中国人民大学附属中学数学九年级上册期末试卷解析版

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中国人民大学附属中学数学九年级上册期末试卷解析版
一、选择题
1.如图,矩形ABCD 中,3AB =,8BC =,点P 为矩形内一动点,且满足
PBC PCD ∠=∠,则线段PD 的最小值为( )
A .5
B .1
C .2
D .3
2.如图,P 为平行四边形ABCD 的对称中心,以P 为圆心作圆,过P 的任意直线与圆相交于点M ,N .则线段BM ,DN 的大小关系是( )
A .BM >DN
B .BM <DN
C .BM=DN
D .无法确定
3.如图,四边形ABCD 内接于⊙O ,已知∠A =80°,则∠C 的度数是( )
A .40°
B .80°
C .100°
D .120°
4.在平面直角坐标系中,点A(0,2)、B(a ,a +2)、C(b ,0)(a >0,b >0),若AB=42且∠ACB 最大时,b 的值为( ) A .226+
B .226-+
C .242+
D .242
5.如图,ABC △内接于⊙O ,30BAC ∠=︒,8BC = ,则⊙O 半径为( )
A .4
B .6
C .8
D .12
6.某天的体育课上,老师测量了班级同学的身高,恰巧小明今日请假没来,经过计算得知,除了小明外,该班其他同学身高的平均数为172cm ,方差为k 2cm ,第二天,小明来到学校,老师帮他补测了身高,发现他的身高也是172cm ,此时全班同学身高的方差为
'k 2cm ,那么'k 与k 的大小关系是( )
A .'k k >
B .'k k <
C .'k k =
D .无法判断
7.如图示,二次函数2y x mx =-+的图像与x 轴交于坐标原点和()4,0,若关于x 的方程
20x mx t -+=(t 为实数)在15x <<的范围内有解,则t 的取值范围是( )
A .53t -<<
B .5t >-
C .34t <≤
D .54t -<≤
8.如图,P 、Q 是⊙O 的直径AB 上的两点,P 在OA 上,Q 在OB 上,PC ⊥AB 交⊙O 于C ,QD ⊥AB 交⊙O 于D ,弦CD 交AB 于点E ,若AB=20,PC=OQ=6,则OE 的长为( )
A .1
B .1.5
C .2
D .2.5
9.已知二次函数y =ax 2+bx +c 的图像如图所示,则下列结论正确的个数有( ) ①c >0;②b 2-4ac <0;③ a -b +c >0;④当x >-1时,y 随x 的增大而减小.
A .4个
B .3个
C .2个
D .1个
10.如图,四边形ABCD 是菱形,∠A=60°,AB=2,扇形BEF 的半径为2,圆心角为60°,则图中阴影部分的面积是( )
A .
23
32
π-
B .
233
π
- C .32
π-
D .3π-
11.设A (﹣2,y 1),B (1,y 2),C (2,y 3)是抛物线y =﹣(x +1)2+m 上的三点,则y 1,y 2,y 3的大小关系为( )
A .y 3>y 2>y 1
B .y 1>y 2>y 3
C .y 1>y 3>y 2
D .y 2>y 1>y 3
12.如图,A ,B ,C ,D 四个点均在⊙O 上,∠AOB =40°,弦BC 的长等于半径,则∠ADC
的度数等于( )
A .50°
B .49°
C .48°
D .47°
13.下列条件中,一定能判断两个等腰三角形相似的是( ) A .都含有一个40°的内角 B .都含有一个50°的内角 C .都含有一个60°的内角 D .都含有一个70°的内角 14.若二次函数y =x 2+4x +n 的图象与x 轴只有一个公共点,则实数n 的值是( ) A .1
B .3
C .4
D .6
15.用配方法解方程2250x x --=时,原方程应变形为( )
A .2(1)6x -=
B .2(1)6x +=
C .2(1)9x +=
D .2(1)9x -=
二、填空题
16.如图,点A 、B 、C 是⊙O 上的点,且∠ACB =40°,阴影部分的面积为2π,则此扇形的半径为______.
17.二次函数y =ax 2+bx +c (a ,b ,c 为常数,且a ≠0)的图像上部分点的横坐标x 和纵 坐标y 的对应值如下表 x … -1 0
1
2
3 … y

-3 -3 -1 3
9

关于x 的方程ax 2+bx +c =0一个负数解x 1满足k <x 1<k +1(k 为整数),则k =________.
18.如图,每个小正方形的边长都为1,点A 、B 、C 都在小正方形的顶点上,则∠ABC 的正切值为_____.
19.已知实数,,a b c 满足0a ≠,且0a b c -+=,930a b c ++=,则抛物线
2y ax bx c =++图象上的一点(2,4)-关于抛物线对称轴对称的点为__________.
20.如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径
2r cm =,扇形的圆心角120θ=,则该圆锥的母线长l 为___cm .
21.如图示,在Rt ABC ∆中,90ACB ∠=︒,3AC =,3BC =,点P 在Rt ABC ∆内
部,且PAB PBC ∠=∠,连接CP ,则CP 的最小值等于______.
22.二次函数2
y x bx c =-++的部分图像如图所示,要使函数值3y >,则自变量x 的取
值范围是_______.
23.△ABC 是等边三角形,点O 是三条高的交点.若△ABC 以点O 为旋转中心旋转后能与
原来的图形重合,则△ABC 旋转的最小角度是____________.
24.某盏路灯照射的空间可以看成如图所示的圆锥,它的高AO =8米,母线AB =10米,则该圆锥的侧面积是_____平方米(结果保留π).
25.圆锥的底面半径是4cm ,母线长是6cm ,则圆锥的侧面积是______cm 2(结果保留π).
26.如图,⊙O 是正五边形ABCDE 的外接圆,则∠CAD =_____.
27.已知:二次函数y=ax 2+bx+c 图象上部分点的横坐标x 与纵坐标y 的对应值如表格所示,那么它的图象与x 轴的另一个交点坐标是_____. x … ﹣1 0 1 2 … y

3
4
3

28.如图,在Rt ABC ∆中,90ACB ∠=,6AC =,8BC =,D 、E 分别是边BC 、
AC 上的两个动点,且4DE =,P 是DE 的中点,连接PA ,PB ,则1
4
PA PB +的最小
值为__________.
29.如图,在□ABCD 中,E 、F 分别是AD 、CD 的中点,EF 与BD 相交于点M ,若△DEM 的面积为1,则□ABCD 的面积为________.
30.如图,四边形ABCD中,∠A=∠B=90°,AB=5cm,AD=3cm,BC=2cm,P是AB 上一点,若以P、A、D为顶点的三角形与△PBC相似,则PA=_____cm.
三、解答题
31.经过某十字路口的汽车,可能直行,也可能向左转或向右转.如果这三种可能性大小相同,求两辆车经过这个十字路口时,下列事件的概率:
(1)两辆车中恰有一辆车向左转;
(2)两辆车行驶方向相同.
32.我们不妨约定:如图①,若点D在△ABC的边AB上,且满足∠ACD=∠B(或
∠BCD=∠A),则称满足这样条件的点为△ABC边AB上的“理想点”.
(1)如图①,若点D是△ABC的边AB的中点,AC=22AB=4.试判断点D是不是△ABC 边AB上的“理想点”,并说明理由.
(2)如图②,在⊙O中,AB为直径,且AB=5,AC=4.若点D是△ABC边AB上的“理想点”,求CD的长.
(3)如图③,已知平面直角坐标系中,点A(0,2),B(0,-3),C为x轴正半轴上一点,且满足
∠ACB=45°,在y轴上是否存在一点D,使点A是B,C,D三点围成的三角形的“理想点”,若存在,请求出点D的坐标;若不存在,请说明理由.
33.某校为了解本校九年级男生“引体向上”项目的训练情况,随机抽取该年级部分男生进行了一次测试(满分15分,成绩均记为整数分),并按测试成绩(单位:分)分成四类:A类(12≤m≤15),B类(9≤m≤11),C类(6≤m≤8),D类(m≤5)绘制出以下两幅不完整的统计图,请根据图中信息解答下列问题:
(1)本次抽取样本容量为,扇形统计图中A类所对的圆心角是度;
(2)请补全统计图;
(3)若该校九年级男生有300名,请估计该校九年级男生“引体向上”项目成绩为C类的有多少名?
34.如图,AB 是⊙O 的直径,弦DE 垂直平分半径OA ,C 为垂足,弦DF 与半径OB 相交于点P ,连结EF 、EO ,若DE=23,∠DPA=45°. (1)求⊙O 的半径;
(2)求图中阴影部分的面积.
35.如图,放置在水平桌面上的台灯的灯臂AB 长为40cm ,灯罩BC 长为30cm ,底座厚度为2cm ,灯臂与底座构成的∠BAD =60°, 使用发现,光线最佳时灯罩BC 与水平线所成的角为30°,此时灯罩顶端C 到桌面的高度CE 是多少cm ?
四、压轴题
36.如图1,有一块直角三角板,其中AB 16=,ACB 90∠=,CAB 30∠=,A 、B 在x 轴上,点A 的坐标为()20,0,圆M 的半径为33,圆心M 的坐标为(5,33-,圆M 以每秒1个单位长度的速度沿x 轴向右做平移运动,运动时间为t 秒;
()1求点C 的坐标;
()2当点M 在ABC ∠的内部且M 与直线BC 相切时,求t 的值;
()3如图2,点E 、F 分别是BC 、AC 的中点,连接EM 、FM ,在运动过程中,是否存在某一
时刻,使EMF 90∠=?若存在,直接写出t 的值,若不存在,请说明理由.
37.如图,AB 是⊙O 的直径,AF 是⊙O 的弦,AE 平分BAF ∠,交⊙O 于点E ,过点E 作直线ED AF ⊥,交AF 的延长线于点D ,交AB 的延长线于点C .
(1)求证:CD 是⊙O 的切线; (2)若10,6AB AF ==,求AE 的长.
38.抛物线G :2
y ax c =+与x 轴交于A 、B 两点,与y 交于C (0,-1),且AB =4OC .
(1)直接写出抛物线G 的解析式: ;
(2)如图1,点D (-1,m )在抛物线G 上,点P 是抛物线G 上一个动点,且在直线OD 的下方,过点P 作x 轴的平行线交直线OD 于点Q ,当线段PQ 取最大值时,求点P 的坐标;
(3)如图2,点M 在y 轴左侧的抛物线G 上,将点M 先向右平移4个单位后再向下平移,使得到的对应点N 也落在y 轴左侧的抛物线G 上,若S △CMN =2,求点M 的坐标.
39.如图1,已知菱形ABCD 的边长为3A 在x 轴负半轴上,点B 在坐标原点.点D 的坐标为33),抛物线y=ax 2+b(a≠0)经过AB 、CD 两边的中点.
(1)求这条抛物线的函数解析式;
(2)将菱形ABCD 以每秒1个单位长度的速度沿x 轴正方向匀速平移(如图2),过点B 作BE ⊥CD 于点E,交抛物线于点F,连接DF.设菱形ABCD 平移的时间为t 秒(0<t<3.....) ①是否存在这样的t ,使DF=7FB?若存在,求出t 的值;若不存在,请说明理由; ②连接FC,以点F 为旋转中心,将△FEC 按顺时针方向旋转180°,得△FE′C′,当△FE′C′落在x .轴与..抛物线在....x .轴上方的部分围成的图形中............(.包括边界....).
时,求t 的取值范围.(直接写出答案即可) 40.如图,抛物线2
y x bx c =-++与x 轴的两个交点分别为(1,0)A ,(30)B ,.抛物线的对称轴和x 轴交于点M .
(1)求这条抛物线对应函数的表达式;
(2)若P 点在该抛物线上,求当PAB △的面积为8时,求点P 的坐标.
(3)点G 是抛物线上一个动点,点E 从点B 出发,沿x 轴的负半轴运动,速度为每秒1个单位,同时点F 由点M 出发,沿对称轴向下运动,速度为每秒2个单位,设运动的时间为t .
①若点G 到AE 和MF 距离相等,直接写出点G 的坐标.
②点C 是抛物线的对称轴上的一个动点,以FG 和FC 为边做矩形FGDC ,直接写出点E 恰好为矩形FGDC 的对角线交点时t 的值.
【参考答案】***试卷处理标记,请不要删除
一、选择题 1.B 解析:B
【解析】
【分析】
通过矩形的性质和等角的条件可得∠BPC=90°,所以P点应该在以BC为直径的圆上,即OP=4,根据两边之差小于第三边及三点共线问题解决.
【详解】
如图,∵四边形ABCD为矩形,
∴AB=CD=3,∠BCD=90°,
∴∠PCD+∠PCB=90°,
∵PBC PCD
∠=∠,
∴∠PBC+∠PCB=90°,
∴∠BPC=90°,
∴点P在以BC为直径的圆⊙O上,
在Rt△OCD中,OC=11
84
22
BC,CD=3,
由勾股定理得,OD=5,
∵PD≥OD OP ,
∴当P,D,O三点共线时,PD最小,
∴PD的最小值为OD-OP=5-4=1.
故选:B.
【点睛】
本题考查矩形的性质,勾股定理,线段最小值问题及圆的性质,分析出P点的运动轨迹是解答此题的关键.
2.C
解析:C
【解析】
分析:连接BD,根据平行四边形的性质得出BP=DP,根据圆的性质得出PM=PN,结合对顶角的性质得出∠DPN=∠BPM,从而得出三角形全等,得出答案.
详解:连接BD,因为P为平行四边形ABCD的对称中心,则P是平行四边形两对角线的交点,即BD必过点P,且BP=DP,∵以P为圆心作圆,∴P又是圆的对称中心,
∵过P的任意直线与圆相交于点M、N,∴PN=PM,∵∠DPN=∠BPM,
∴△PDN≌△PBM(SAS),∴BM=DN.
点睛:本题主要考查的是平行四边形的性质以及三角形全等的证明,属于中等难度的题型.理解平行四边形的中心对称性是解决这个问题的关键.
3.C
解析:C
【解析】
【分析】
根据圆内接四边形的性质得出∠C+∠A=180°,代入求出即可.
【详解】
解:∵四边形ABCD 内接于⊙O ,
∴∠C+∠A=180°,
∵∠A=80°,
∴∠C=100°,
故选:C .
【点睛】
本题考查了圆内接四边形的性质的应用.熟记圆内接四边形对角互补是解决此题的关键.
4.B
解析:B
【解析】
【分析】
根据圆周角大于对应的圆外角可得当ABC ∆的外接圆与x 轴相切时,ACB ∠有最大值,此时圆心F 的横坐标与C 点的横坐标相同,并且在经过AB 中点且与直线AB 垂直的直线上,根据FB=FC 列出关于b 的方程求解即可.
【详解】
解:∵AB=42A(0,2)、B(a ,a +2) 22(22)42a a ++-=
解得a =4或a =-4(因为a >0,舍去)
∴B(4,6),
设直线AB 的解析式为y=kx+2,
将B(4,6)代入可得k =1,所以y=x+2,
利用圆周角大于对应的圆外角得当ABC ∆的外接圆与x 轴相切时,ACB ∠有最大值. 如下图,G 为AB 中点,()2,4G ,
设过点G 且垂直于AB 的直线:l y x m =-+,
将()2,4G 代入可得6m =,所以6y x =-+.
设圆心(),6F b b -+,由FC FB =,可知()()()222
6466b b b -+=-+-+-,解得262b =(已舍去负值).
故选:B.
【点睛】
本题考查圆的综合题,一次函数的应用和已知两点坐标,用勾股定理求两点距离.能结合圆的切线和圆周角定理构建图形找到C 点的位置是解决此题的关键.
5.C
解析:C
【解析】
【分析】
连接OB ,OC ,根据圆周角定理求出∠BOC 的度数,再由OB =OC 判断出△OBC 是等边三角形,由此可得出结论.
【详解】
解:连接OB ,OC ,
∵∠BAC =30°,
∴∠BOC =60°.
∵OB =OC ,BC =8,
∴△OBC 是等边三角形,
∴OB =BC =8.
故选:C.
【点睛】
本题考查的是圆周角定理以及等边三角形的判定和性质,根据题意作出辅助线,构造出等边三角形是解答此题的关键.
6.B
解析:B
【解析】
【分析】
设该班的人数有n 人,除小明外,其他人的身高为x 1,x 2……x n-1,根据平均数的定义可知:算上小明后,平均身高仍为172cm ,然后根据方差公式比较大小即可.
【详解】
解:设该班的人数有n 人,除小明外,其他人的身高为x 1,x 2……x n-1,
根据平均数的定义可知:算上小明后,平均身高仍为172cm
根据方差公式:()()()22212111721721721n k x x x n -⎡⎤=-+-++-⎣⎦- ()()()()2222'1211172172172172172n x x k x n -⎡⎤=
-+-++-+-⎣⎦ ()()()2221211172172172n x x x n -⎡⎤=
-+-++-⎣⎦ ∵
111
n n <- ∴()()()()()()222222121121111721721721721721721n n x x x x x x n n --⎡⎤⎡⎤-+-++-<-+-++-⎣
⎦⎣⎦-即'k k <
故选B .
【点睛】
此题考查的是比较方差的大小,掌握方差公式是解决此题的关键.
7.D
解析:D
【解析】
【分析】 首先将()4,0代入二次函数,求出m ,然后利用根的判别式和求根公式即可判定t 的取值范围.
【详解】
将()4,0代入二次函数,得
2440m -+=
∴4m =
∴方程为240x x t -+=
∴42
x ±= ∵15x <<
∴54t -<≤
故答案为D .
【点睛】
此题主要考查二次函数与一元二次方程的综合应用,熟练掌握,即可解题.
8.C
解析:C
【解析】
【分析】 因为OCP 和ODQ 为直角三角形,根据勾股定理可得OP 、DQ 、PQ 的长度,又因为CP //DQ ,两直线平行内错角相等,∠PCE=∠EDQ ,且∠CPE=∠DQE=90°,可证
CPE ∽DQE ,可得
CP DQ =PE EQ ,设PE=x ,则EQ=14-x ,解得x 的取值,OE= OP-PE ,则OE 的长度可得.
【详解】
解:∵在⊙O 中,直径AB=20,即半径OC=OD=10,其中CP ⊥AB ,QD ⊥AB , ∴OCP 和ODQ 为直角三角形,
根据勾股定理:,,且OQ=6,
∴PQ=OP+OQ=14,
又∵CP ⊥AB ,QD ⊥AB ,垂直于用一直线的两直线相互平行,
∴CP //DQ ,且C 、D 连线交AB 于点E ,
∴∠PCE=∠EDQ ,(两直线平行,内错角相等)且∠CPE=∠DQE=90°, ∴CPE ∽DQE ,故CP DQ =PE EQ
, 设PE=x ,则EQ=14-x , ∴
68=x 14-x
,解得x=6, ∴OE=OP-PE=8-6=2,
故选:C .
【点睛】
本题考察了勾股定理、相似三角形的应用、两直线平行的性质、圆的半径,解题的关键在于证明CPE与DQE相似,并得出线段的比例关系.
9.C
解析:C
【解析】
【分析】
由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据抛物线与x轴交点及x=-1时二次函数的值的情况进行推理,进而对所得结论进行判断.
【详解】
解:由图象可知,a<0,c>0,故①正确;抛物线与x轴有两个交点,则b²-4ac>0,故②错误;∵当x=-1时,y>0,即a-b+c>0,故③正确;
由图象可知,图象开口向下,对称轴x>-1,在对称轴右侧, y随x的增大而减小,而在对称轴左侧和-1之间,是y随x的增大而减小,故④错误.
故选:C.
【点睛】
本题考查了二次函数图象与系数的关系:二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a 共同决定对称轴的位置:当a与b同号时,对称轴在y轴左;当a与b异号时,对称轴在y轴右.常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).抛物线与x轴交点个数由判别式确定:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.
10.B
解析:B
【解析】
【分析】
根据菱形的性质得出△DAB是等边三角形,进而利用全等三角形的判定得出
△ABG≌△DBH,得出四边形GBHD的面积等于△ABD的面积,进而求出即可.
【详解】
连接BD,
∵四边形ABCD是菱形,∠A=60°,
∴∠ADC=120°,
∴∠1=∠2=60°,
∴△DAB是等边三角形,
∵AB=2,
∴△ABD的高为3,
∵扇形BEF的半径为2,圆心角为60°,
∴∠4+∠5=60°,∠3+∠5=60°,
∴∠3=∠4,
设AD、BE相交于点G,设BF、DC相交于点H,
在△ABG和△DBH中,
2
{
34
A
AB BD
∠=∠
=
∠=∠

∴△ABG≌△DBH(ASA),
∴四边形GBHD的面积等于△ABD的面积,
∴图中阴影部分的面积是:S扇形EBF-S△ABD=
2
6021
23
3602
π⨯
-⨯⨯
=
2
3
3
π
-.
故选B.
11.B
解析:B
【解析】
【分析】
本题要比较y1,y2,y3的大小,由于y1,y2,y3是抛物线上三个点的纵坐标,所以可以根据二次函数的性质进行解答:先求出抛物线的对称轴,再由对称性得A点关于对称轴的对称点A'的坐标,再根据抛物线开口向下,在对称轴右边,y随x的增大而减小,便可得出y1,y2,y3的大小关系.
【详解】
∵抛物线y=﹣(x+1)2+m,如图所示,
∴对称轴为x=﹣1,
∵A(﹣2,y1),
∴A点关于x=﹣1的对称点A'(0,y1),
∵a=﹣1<0,
∴在x=﹣1的右边y随x的增大而减小,
∵A'(0,y1),B(1,y2),C(2,y3),0<1<2,
∴y1>y2>y3,
故选:B.
【点睛】
本题考查了二次函数图象上点的坐标的特征,解题的关键是能画出二次函数的大致图象,据图判断.
12.A
解析:A
【解析】
【分析】
连接OC,根据等边三角形的性质得到∠BOC=60°,得到∠AOC=100°,根据圆周角定理解答.
【详解】
连接OC,
由题意得,OB=OC=BC,
∴△OBC是等边三角形,
∴∠BOC=60°,
∵∠AOB=40°,
∴∠AOC=100°,
由圆周角定理得,∠ADC=∠AOC=50°,
故选:A.
【点睛】
本题考查的是圆周角定理,等边三角形的判定和性质,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.
13.C
解析:C
【解析】
试题解析:因为A,B,D给出的角40,50,70可能是顶角也可能是底角,所以不对应,则不能判定两个等腰三角形相似;故A,B,D错误;
C. 有一个60的内角的等腰三角形是等边三角形,所有的等边三角形相似,故C正确.
故选C.
解析:C
【解析】
【分析】
二次函数y =x 2+4x +n 的图象与x 轴只有一个公共点,则240b ac =-=⊿,据此即可求得.
【详解】
∵1a =,4b =,c n =,
根据题意得:2244410b ac n =-=⨯⨯=⊿﹣,
解得:n =4,
故选:C .
【点睛】
本题考查了抛物线与x 轴的交点,二次函数2
y ax bx c =++(a ,b ,c 是常数,a ≠0)的交点与一元二次方程20ax bx c ++=根之间的关系.24b ac =-⊿决定抛物线与x 轴的交点个数.⊿>0时,抛物线与x 轴有2个交点;0=⊿时,抛物线与x 轴有1个交点;⊿<0时,抛物线与x 轴没有交点.
15.A
解析:A
【解析】
【分析】
方程常数项移到右边,两边加上1变形即可得到结果.
【详解】
方程移项得:x 2−2x =5,
配方得:x 2−2x +1=6,
即(x−1)2=6.
故选:A .
【点睛】
此题考查了解一元二次方程−配方法,熟练掌握完全平方公式是解本题的关键.
二、填空题
16.3
【解析】
【分析】
根据圆周角定理可求出∠AOB 的度数,设扇形半径为x ,从而列出关于x 的方程,求出答案.
【详解】
由题意可知:∠AOB=2∠ACB=2×40°=80°,
设扇形半径为x ,
解析:3
【解析】
【分析】
根据圆周角定理可求出∠AOB的度数,设扇形半径为x,从而列出关于x的方程,求出答案.
【详解】
由题意可知:∠AOB=2∠ACB=2×40°=80°,
设扇形半径为x,
故阴影部分的面积为πx2×80
360

2
9
×πx2=2π,
故解得:x1=3,x2=-3(不合题意,舍去),
故答案为3.
【点睛】
本题主要考查了圆周角定理以及扇形的面积求解,解本题的要点在于根据题意列出关于x 的方程,从而得到答案.
17.-3
【解析】
【分析】
首先利用表中的数据求出二次函数,再利用求根公式解得x1,再利用夹逼法可确定x1 的取值范围,可得k.
【详解】
解:把x=0,y=-3,x=1,y=-1,x=-1,y=-3
解析:-3
【解析】
【分析】
首先利用表中的数据求出二次函数,再利用求根公式解得x1,再利用夹逼法可确定x1的取值范围,可得k.
【详解】
解:把x=0,y=-3,x=1,y=-1,x=-1,y=-3代入y=ax2+bx+c得
3 1 3c
a b c a b c
-=⎧

-=++⎨
⎪-=-+⎩,解得
1
1
3
a
b
c
=


=

⎪=-

,∴y=x²+x-3,
∵△=b2-4ac=12-4×1×(-3)=13,

=

∵1x<0,
∴1x=−1-13
2
<0,
∵-4≤-13≤-3,

133
2
2 -≤-≤-,
∴-3≤−1−13
≤ 2.5
-,
∵整数k满足k<x1<k+1,
∴k=-3,
故答案为:-3.
【点睛】
本题考查了二次函数的图象和性质,解题的关键是求出二次函数的解析式.
18.1
【解析】
【分析】
根据勾股定理求出△ABC的各个边的长度,根据勾股定理的逆定理求出∠ACB=90°,再解直角三角形求出即可.
【详解】
如图:长方形AEFM,连接AC,
∵由勾股定理得:AB
解析:1
【解析】
【分析】
根据勾股定理求出△ABC的各个边的长度,根据勾股定理的逆定理求出∠ACB=90°,再解直角三角形求出即可.
【详解】
如图:长方形AEFM,连接AC,
∵由勾股定理得:AB2=32+12=10,BC2=22+12=5,AC2=22+12=5
∴AC2+BC2=AB2,AC=BC,
即∠ACB=90°,
∴∠ABC=45°
∴tan∠ABC=1
【点睛】
本题考查了解直角三角形和勾股定理及逆定理等知识点,能求出∠ACB =90°是解此题的关键.
19.【解析】
【分析】
先根据题意确定抛物线的对称轴,再利用抛物线的对称性解答即可.
【详解】
解:∵,,
∴点(-1,0)与(3,0)在抛物线上,
∴抛物线的对称轴是直线:x=1,
∴点关于直线x=
解析:(4,4)
【解析】
【分析】
先根据题意确定抛物线的对称轴,再利用抛物线的对称性解答即可.
【详解】
解:∵0a b c -+=,930a b c ++=,
∴点(-1,0)与(3,0)在抛物线2y ax bx c =++上,
∴抛物线的对称轴是直线:x =1,
∴点(2,4)-关于直线x =1对称的点为:(4,4).
故答案为:(4,4).
【点睛】
本题考查了二次函数的性质和二次函数图象上点的坐标特征,属于常考题型,根据题意判断出点(-1,0)与(3,0)在抛物线上、熟练掌握抛物线的对称性是解题的关键.
20.【解析】
【分析】
易得圆锥的底面周长,也就是侧面展开图的弧长,进而利用弧长公式即可求得圆锥的母线长.
【详解】
圆锥的底面周长cm ,
设圆锥的母线长为,则: ,
解得,
故答案为.
【点睛】

解析:【解析】
【分析】
易得圆锥的底面周长,也就是侧面展开图的弧长,进而利用弧长公式即可求得圆锥的母线
长.
【详解】
圆锥的底面周长224ππ=⨯=cm ,
设圆锥的母线长为R ,则:
1204180
R ππ⨯=, 解得6R =,
故答案为6.
【点睛】
本题考查了圆锥的计算,用到的知识点为:圆锥的侧面展开图的弧长等于底面周长;弧长公式为: 180n r π. 21.【解析】
【分析】
首先判定直角三角形∠CAB=30°,∠ABC=60°,,然后根据,得出
∠ACB+∠PAC+∠PBC=∠APB=120°,定角定弦,点P 的轨迹是以AB 为弦,圆周角为120°的圆弧
2
【解析】
【分析】
首先判定直角三角形∠CAB=30°,∠ABC=60°,
AB ===PAB PBC ∠=∠,得出
∠ACB+∠PAC+∠PBC=∠APB=120°,定角定弦,点P 的轨迹是以AB 为弦,圆周角为120°的圆弧上,如图所示,当点C 、O 、P 在同一直线上时,CP 最小,构建圆,利用勾股定理,即可得解.
【详解】
∵90ACB ∠=︒,3AC =,BC =

∴AB ===∴∠CAB=30°,∠ABC=60°
∵PAB PBC ∠=∠,∠PAB+∠PAC=30°
∴∠ACB+∠PAC+∠PBC=∠APB=120°
∴定角定弦,点P 的轨迹是以AB 为弦,圆周角为120°的圆弧上,如图所示,当点C 、O 、P 在同一直线上时,CP 最小
∴CO ⊥AB ,∠COB=60°,∠ABO=30°
∴OB=2,∠OBC=90°
∴OC ===
∴72CP OC OP =-=
-
故答案为72-.
【点睛】
此题主要考查直角三角形中的动点综合问题,解题关键是找到点P 的位置.
22.【解析】
【分析】
根据,则函数图象在直线的上方,所以找出函数图象在直线的上方的取值范围即可.
【详解】
根据二次函数的图象可知:
对称轴为,已知一个点为,
根据抛物线的对称性,则点关于对称性对称
解析:20x -<<
【解析】
【分析】
根据3y >,则函数图象在直线3y =的上方,所以找出函数图象在直线3y =的上方x 的取值范围即可.
【详解】
根据二次函数的图象可知:
对称轴为1x =-,已知一个点为()03,
, 根据抛物线的对称性,则点()03,
关于对称性对称的另一个点为()23-,, 所以3y >时,x 的取值范围是20x -<<.
故答案为:20x -<<.
【点睛】
本题主要考查了二次函数的性质,主要利用了二次函数的对称性,读懂图象信息,利用对
称轴求出点()
03,的对称点是解题的关键.
23.120°.
【解析】
试题分析:若△ABC以O为旋转中心,旋转后能与原来的图形重合,根据旋转变化的性质,可得△ABC旋转的最小角度为180°﹣60°=120°.故答案为120°.
考点:旋转对称图形
解析:120°.
【解析】
试题分析:若△ABC以O为旋转中心,旋转后能与原来的图形重合,根据旋转变化的性质,可得△ABC旋转的最小角度为180°﹣60°=120°.故答案为120°.
考点:旋转对称图形.
24.【解析】
【分析】
根据勾股定理求得OB,再求得圆锥的底面周长即圆锥的侧面弧长,根据扇形面积的计算方法S=lr,求得答案即可.
【详解】
解:∵AO=8米,AB=10米,
∴OB=6米,
∴圆锥的
解析:60π
【解析】
【分析】
根据勾股定理求得OB,再求得圆锥的底面周长即圆锥的侧面弧长,根据扇形面积的计算方
法S=1
2
lr,求得答案即可.
【详解】
解:∵AO=8米,AB=10米,
∴OB=6米,
∴圆锥的底面周长=2×π×6=12π米,
∴S扇形=1
2
lr=
1
2
×12π×10=60π米2,
故答案为60π.【点睛】
本题考查圆锥的侧面积,掌握扇形面积的计算方法S=1
2
lr是解题的关键.
25.24π
【解析】
【分析】
根据圆锥的侧面展开图为扇形,先计算出圆锥的底面圆的周长,然后利用扇形的面积公式计算即可.
【详解】
解:∵圆锥的底面半径为4cm,
∴圆锥的底面圆的周长=2π•4=8π,
解析:24π
【解析】
【分析】
根据圆锥的侧面展开图为扇形,先计算出圆锥的底面圆的周长,然后利用扇形的面积公式计算即可.
【详解】
解:∵圆锥的底面半径为4cm,
∴圆锥的底面圆的周长=2π•4=8π,
∴圆锥的侧面积=1
2
×8π×6=24π(cm2).
故答案为:24π.
【点睛】
本题考查了圆锥的侧面积的计算:圆锥的侧面展开图为扇形,扇形的弧长为圆锥的底面周
长,扇形的半径为圆锥的母线长.也考查了扇形的面积公式:S=1
2
•l•R,(l为弧长).
26.36°.
【解析】
【分析】
由正五边形的性质得出∠BAE=(5﹣2)×180°=108°,BC=CD=DE,得出 ==,由圆周角定理即可得出答案.
【详解】
∵⊙O是正五边形ABCDE的外接圆,
解析:36°.
【解析】
【分析】
由正五边形的性质得出∠BAE=1
5
(5﹣2)×180°=108°,BC=CD=DE,得出
BC=CD=DE,由圆周角定理即可得出答案.【详解】
∵⊙O是正五边形ABCDE的外接圆,
∴∠BAE=1
5
(n﹣2)×180°=
1
5
(5﹣2)×180°=108°,BC=CD=DE,
∴BC=CD=DE,
∴∠CAD=1
3
×108°=36°;
故答案为:36°.
【点睛】
本题主要考查了正多边形和圆的关系,以及圆周角定理的应用;熟练掌握正五边形的性质和圆周角定理是解题的关键.
27.(3,0).
【解析】
分析:根据(0,3)、(2,3)两点求得对称轴,再利用对称性解答即可.
详解:∵抛物线y=ax2+bx+c经过(0,3)、(2,3)两点,
∴对称轴x==1;
点(﹣1,0)
解析:(3,0).
【解析】
分析:根据(0,3)、(2,3)两点求得对称轴,再利用对称性解答即可.
详解:∵抛物线y=ax2+bx+c经过(0,3)、(2,3)两点,
∴对称轴x=0+2
2
=1;
点(﹣1,0)关于对称轴对称点为(3,0),
因此它的图象与x轴的另一个交点坐标是(3,0).
故答案为(3,0).
点睛:本题考查了抛物线与x轴的交点,关键是熟练掌握二次函数的对称性.
28.【解析】
【分析】
先在CB上取一点F,使得CF=,再连接PF、AF,然后利用相似三角形的性质和勾股定理求出AF,即可解答.
【详解】
解:如图:在CB上取一点F,使得CF=,再连接PF、AF,
【解析】
【分析】
先在CB上取一点F,使得CF=1
2
,再连接PF、AF,然后利用相似三角形的性质和勾股定理
求出AF,即可解答.【详解】
解:如图:在CB上取一点F,使得CF=1
2
,再连接PF、AF,
∵∠DCE=90°,DE=4,DP=PE,
∴PC=1
2
DE=2,

1
4
CF
CP
=,
1
4
CP
CB
=
∴CF CP CP CB
=
又∵∠PCF=∠BCP,∴△PCF∽△BCP,

1
4 PF CF
PB CP
==
∴PA+1
4
PB=PA+PF,
∵PA+PF≥AF,AF=
2
222
1145
6
2
CF AC
⎛⎫
+=+=

⎝⎭
∴PA+1
4
PB ≥.
145
2
∴PA+1
4
PB的最小值为
145

故答案为145

【点睛】
本题考查了勾股定理、相似三角形的判定和性质等知识,正确添加常用辅助线、构造相似三角形是解答本题的关键.
29.16
【解析】
【分析】
【详解】
延长EF交BC的延长线与H,
在平行四边形ABCD中,
∵AD=BC,AD∥BC
∴△DEF∽△CHF, △DEM∽△BHM ∴ ,
∵F是CD的中点
∴DF
解析:16
【解析】
【分析】
【详解】
延长EF交BC的延长线与H,
在平行四边形ABCD中,
∵AD=BC,AD∥BC
∴△DEF∽△CHF, △DEM∽△BHM

DE DF
CH CF
= ,2
()
DEM
BMH
S DE
S BH


=
∵F是CD的中点
∴DF=CF
∴DE=CH
∵E是AD中点
∴AD=2DE
∴BC=2DE
∴BC=2CH
∴BH=3CH
∵1
DEM
S

=
∴2
11
()
3
BMH
S

=
∴9
BMH
S

=
∴9
CFH
BCFM
S S

+=
四边形
∴9DEF BCFM S S ∆+=四边形
∴9DME DFM BCFM S S S ∆∆++=四边形
∴19BCD S ∆+=
∴8BCD S ∆=
∵四边形ABCD 是平行四边形
∴2816ABCD S =⨯=四边形
故答案为:16.
30.2或3
【解析】
【分析】
根据相似三角形的判定与性质,当若点A ,P ,D 分别与点B ,C ,P 对应,与若点A ,P ,D 分别与点B ,P ,C 对应,分别分析得出AP 的长度即可.
【详解】
解:设AP =xcm .则
解析:2或3
【解析】
【分析】
根据相似三角形的判定与性质,当若点A ,P ,D 分别与点B ,C ,P 对应,与若点A ,P ,D 分别与点B ,P ,C 对应,分别分析得出AP 的长度即可.
【详解】
解:设AP =xcm .则BP =AB ﹣AP =(5﹣x )cm
以A ,D ,P 为顶点的三角形与以B ,C ,P 为顶点的三角形相似,
①当AD :PB =PA :BC 时,
352
x x =-, 解得x =2或3.
②当AD :BC =PA +PB 时,3=25x x
-,解得x =3, ∴当A ,D ,P 为顶点的三角形与以B ,C ,P 为顶点的三角形相似,AP 的值为2或3. 故答案为2或3.
【点睛】
本题考查了相似三角形的问题,掌握相似三角形的性质以及判定定理是解题的关键.
三、解答题
31.(1)
49;(2)13
【解析】。

相关文档
最新文档