分支——衍射
2.二元光学元件的设计方法
二元光学元件的设计问题是去构造一个新的分布函数
G ( u ) , G(u) = G(u) exp( i (u ))
它满足以下三个条件:
பைடு நூலகம்
(1) G (u ) = 1 , (纯 相 位 型 元 件 , 振 幅 为 常 数 );
(2) (u ) 是 L 等 级 量 化 的 (二 元 光 学 元 件 ); (3) G (u)的 夫 琅 和 费 衍 射 花 样 g(x) =F T { G (u) } 的 强 度 分 布 g ( x ) 2 以 高 精 度 地 逼 近 已 知 的 强 度 信 号 : f ( x ) 2
2020/8/8
1.二元光学概述
二元光学技术
是利用计算全息方法与大规模集成 电路技术和微细加工技术相结合,从而
在任意片基材料上制作出位相深度为2
的多台阶微浮雕结构的衍射微光学元件, 是一门新兴的前沿交叉综合学科和
高技术。
2020/8/8
1.二元光学概述
二元光学元件特点 以光的衍射为基本原理,具有微型
2020/8/8
3. 二元光学元件的制作方法
P reM paarsik ng1 LithogCra lepahR nyiInEgExam Substrate
Mask 2Coating Mask 3Coating
2020/8/8
3. 二元光学元件的制作方法
Mask 1
substrate Mask 2
六十年代,随着计算机制全息图以及相 息图的发明和成功的制作,引起了观念 上的重大变革。 人们认识到应用这些新型的衍射光 学元件,可方便灵活的控制光路以实现 多种光学功能,开辟光学系统设计的新 天地。
2020/8/8
1.二元光学概述
七十年代,在可见光和近红外光波段内 制作具有高衍效的超精细结构元件仍面 临困难,因而限制了这些元件的应用范 围。 与此同时,微电子工业在制作技术 方面也经历了一场革命,光学和电子束 制版以及干刻蚀技术逐渐发展成熟,已 成为制作精细结构元件的完善工具。
Mask 3
2020/8/8
4. 二元光学元件的应用
衍射光学元件以其能够灵活的变换波前、 集多种功能于一体和可复制等优良特性, 促使光学系统和器件走向轻型化、微型 化和集成化。这种新型的光学元件的应 用极为广泛。
2020/8/8
4. 二元光学元件的应用
微小光学系统中的微型元件 光学及神经网络计算、光学平行处理系
化、轻型化、可复制、价格低、可设计 产生任意形状的波前、 可把多种功能集 中于一个器件上等其他器件不可比拟的 特点。
发展迅猛,成为二十一世纪的前沿 学科。
2020/8/8
2. 二元光学元件的设计方法
二元光学元件示意图
2020/8/8
2. 二元光学元件的设计方法
2020/8/8
2. 二元光学元件的设计方法
2020/8/8
1.二元光学概述
传统光学 基于光波的折射和反射原理,利用透镜、
反射镜和棱镜等元件进行设计和实现各 种光学功能。 衍射效应总是导致光学系统的分辨率受 到限制,除了光波的色散性质可应用于 光谱学之外,传统光学总是尽量的避免 衍射效应造成的不利影响。
2020/8/8
1.二元光学概述
光学应运而生,并已成为二十一世纪光 学中的前沿研究领域之一。
2020/8/8
1.二元光学概述
1984年,在美国国防部及空军的支持下, 启动了一个名叫“二元光学” (binary optics) 的项目,极大地推动了衍射光学 的发展。 此后,衍射光学的研究日益活跃。
2020/8/8
1.二元光学概述
g
(
x
)
2
f (x x0) 2, 0,
x FW x FW
2020/8/8
2. 二元光学元件的设计方法
二元光学元件的设计步骤: (1) 编码过程 将原先振幅分布中所携 带的信息,尽可能多的编码到相位分布 中去。 在这个过程中将会引进编码噪声 (2) 量化处理 对连续分布的相位进行 分级量化处理。此时又会引起位相量化 噪声。 主要有:G-S算法、Y-G算法及 SA(Simulation Annealing)算法。
2020/8/8
1.二元光学概述
二元光学:是衍射光学的主要分支学科,
是研究微米、亚微米级特征尺寸光学元 件的设计、 微细加工技术及利用该元件 以实现光束的发射、聚焦、传输、成象、 分光、图象处理、光计算等一系列功能 的理论和技术的学科,是光学与微电子、 微计算机相互融合、渗透而形成的前沿 交叉学科。
从1990年起,美国光学学会年会和国际 光学工程协会设有衍射光学与二元光学 专题讲座和衍射光学专题会议;美国和 欧洲的重要光学杂志分别出版衍射光学 专集。 作为一个新学科领域已经形成
2020/8/8
1.二元光学概述
1992年5月美国商业性杂志“ Photonics” 刊登一篇专题文章:“衍射光学大量产 生新一代的产品和拥有数百万美元的市 场” 表明:衍射光学产业正在形成
现代光学前沿新兴分支学科 ——二元光学技术与应用
徐平
E-mail: xuping@szu.edu.cn Tel.6557246
2020/8/8
主要内容:
1.二元光学概述(含义发展背景,国内 外发展状况,特点)
2. 二元光学元件的设计方法 3. 二元光学元件的制作方法 4. 二元光学元件的应用(重点介绍) 5.深蚀刻二元光学元件 6. 结束语
统中的光互连元件 宽场及红外成象系统中的元件 光学滤波和材料加工系统中的衍射元件 抗反射和偏振态控制的亚波长光栅结构 光束整型、光束列阵发生器、微型光通
信
2020/8/8
4. 二元光学元件的应用
外科医疗仪器中的双聚焦内窥透镜 光盘读出头的 NEC 衍射元件 能矫正色差畸变的 Redimax 热聚焦透镜 用于材料加工的高效能系列长寿命的
2020/8/8
1.二元光学概述
八十年代,各种新型的加工制作方法不 断涌现,能够制作高质量和多功能的衍 射光学元件。 随着元件尺寸的缩小,其精细结构 周期可与波长相比较时, 传统的衍射标 量理论不再适用,促使了衍射矢量理论 的发展,极大地推动了衍射光学的发展。
2020/8/8
1.二元光学概述
近年来, 更高级的设备 先进的制作技术 正确有效的理论模型 设计衍射光学元件的各种方法 由此一门新兴的光学分支——衍射