光伏与储能

光伏与储能
光伏与储能

1.光伏方案:

技术路线与可行性分析:

光伏并网/独立运行子系统,采用建筑屋顶固定倾斜角度光伏电池阵列,可按100-500kW容量等级配备、组合变流器,380V/三相并网运行,升压至10kV/20kV,兼顾独立运行。与常规按最大能力出力的光伏系统相区别,该系统可接受调度命令,也就是说在特殊情况下能够丢弃日照发电能力满足整体有功调度要求,在新能源发电变流器利用率普遍较低背景下可以复用逆变器,接受系统指令产生无功甚至谐波电流,满足局部补偿要求并提高供电质量与安全性。

目前国内外大规模光电场技术以及屋顶光伏发电技术相对成熟,电池板产能充足采购渠道顺畅,变流器以及控制技术比较完善。

相关参数:

总装机容量:1MW

电池板类型:单晶硅

电池板阵列安装方式:固定倾斜角安装

估算占地面积(建筑屋顶或地面):12000平方米

变流器及电池板阵列组合单元容量:100kW/250kW/500kW,可选

并网规范:380V对称三相并网运行,升压至10kV/20kV

变流器设备占地面积、空间高度、重量概算:20平方米、3米、12吨

课题主要研究内容及预期达到的目标:

研究目标:设计并实现以多种可再生能源为主要输入能源的互补优化多能源发电系统中以太阳能为主要能量来源的发电系统,该系统以能量存储环节为辅助,采用新型变流技术实现额定功率范围内的稳定电压、频率和波形输出、电源并网、本地负荷分配、运行管理以及与电网的连接运行。该系统可以并网运行,也可以适应作为孤立用电点的独立发电和电能供给。考虑建立额定总容量为1000kW左右示范系统,具备容量扩展性。在光伏发电间歇或未满功率运行期间,通过系统级调控指令利用其低利用率的变流器(逆变器)产生本地电网所需无功电流或谐波电流,作为并联补偿使用,在特殊情况下可以进行有功出力调整,必要时可以丢弃光伏能量不予满发。该系统在可再生能源的利用率、系统变换效率、设备利用率、供电质量、可靠性以及投资规模等方面都应比传统单一新能源系统

有较大提升。

研究内容:

●以光伏为电力生产能源,配合风电、洋流发电等多可再生能源,建立具有

能量储存调控的多个可再生能源系统的示范装置。研究选址现场常年日照条件、数据,建立实验系统;

●针对各能源不同装机容量与资源分布分布,设定其控制策略、互补工作算

法;

●光伏逆变器并网电源在分布式发电本地电网中的并联补偿功能研究,配合

系统调度指令,在很大程度上降低分布式发电的造价并提高其可靠性;

●一般光伏并网变流器出力控制与接口改造;

●光伏器件最大功率点跟踪控制:在有功无功出力均可调度背景下,研究传

统方法响应速度更快精度更高,可适用不同型号发电器件的最大功率点跟踪控制方法;

●并网逆变器运行控制,能够快速适应外部环境变化的逆变器控制策略;

●孤岛效应检测:将其从并网运行控制策略单独分出,研究目标是在局部电

网含有多个分布式并网发电系统时仍能可靠检测出电网故障的主动式孤岛效应检测方法;

2.储能方案:

技术路线与可行性分析:

新能源利用显著受到自然条件影响和限制,其中包括天气、季节、时间、地域、地形地貌等等。主流可再生能源与传统化石燃料能源相比,不能够稳定持续提供能源,实际电网并非容量无限大阻抗无限小的理想能量以及无功吞吐来源,大量中小容量电源的功率等级分散,等效阻抗较大,输出功率波动剧烈,对电网而言是一种冲击电源,其装机容量越大,其所在电网所需热备用容量就越大。在完全孤立运行情况下,各电源缺乏外电网提供的稳定电压作为“支撑”背景,更需要强有力的协调控制。电能存储环节在可再生能源发电发电功率大于负载需要时存储电能,在它们不能够满足负载需要时提供电能进行补足,以最大效率收集利用可再生能源,如化学蓄电池、超级电容、飞轮动能蓄能系统、超导储能系统等。这对于可再生能源分布式独立发电系统来说是必需的,是建立稳定本地供电

的基础,对有公用电网可接入的系统,以上措施通常也是必要的,亦即所谓可调度手段,可以最大限度利用新能源,降低对电网冲击和依赖。

上述多种多样的储能原理中,对应本示范项目容量等级,按比功率、比容量、循环寿命、环保要求以及投资规模等多方面因素考察,常规化学储能形式具有比较优势,与此同时对其弱项——工作寿命必须加以考虑。本示范工程拟采用锂离子电池结合超级电容作为混合储能环节,匹配适当容量功率双向流逆变器,在系统总控下进行储能充放电,以对不稳定新能源发电的随机出力波动进行削峰填谷,极大平缓总发电出力输出变化率,改善并网电力质量,直至获得相当的新能源发电可调度性能。采用两种性质的介质混合储能是基于其不同特性考虑的,锂离子电池的比容量较大,比功率参数也较好,但循环寿命有限,而超级电容比容量小,但比功率极大,循环寿命很长,可以按不同的储能补偿速度要求,缓慢大幅度波动的补偿输出依赖锂电池环节,快速小幅值波动的补偿依靠超级电容环节,以期明显降低锂电池投入容量,延长其使用寿命,从而降低投资,增强储能补偿环节的实用价值。

国外已有较多储能环节用于电力系统或新能源发电的实例,并有相当数量的工程化案例。所采用的储能环节有传统铅酸蓄电池、镍氢电池、压缩空气储能、超级电容储能等。日本已有用于风力发电不稳定处理平滑补偿用的蓄电池+超级电容方案并投入实际示范运行。该工作在国内具有开创性意义,技术与实用价值重大,技术上有据可循,完全可行。

相关参数:

锂离子电池装机容量:500kWh

电池设备占地面积、空间高度、重量概算:20平方米、3米、8吨

超级电容装机容量:峰值功率200kW,约120法拉/720V

超级电容设备占地面积、空间高度、重量概算:10平方米、3米、2.5吨

变流器及储能环节组合单元容量:100kW/250kW/500/750kW,可选

锂电池充放电变流器装机容量:1000kW

锂电池充放电变流器占地面积、空间高度、重量概算:20平方米、3米、12吨超级电容充放电变流器装机容量:200kW

超级电容充放电变流器占地面积、空间高度、重量概算:5平方米、3米、2.5

并网规范:380V对称三相并网运行,升压至10kV/20kV

课题主要研究内容及预期达到的目标:

预期目标:按储能环节容量配比、相应变流器功率以及风电、洋流发电、光伏发电等实际不稳定多种可再生能源情况,建立并联功率波动补偿装置,实现系统在瞬时最大新能源发电出力1.2MW之内半小时周期的完全可调度发电,如果系统瞬时功率超过这一数值,则可按短期(一分钟)和长期(十分钟)满足国家电网新能源并网波动规范。该环节应能够接收系统指令,进行主要电气参数调整,可运行在充电、放电、无功电流补偿、低次谐波电流补偿等模式及其混合模式。储能环节总峰值补偿能力1200kW。

主要研究内容:

混合储能的协调控制算法,主要为变时间常数控制,目的是充分利用超级电容比功率能力和长寿命特性,储备、延长锂电池寿命;

功率双向流逆变器的控制方法研究,主要针对设备低负荷状态下的变流器复用,能够在不动用储能情况下利用储能逆变设备容量,进行系统有功、无功电流以及低次谐波电流调整;

低电压穿越状态下的储能环节有功、无功调整策略,主要针对双馈异步以及鼠笼异步风机的低电压支撑;

不稳定发电与能量储存、释放的调节,控制以及电池特性建模。由于主要能量来源的时间随机性变化和负载扰动,多能源系统的建模与稳定性事关系统优化配置与稳定运行,合理的数学模型和控制方法对系统稳定运行至关重要;

储能环节能量管理措施,主要针对大容量电池组的均衡充放电、状态检测、故障诊断、过充电、过放电保护以及静态容量优化、电量估算等;

课题研究的年度进度及考核指标:

本申请项目各部分,包括立项、理论分析、方案设计、各技术参数计算、数学建模、数值仿真计算、试验现场选择、资料数据调研、试验系统设计、制作、系统建设、调试等等,相互牵涉关联,遵循交替滚动原则展开进行。

2010.06~2011.06,理论分析、系统方案设计、原理性仿真、验证装置设计;

2011.07~2012.12,系统技术细节设计,小容量验证装置制作调试,实际验证现场建立工作,总体工程采购;

2013.01~2013.12,全容量现场工程建设完成完整容量实验验证,完成系统优化改进;

2014.01~2014.06,系统整体联调、试运行,撰写有关论文、报告、总结。

光伏储能一体化充电站设计方案

光伏储能一体化充电站 设 计 方 案 : 项目名称: 项目编号: 版本: 日期: … 拟制: ^ 审阅: 批准:

目录 1 技术方案概述 (3) 1.1 项目基本情况 (3) 1.2 遵循及参考标准 (4) 1.3 系统拓扑结构 (5) 1.4 系统特点 (6) 2 系统设备介绍 (7) 2.1 250K W并离网型储能变流器 (7) 2.1.1 EAPCS250K型储能变流器特点 (7) 2.1.2 EAPCS250K型并离网逆变器技术参数 (7) 2.1.3 电路原理图 (8) 2.1.4 通讯方式 (9) 2.2 50K_DCDC变换器 (9) 2.2.1 50K_DCDC变换器特点 (9) 2.2.2 50K_DCDC变换器技术参数 (10) 2.3 光智能光伏阵列汇流箱 (11) 2.3.1汇流箱简介 (11) 2.3.2汇流箱参数 (12) 2.4 光伏组件系统 (13) 2.4.1 270Wp光伏组件 (13) 2.5 60KW双向充电桩 (15) 2.5.1 60KW充电柱概述 (15) 2.5.2 充电桩功能与特点 (15) 2.5.3 EVDC-60KW充电桩技术参数 (16) 2.6 消防系统 (17) 2.7 微网能量管理系统 (17) 2.7.1 能量管理 (18) 2.7.2 光电预测 (19) 2.7.3 负荷预测 (19) 2.7.4 储能调度 (20) 2.7.5 购售计划 (20) 2.7.6 管理策略 (20) 2.8 动环监控系统 (22) 2.9 电池系统 (23) 2.9.1 电池组 (23) 2.9.2电池模组与电池架设计 (23) 2.9.3电池系统参数表 (24) 2.10 定制集装箱 (25) 3 设备采购信息介绍 (26)

储能电站总体技术方案设计

储能电站总体技术方案 2011-12-20

目录 1.概述 (3) 2.设计标准 (4) 3.储能电站(配合光伏并网发电)方案 (6) 3.1系统架构 (6) 3.2光伏发电子系统 (7) 3.3储能子系统 (7) 3.3.1储能电池组 (8) 3.3.2 电池管理系统(BMS) (9) 3.4并网控制子系统 (12) 3.5储能电站联合控制调度子系统 (14) 4.储能电站(系统)整体发展前景 (16)

1.概述 大容量电池储能系统在电力系统中的应用已有20多年的历史,早期主要用于孤立电网的调频、热备用、调压和备份等。电池储能系统在新能源并网中的应用,国外也已开展了一定的研究。上世纪90年代末德国在Herne 1MW的光伏电站和Bocholt 2MW的风电场分别配置了容量为1.2MWh的电池储能系统,提供削峰、不中断供电和改善电能质量功能。从2003年开始,日本在Hokkaido 30.6MW 风电场安装了6MW /6MWh 的全钒液流电池(VRB)储能系统,用于平抑输出功率波动。2009年英国EDF电网将600kW/200kWh锂离子电池储能系统配置在东部一个11KV配电网STATCOM中,用于潮流和电压控制,有功和无功控制。 总体来说,储能电站(系统)在电网中的应用目的主要考虑“负荷调节、配合新能源接入、弥补线损、功率补偿、提高电能质量、孤网运行、削峰填谷”等几大功能应用。比如:削峰填谷,改善电网运行曲线,通俗一点解释,储能电站就像一个储电银行,可以把用电低谷期富余的电储存起来,在用电高峰的时候再拿出来用,这样就减少了电能的浪费;此外储能电站还能减少线损,增加线路和设备使用寿命;优化系统电源布局,改善电能质量。而储能电站的绿色优势则主要体现在:科学安全,建设周期短;绿色环保,促进环境友好;集约用地,减少资源消耗等方面。

储能电站技术方案

储能电站总体技术方案 页脚内容1

2011-12-20 目录 1.概述 (3) 2.设计标准 (4) 3.储能电站(配合光伏并网发电)方案 (6) 3.1系统架构 (6) 3.2光伏发电子系统 (8) 3.3储能子系统 (8) 3.3.1储能电池组 (8) 3.3.2 电池管理系统(BMS) (11) 3.4并网控制子系统 (15) 3.5储能电站联合控制调度子系统 (17) 4.储能电站(系统)整体发展前景 (19) 页脚内容2

1.概述 大容量电池储能系统在电力系统中的应用已有20多年的历史,早期主要用于孤立电网的调频、热备用、调压和备份等。电池储能系统在新能源并网中的应用,国外也已开展了一定的研究。上世纪90年代末德国在Herne 1MW的光伏电站和Bocholt 2MW的风电场分别配置了容量为1.2MWh的电池储能系统,提供削峰、不中断供电和改善电能质量功能。从2003年开始,日本在Hokkaido 30.6MW风电场安装了6MW /6MWh 的全钒液流电池(VRB)储能系统,用于平抑输出功率波动。2009年英国EDF电网将600kW/200kWh锂离子电池储能系统配置在东部一个11KV配电网STATCOM中,用于潮流和电压控制,有功和无功控制。 总体来说,储能电站(系统)在电网中的应用目的主要考虑“负荷调节、配合新能源接入、弥补线损、功率补偿、提高电能质量、孤网运行、削峰填谷”等几大功能应用。比如:削峰填谷,改善电网运行曲线,通俗一点解释,储能电站就像一个储电银行,可以把用电低谷期富余的电储存起来,在用电高峰的时候再拿出来用,这样就减少了电能的浪费;此外储能电站还能减少线损,增加线路和设备使用寿命;优化系统电源布局,改善电能质量。而储能电站的绿色优势则主要体现在:科学安全,建设周期短;绿色环保,促进环境友好;集约用地,减少资源消耗等方面。 页脚内容3

KW储能系统初步设计方案及配置

K W储能系统初步设计 方案及配置 文档编制序号:[KK8UY-LL9IO69-TTO6M3-MTOL89-FTT688]

中山铨镁能源科技有限公司 储能系统项目 初 步 设 计 方 案 2017年06月

目录

一、项目概述 分布式能源具有间歇性、波动性、孤岛保护等特点,分布式能源电能质量差,分布式能源设备利用率没有被充分发掘。微电网是为整合分布式发电的优势、削弱分布式发电对电网的冲击和负面影响而提出的一种新的分布式能源组织方式和结构,能有效改善分布式能源电能质量差、分布式能源设备利用率不能被充分发掘等分布式能源的不足。 微电网通过整合分布式发电单元与配电网之间关系,在一个局部区域内直接将分布式发电单元、电力网络和终端用户联系在一起,可以方便地进行结构和配置以及电力调度的优化,优化和提高能源利用效率,减轻能源动力系统对环境的影响,推动分布式电源上网,降低大电网的负担,改善可靠安全性,并促进社会向绿色、环保、节能方向发展。微电网是当前国际国内能源和电力专家普遍认可的解决方案。 本项目拟建设一套锂电池储能系统,通过低压配电柜给部分办公楼宇负荷供电,可实现对各个设备接口采集相关信息,并通过智能配电柜对各个环节进行投切,在并网及孤岛情况下实现发电、储能及负荷的控制,保持微电网系统的平衡运行。 二、项目方案 2.1智能光伏储能并网电站 本电站系统目的在于拟建设中山铨镁能源科技有限公司储能并离网系统示范工程,通过接入办公楼宇的日常照明等真实负载,可演示离网状态下正常供

电系统示范;分布式光伏多余电量进行储能示范;以及后台监控及能量调度等示范。 本项目拟建设的储能系统,系统由锂电池储能系统、控制系统、监控系统以及能量管理系统构成。其中控制系统可实现对分布式电源、负载装置和储能装置的远程控制,监控系统对分布式电源实时运行信息、报警信息进行全面的监视并进行多方面的统计和分析实现对分布式电源的全方面掌控,能量管理系统可控制分布式电源平滑出力与能量经济调度。系统一次拓扑结构如下图所示: 能量管理及系统监控网络结构图如下图所示: 能量管理系统可以根据储能情况及负载情况实现并离网切换控制,以及微电网系统几种不同运行模式的切换,可以实现分布式电源离网运行控制,并网点电气参数监控,实现系统负载远程投切控制。配置一套电池管理系统实现对储能电池的充放电状态及电池电量估计,实现分布式电源能量均衡控制及系统的经济运行。根据微电网交流母线电压频率情况,实现负荷分类切除,保证重要负荷的优先供电保障。 2.2储能系统 2.2.1磷酸铁锂电池 配置容量300kWh。 2.2.2电池管理系统(BMS) BMS是用于监测、评估及保护电池运行状态的电子设备集合。主要功能:1)监测并传递锂离子电池、电池组及电池系统单元的运行状态信息,如电池电压、电流、温度以及保护量等;

光伏储能电站的三种模式

太阳能光伏发电是实现我国能源和电力可持续发展战略的重要组成之一。由于光伏输出功率具有很强的波动性、随机性,光伏电力的不稳定性严重制约了光伏电力的接入和输送。储能技术可以实现削峰填谷、负荷跟踪、调频调压、电能质量治理等功能。光伏储能系统还可以在光伏电站遇到弃光限制发电时将多余电能存入储能电池内,光伏发电量低于限幅值或晚上用电高峰时通过储能逆变器将电池内电能送入电网,储能系统参与电网削峰填谷,储能系统还可利用峰谷电价差创造更大的经济效益,提高系统自身的调节能力;作为解决大规模可再生能源发电接入电网的一种有效支撑技术。 储能系统的主要模式有配置在电源直流侧的储能系统、配置在电源交流侧的储能系统和配置在负荷侧储能系统等。 1、配置在电源直流侧的储能系统 配置在电源直流侧的储能系统主要可安装在诸如光伏发电的直流系统中,这种设计可将蓄电池组合光伏发电阵列在逆变器直流段进行配接调控,如图1。该系统中的光伏发电系统和蓄电池储能系统共享一个逆变器,但是由于蓄电池的充放电特性和光伏发电阵列的输出特性差异较大,原系统中的光伏并网逆变器中的最大功率跟踪系统(MPPT)是专门为了配合光伏输出特性设计的,无法同时满足储能蓄电池的输出特性曲线。因此,此类系统需要对原系统逆变器进行改造或重新设计制造,不仅需要使逆变器能满足光伏阵列的逆变要求,还需要增加对蓄电池组的充放电控制器,和蓄电池能量管理等功能。一般而言,该系统是单向输出的,也就是说该系统中的蓄电池是完全依靠光伏发电充电的,电网的电力是不能给蓄电池充电的。 图1、配置在电源直流侧的储能系统 该系统光伏发电阵列发出的电力在逆变器前端就与蓄电池进行了自动直流平衡,这种模式的主要特点是系统效率高,电站发电出力可由光伏电站内部调度,可以达到无缝连接,输出电能质量好,输出波动非常小等,可大大提高光伏发电输出的平滑、稳定性和可调控性能,缺点是使用的逆变器需要特殊设计,不适用于对现有已经安装好的大部分光伏电站进行升级改造。另一个缺点是,该储能系统中的蓄电池组只能接受本发电单元的电力为其充电,而其他临近的光伏发电单元或电站的多余电力无法为其充电。也就是说这种方案缺乏大电站内部电力调配的功能。 2、配置在电源交流侧的储能系统 配置在电源交流侧的储能系统也可以称之为配置在交流侧的储能系统,单元型交流侧的储能的模式如图2所示,它采用单独的充放电控制器和逆变器来给蓄电池充电或者逆变,这种方案实际上就是给现有光伏发电系统外挂一个储能装置,可在目前任何一种光伏电站甚至风力发电站或其他发电站进行升级安装,形成站内储能系统,也可以根据电网需要建设成为完全独立运行的储能电站,

储能系统在太阳能光伏发电中的应用分析

储能系统在太阳能光伏发电中的应用分析 发表时间:2018-05-09T17:27:14.723Z 来源:《电力设备》2017年第36期作者:刘翠娜1 韩云海2 [导读] 摘要:尽管太阳能光伏发电已逐渐在我国乃至全球能源供应中起到重要作用,但其受环境、气候影响较大,电力输出存在间歇性和不稳定性。 (1协鑫电力设计研究有限公司 210009;2南京国电南自电网自动化有限公司 211106)摘要:尽管太阳能光伏发电已逐渐在我国乃至全球能源供应中起到重要作用,但其受环境、气候影响较大,电力输出存在间歇性和不稳定性。同时,由于电网调峰能力不足阻碍光伏电力并网,电力输送通道建设与电源建设不匹配造成光伏电力送出受限,以及当地工业基础薄弱影响光伏电力就地消纳等因素,导致大量光伏电能资源被浪费。鉴于此,本文主要分析储能系统在太阳能光伏发电中的应用。 关键词:储能系统;太阳能光伏发电;应用 1、光伏发电系统的概述 光伏发电是通过半导体界面的光伏效应而将光能转化为电能的一种技术。光伏发电系统中主要有太阳能电池板、蓄电池组、充放电控制器、逆变器、汇流箱等部分组成,其内部主要部件为电子元器件构成。 光伏发电与传统的火力发电相比具有以下几个显著的优点:①来源具有无枯竭性,即太阳光取之不尽、用之不竭。②不受区域的限制,光伏发电具有一定的广泛性,即只要有太阳光的地方就可以进行光伏发电。③方便、快捷性,不需要通过燃烧煤炭等资源就可以进行发电。 光伏发电的不足之处有:①照射能源分布密度小,需要进行大面积的建设太阳能电池板。②受天气因素的影响较大,只能在晴朗的天气下才能进行发电。③光伏板的制造过程具有高污染、高能耗的特点。 2、光伏发电并网对电力系统的影响 2.1、对配网电压及其调整的影响 太阳光照强度不停发生变化,包括全年或全天中的规律改变和因天气产生的随机改变,直接造成了光伏系统出力的波动性和不可控性。光伏电源接入配网后将改变系统潮流,配网节点电压将随配网潮流的改变而变化,产生不同程度的电压偏差与波动。随着光伏电源占有比例的逐渐升高,可能出现大规模的光伏电源突增突减,难以保障系统供电质量,电压调整不能顺利进行,最终导致电压超标。此外,调压操作需要根据太阳辐射的变化而频繁进行,致使调压装置的寿命大大减少。 2.2、对配电网保护的影响 辐射型网络是我国传统的配电网络结构。光伏电源没有接入的情况下,传统配网是一个单电源的网络,系统出现故障时,故障电流的流动是单向的。光伏电源接入后,配电网由单电源网络变成了多电源网络,故障电流的分布、大小以及方向都会由此而出现改变。而传统配电网保护的配置依据仅为故障电流的大小,并不具有方向性,因此当光伏电源接入后,保护装置的动作会受到影响。 2.3、对电能质量的影响 并网逆变器作用非常重要,是光伏并网系统中不可或缺的一部分,它可以将光伏阵列发出的直流电转化为交流电后接入电网。但是由于逆变器中开关器件频繁的开断,导致在开关频率附近产生大量谐波分量,导致系统电压和电流波形发生畸变,影响严重。对于设计优良的小容量光伏逆变器,谐波污染一般能被控制而满足标准。 2.4、对调度运行的影响 由于光伏系统的出力受天气变化比较敏感,表现出不可控的随机性,限制了光伏系统输出的可调度性。因此,电网部门需要认真考虑电力调度的稳定性和可靠性,尤其在某个地区中光伏电源所占比例达到一定程度后。此外,在用电价格上光伏电源与常规电源也有所不同,因此对于含光伏电源的系统中,在保证电能质量与供电可靠性的前提下进行经济性调度也是一个颇受关注的问题。 3、储能技术在光伏并网发电系统中的应用 3.1、在电力调峰上的应用 电力调峰的目标是将在峰电时段大功率负荷的集中需求减少,进而减轻电网的负荷压力。在光伏并网发电系统中应用储能技术可以依靠实际的需求做出改变,在负荷低谷的时候把系统所发出的电能进行储存,在负荷高峰的时候将所储存的电能进行释放,这部分电能属于负荷供电,进而提升供电的可靠性,提升整体运行的稳定性。 3.2、在微电网的应用 未来输配电系统的一个重要发展趋势就是微电网并网,它对于电网系统运行的可靠性和稳定性具有很好的提升效果。在系统和微电网分离的时候,微电网的运行为孤岛模式,这时,微电网电源会对负荷的供电任务进行独立承担。由光伏电源构成的微电网,其储能系统将根据负载的情况自动调节,提升供电的稳定和安全。 3.3、在电网电能质量控制上的应用 在电网电能质量控制上,将储能技术应用在光伏并网发电系统中,可以对光伏电源的供电特性进行改善,进而提高供电的稳定性,利用合理的逆变控制措施,储能技术让光伏并网发电系统可以对调整相角、有源滤波及电压等进行控制。 储能技术在光伏并网发电系统中可以为用户提供良好的断电保护功能。当正常的电力供应无法提供给用户的时候,光伏系统可以为用户供给电能;而在电力系统自身发生故障或是用户用电存在危险隐患的时候,光伏并网系统会选择自动断电,并将断电之后所发出的电能进行自动存储。以光伏并网用户使用分时计费市电作为基础,将储能技术在此系统中进行应用,可以实现负荷转移。其本身和电力调峰上的应用技术较为相似,在低谷期,储能系统可以在满足基本需求的情况下,将多余电能进行储存,然后在高峰期释放。除此之外,针对负荷高峰时高功率负荷交替投切给正常运行所带来的不利影响,储能技术在光伏并网发电系统中的应用还可以减少负荷响应策略所带来的弊端。 总之,光伏发电与传统电源不同,输出功率不可控并且受环境条件制约,光照强度、温度等发生变化都可能对发电量产生影响。因此,光伏电源接入对电网的冲击是阻碍其大规模接入电网、替代传统发电形式的主要绊脚石。而储能技术作为电力系统中的新兴技术,通过选取适当的储能方式,采用适当的控制方法,可以有效解决光伏系统出力的随机可控等问题,减小光伏发电出力变化对电网的冲击。因此,研究光伏并网系统中储能技术的应用具有极其重要的现实意义。

储能技术对并网光伏电站的作用分析

储能技术对并网光伏电站的作用分析 发表时间:2018-04-19T16:22:21.923Z 来源:《电力设备》2017年第33期作者:钟东长[导读] 摘要:近年来,储能技术对并网光伏电站的作用得到了业内的广泛关注,研究其相关课题有着重要意义。 (佛山综合能源有限公司广东佛山 528000) 摘要:近年来,储能技术对并网光伏电站的作用得到了业内的广泛关注,研究其相关课题有着重要意义。本文首先对相关内容做了概述,分析了太阳能电池储能设备,并结合相关实践经验,分别从多个角度与方面就光伏发电系统中储能技术的改进策略展开了研究,阐述了个人对此的几点看法与认识,望有助于相关工作的实践。 关键词:储能技术;并网光伏电站;作用;分析 1 储能技术光伏并网发电系统对电网的影响 目前,由于光伏发电系统规模相对于电网规模较小,同时也由于储能系统成本较高,光伏系统并网发电时通常不采用储能系统,这使得光伏系统对电网带来了一些不良的影响,并且,随着光伏发电系统规模的不断扩大以及光伏电源在系统中所占比例的不断增加,这些影响变得不可忽视。通过对光伏发电的特性分析可知,光伏发电系统对电网的影响主要是由于光伏电源的不稳定性造成的,从电网安全、稳定、经济运行的角度分析,不加储能的光伏并网发电系统对电网造成的影响主要有以下几点。 1.1对线路潮流的影响 未接入光伏并网发电系统的时候,电网支路潮流一般是单向流动的,并且对于配电网来说随着距变电站的距离增加有功潮流单调减少。然而,当光伏电源接入电网后,从根本上改变了系统潮流的模式且潮流变得无法预测。这种潮流的改变使得电压调整很难维持,甚至导致配电网的电压调整设备(如阶跃电压调整器、有载调压变压器、开关电容器组)出现异常响应,同时,也可能造成支路潮流越限、节点电压越限、变压器容量越限等从而影响系统的供电可靠性,此外,这种潮流的随机性也不利于制定发电厂发电计划。 1.2对系统保护的影响 当光照良好,光伏并网电站输出功率较大时,短路电流将会增大,可能会导致过流保护配合失误,而且过大的短路电流还会影响熔断器的正常工作。此外,对于配电网来说,未接入光伏发电系统之前支路潮流一般是单向的,其保护不具有方向性,而接入光伏发电系统以后,该配电网变成了多源网络,网络潮流的流向具有不确定性。因此,必须要求增设具有方向性的保护装置。 1.3对电网经济性运行的影响 由于光伏电源的自身输出不稳定性,当光伏发电系统并网运行后,系统必须增加相应容量的旋转备用,以保证系统的调峰、调频能力,也就是说,光伏并网发电系统向电网供电,降低了机组利用小时数,牺牲了电网的经济性运行。并且,在分析电网的节能环保效果时,应当考虑这部分旋转备用的耗能和排放。 1.4对电能质量的影响 受云层遮挡的影响,光伏电源的发出功率可能在短时间内从100%降到30%以下,或由30%以下增至100%,对于大型光伏并网系统来说,会引起电压的波动与闪变或频率波动。此外,由于光伏发电系统所发出的电能为直流电,必须经过逆变装置接入电网,这一过程必将产生谐波,对电网造成影响。 1.5对运行调度的影响 光伏电源的输出功率直接受天气变化影响而不可控制,因此,光伏电源的可调度性也受到制约,当某个系统中光伏电源所占到一定比例后,电网运行商应认真考虑如何安全可靠地进行电力调度。另外,光伏电价与常规电价也存在着差异,如何在满足各种安全约束的条件下对电网进行经济性调度也将成为一个值得关注的问题。 2储能系统在光伏发电系统中的作用 通过对光伏发电的特性分析可知,光伏发电系统对电网的影响主要是由于光伏电源的不稳定性造成的,从电网安全、稳定、经济运行的角度分析,不加储能的光伏并网发电系统将对线路潮流、系统保护、电网经济运行、电能质量和运行调度等方面产生不利影响。光伏电站并网,尤其是大规模光伏电站并网隋思安网带来的影响是不可忽视的。目前解决光伏电站对电网影响的途径是提高电网灵活性或为并网光伏电站配置储能装置。 储能系统在光伏电站中的作用主要体现在以下几个方面:1)保证系统稳定。光伏电站系统中,光伏输出功率曲线与负荷曲线存在较大差异,而且均有不可预料的波动特性,通过储能系统的能量存储和缓冲使得系统即使在负荷迅速波动的情况下仍然能够运行在一个稳定的输出水平。2)能量备用。储能系统可以在光伏发电不能正常运行的情况下起备用和过渡作用,如在夜间或者阴雨天电池方阵不能发电时,这时储能系统就起备用和过渡作用,其储能容量的多少取决于负荷的需求。3)提高电力品质和可靠性。储能系统还可防止负载上的电压尖峰、电压下跌和其他外界干扰所引起的电网波动对系统造成大的影响,采用足够多的储能系统可以保证电力输出的品质与可靠性。 3 储能在光伏系统中的应用 光伏系统发电受自然条件影响,具有间歇性、随机性、周期性等特点,采用储能技术可以保证光伏系统平滑并网,提高电能品质,使得光伏系统更友好并网。同时储能技术还可以解决目前光伏系统并网中遇到的限电等问题。 3.1平滑光伏系统输出,解决弃光问题 通过在光伏系统中配置一定容量的储能,可有效抑制光伏系统的波动问题,平滑光伏系统输出,改善并网特性,如图1所示。限电问题一直是我国西部大型电站的痛点,电网建设速度赶不上新能源发展的速度,地方消纳不足,导致大量的弃光弃风现象。据统计仅甘肃省2015年上半年的弃光率接近30%,给投资者造成了巨大的经济损失。储能系统可在限电期间将光伏多余电力储存起来,在光伏电力不足时将电力释放出来,减少弃光,有效解决光伏限发问题,保证系统投资收益,如图2。

光伏发电系统中储能技术的控制方案

光伏发电系统中储能技术的控制方案 发表时间:2018-06-19T15:32:40.460Z 来源:《电力设备》2018年第4期作者:刘宪诩 [导读] 摘要:我国经济和社会的快速发展,使得能源的消耗量越来越大,随着科学技术的发展和国家对于新能源开发政策的支持,光伏发电被广泛的应用,但是目前在光伏发电系统中能源的储备技术还不够成熟,论文就光伏发电系统中储能技术进行分析,并分析探讨储能技术的可行性方案。 (国网天津市电力公司城西供电分公司天津市 300190) 摘要:我国经济和社会的快速发展,使得能源的消耗量越来越大,随着科学技术的发展和国家对于新能源开发政策的支持,光伏发电被广泛的应用,但是目前在光伏发电系统中能源的储备技术还不够成熟,论文就光伏发电系统中储能技术进行分析,并分析探讨储能技术的可行性方案。 关键词:光伏发电系统;储能技术;控制方案 引言 光伏发电系统是将太阳能转化为电能的一个过程,通过光伏发电不仅可以实现能源开发过程的清洁性,还可以实现能源的循环利用。只要有太阳光照射的地方都可以实现光伏发电,并且具有用之不竭、取之不尽的特点,因此在一些无电地区、偏远的山区可以充分利用光伏发电系统实现通电。但是对于光伏发电系统中储能技术的分析和研究还不够成熟,使得光伏发电系统的应用受到了一定的限制,因此要加强对于光伏发电系统中的储能技术的研究,为光伏发电系统的应用提供一些理论基础。 1储能技术的种类与特征 1.1电化学储能技术 电化学储能具有的能量为转换载体电池,通过化学反应将化学能与电能进行相互转化来储存能量。蓄电池模块为二次电池,其具有的化学反应是可逆的,从而实现了与电能互相转化达到可以充放电的能力。蓄电池储能是如今最为成熟与可靠的储能技术,依据其所利用的化学物质不同分为铅酸电池、钠硫电池与锉电池的几种类型。 1.2飞轮储能技术 飞轮储能技术由飞轮,磁悬浮轴支撑系统,发电机和电机,功能转换器,电子控制系统和真空泵,应急备用轴承等设备组成。其飞轮储能技术的主要原理是,飞轮系统在吸收动力的过程中,外部电网提供电力,使飞轮高速旋转,以动能储存的形式,使电力进入机械能源;然后在飞轮储能系统中释放动力,当飞轮形式的高速旋转到原动机驱动电机发电时,通过功率转换器输出电流和电压,完成机械能量到电能转换。当飞轮储能功率大于5KW/kg时,能量密度大于20WH/kg,效率可达90%以上,使用寿命可达20年或者是数以万计的能量释放。在飞轮储能系统工作环境在-40~50℃时,无污染、无噪音、维护简单,并可以达到连续工作。 1.3物理储能技术 物理储能技术主要含有抽水储能、压缩空气储能德国,最为成熟与应用最广的技术为抽水储能,主要是应用在电力系统的消峰填谷、调频与紧急事故备用等。 1.4超导磁储能技术 超导磁能系统是根据电力系统的需要对储能线圈进行充电控制。超导磁能系统具有响应速度快、转换效率高、比容量以及比功率大的特点,可以实现与电力系统的实施大容量交换和功率补偿。现阶段,世界上已经形成了1~5MW/MJ的低温超导磁储能技术,并且100MJ的超导磁储能系统也已经投入到了高压输电网中进行实际的运行。超导磁储能技术可以与再生能源发电系统相结合,但是在成本的投入、维修过程需要很大的费用。 1.5电磁储能技术 超级电容器是德国的物理学家Helmholz发现的,利用双电层原理的储能装置。超级电容具有的功率密度高、可以快速放电、循环寿命长的优势,充放电效率一般可以达到95%以上。 1.6蓄电池储能技术 蓄电池储能系统,是指通过蓄电池正负极氧化还原反应实现正极、负极活性物质的化学能和电能转化。目前在电力系统中常用的蓄电池储能技术有镍镉蓄电池、钠硫蓄电池铅酸蓄电池等。其中铅酸蓄电池具有成本低的特点,同时也具有充电速度慢、重量较重、寿命短,并且污染相对较大的特点。铅酸蓄电池主要应用在电力调峰、稳定电力系统和提高电能质量上。镍镉蓄电池与铅酸蓄电池一样都具有高污染的特点,但是镍镉蓄电池的充电效率较高,放电时候电压变化不大,内阻相对较小,对于充电环境的要求不高。锂离子电池的蓄电性能较好,但是由于大规模集成的技术限制,使得在电力系统的应用中不能广泛的使用。钠硫电池是当前比较热门的电池储能方式,其储能密度较高,经过串联并联结合后具有较大规模的储能效果。 2储能系统在光伏发电系统中的作用 2.1能源储备 当光伏发电系统运行出现异常时,储能系统当中的电能能够起到应急和过渡的作用。例如,当光伏电池方阵处在夜间或者遇到极端天气,不能进行发电时,光伏发电系统当中的储能系统就会起到应急和过渡的作用。 2.2稳定系统 在光伏发电系统当中,光伏输出的功率曲线和负荷曲线的差异较大,并且两者都存在不可预见的拨动性,但是如果把能源存储在储能系统当中或者通过储能系统对能源进行缓冲,光伏发电系统即使是在拨波动很严重的情况下,也能够实现电能的稳定输出和运行的平稳。 2.3品质可靠 当负荷电压出现高峰值、电压下跌或者受到外界干扰引起的电网波动较大时,储能系统能够有效的防止其对光伏发电系统造成影响。确保光伏发电系统电力的可靠和输出的品质。 3光伏发电系统中储能技术的改进策略 3.1ES系列储能变流器在光伏发电系统中的应用 ES系列产品是专门用于电池储能系统的大功率并网双向变流器,具有削峰填谷和平抑新能源发电出力波动等功能,有利于电力设备降

G光伏储能供电系统方案

沈阳市城市建设职业技术学院太阳能节能系统 技术方案 二〇一四年十二月十七日

一工程概况 1.1 概述 沈阳市城市建设职业技术学院光伏储能供电系统项目将在该学院公用建筑上安装光伏发电系统,光伏组件总装机容量为25kW。年平均发电量约4.1万kWh,光伏系统建设期为四个月,运行期25年。辽宁太阳能研究应用有限公司负责光伏电站的设计及施工安装,项目建成后将有效缓解该校的电力负荷压力。 该光伏发电系统由六大部分构成,包括:太阳能电池阵列、储能逆变器、光伏并网逆变器、BMS管理系统、蓄电池、交流负载。系统采用光伏于储能系统混合供电,市电正常情况下由光伏并网系统和市电为负载供电,市电断电时由储能系统和光伏并网系统联合供电。 二设计方案 设计的供电系统结构如图1所示,包括功率回路和监控回路两部分。功率回路中,储能逆变器首先从电网吸收电能把蓄电池充满,然后进入待机状态。电网有电情况下,光伏组件通过逆变器向负载供电,多余电量可输送给电网或通过防逆流控制器限制发电。电网停电情况下,光伏并网系统、储能逆变系统、负载组成一个微电网。储能逆变器首先启动,建立母线电压和频率,随后并网逆变器投入,联合为负载供电。大电网的检测与系统工作状态的投切转换由智能配电柜完成。 监控回路部分集成了对分布式能源的控制技术,包括对分布式电源与储能系统之间的协调控制,电力电子设备的智能控制,分布式电

源和负载组成的微网与主网之间的协调控制,基于先进通信技术的控制策略,应用新型供用电保护策略等。通过这些关键技术达到降低电力系统能耗,提高电力系统可靠性和灵活性。 图1 光伏储能供电系统结构图 储能系统用于实现电池与网间能量双向交换,可工作在蓄充模式和蓄电池能量回馈网模式。如图2所示AC/DC 模块采用三相高频SPWM 整流(逆变)电路,主功率回路由三相逆变桥、驱动电路、直流电容、电抗器、控制电路等组成。装置交流输入设置有软启动电路,装置启动前,首先通过软启动电阻对直流侧充电,当电压建立后再闭合主接触器,随后装置并网运行。 AC/DC模块可四象限运行,当电池充电时,将网侧交流电整流成直流电给蓄电池充电,当电池放电时,则将直流电逆变成交流回馈到电网。 图2 储能系统结构图 储能系统通过讯接收后台控制指令,根据功率指令符号及大小控制变流器对电池进行充电或放电,实现对电网有功功率及无功功率的调节。通过CAN 接口与电池管理系统通讯,获取电池组状态信息,可实现对电池的保护性充放电,确保电池运行安全。也可采集电网信息,参与电网的电压/无功控制,或作为备用电源使用等。 光伏系统的电池组件选用功率250Wp 的单晶硅太阳电池板,每串组件由10块电池板构成,共使用100块电池板。这10串电池板通过汇流箱汇流后接入30KW并网逆变器进行逆变。逆变器通过智能配电柜并入三相低压交流电网(AC380V,50Hz),使用独立的N线和接地线。 蓄电池使用寿命长、性能更稳定的胶体蓄电池,每块蓄电池容量

储能技术在太阳能发电系统中的应用研究 赵元宝

储能技术在太阳能发电系统中的应用研究赵元宝 发表时间:2019-08-26T13:05:38.083Z 来源:《电力设备》2019年第7期作者:赵元宝 [导读] 摘要:在经济的高速发展中,能源问题备受关注,面临短缺的问题。因此,为了实现对这一问题的缓解与解决,需要积极进行新能源的开发工作,尤其是将重点放在可再生能源的开发领域 (南瑞集团(国网电力科学研究院)有限公司江苏南京 211106) 摘要:在经济的高速发展中,能源问题备受关注,面临短缺的问题。因此,为了实现对这一问题的缓解与解决,需要积极进行新能源的开发工作,尤其是将重点放在可再生能源的开发领域。太阳能光伏的选择和应用在这一问题的应对方面极具价值。太阳能光伏在发生能量转化的过程中,很容易出现能量损失现象,因此,要重视储能系统的选择,降低能量损耗量。在储能系统的应用和支持下,能够保障能量供应的连续性。本文全面分析了太阳能光伏与储能系统,介绍了储能技术在光伏发电系统中的应用,探讨了复合储能型光伏并网系统。关键词:太阳能光伏;储能系统;并网 1 引言 随着全球范围内的能源危机和环保问题逐渐加剧,化石能源已不再适合作为人类发展进程的主要资源,清洁能源的开发利用成为各个国家关注的重点。其中,太阳能光伏发电凭借清洁、广泛等优良特点,近年来发展迅速,研究与应用成果显著,在电力系统中的渗透率不断增加。然而,不同于传统发电形式,光伏发电易受光照强度等自然因素影响,出力具间歇性和波动性,大规模光伏发电并网对电网产生的不利影响不可忽略。储能技术是电力系统中一种新兴的电能存储技术,可以有效地实现电力系统需求侧管理、消除昼夜间峰谷差、平滑负荷,提高电力设备的利用率,降低供电成本,对于加强系统运行稳定性、调整频率、补偿负荷波动具有良好作用。在新能源技术快速发展的大背景下,如果能在光伏发电系统中配置适当的储能方式并采用适当的控制方法,可以有效解决光伏发电出力的随机性等问题,减少对电网造成的波动和冲击,提高电力系统运行的稳定性。因此,研究储能技术在光伏系统中的应用具有极大实际价值。 2 光伏发电与储能系统介绍 所谓光伏发电,简单讲即利用半导体界面的光生伏特效应,将太阳能转化为电能,供给电路负载。简单的光伏发电系统主要由太阳能电池板、控制器和逆变器三大部分组成。与传统化石燃料燃烧发电相比,光伏发电的优点主要体现在:①来源无枯竭且质量高;②能源清洁无污染;③不受地缘限制;④可就地发电供电,不需额外架设输电线路和消耗燃料;⑤建设周期较短。光伏发电系统主要可分为三类:独立式、分布式和并网式。分布式光伏发电,即在用户现场或者用电现场直接配置规模较小的光伏发电系统,用以满足特定用户的需求,或者支持现有电网设施的经济运行,亦或同时满足这两方面的需求。考虑我国人口分布不均很以及地理因素、光照条件等,分布式光伏发电在我国可以说极具发展前景。 储能技术可以说是解决光伏发电供电不平衡不稳定这一问题的最直接有效的方法。其优势在于:一是储能系统可以作为供能的缓冲,起到“削峰填谷”的作用。即使在光伏发电系统出现剧烈波动时也能稳定供电;二是可以储存电能。在光伏系统不能正常供电时起到应急作用,同时也可在光照较强输出功率较大时,向太阳能电池充电;三是保护系统。当电路发生故障或者用户用电发生危险时,系统会自动断电,储能系统可以将断电后光伏系统产生的电能收集起来,从而保护整个系统和电路。 3 储能技术在光伏发电系统中的应用 储能技术主要是借助外来的介质实现多余能量储存,进而在需要的时候释放能量。常见的电储能技术有压缩空气储能、化学电池储能、蓄水储能、超级电容储能和飞轮储能、超导磁场储能等。超级电容储能和飞轮储能、超导磁场储能是目前解决成本和地域限制的新型储能方式,本文主要讲述这三类储能技术在光伏发电系统中的应用。 3.1超级电容储能在光伏发电系统中的应用 超级电容储能利用双电层充放电原理来工作,其电解液中的阴、阳离子在电场的作用下分别向正、负电极移动,最终在电极表面形成双电层,通过高度可逆的化学吸附、脱附和氧化还原反应来存储能量。作为新兴的储能材料,超级电容具有功率密度高、充放电效率高、无污染等优点。 近年来,对超级电容储能技术进行大量研究开发,并取得显著的成果。有人利用超级电容容量大、可无限次循环充放电的特点,将超级电容器与功率器件组合成的功率变换电路接入光伏发电阵列与负载之间,通过补偿光伏电池输出电压来改变光伏阵列输出特性,从而控制光伏发电系统完成最大功率点跟踪。设计了超级电容器的充电控制器和放电控制器,对系统的总体结构和控制系统进行设计,搭建超级电容器储能的独立光伏发电系统的小功率实验平台,并通过仿真和实验结果验证了方案的可行性以及良好的可靠性和稳定性。 3.2飞轮储能在光伏发电系统中的应用 飞轮储能系统是一种新型的储能元件,是机械能和电能的交换装置,具有充电、放电和能量保持三种工作模式。可以采取多种充电模式,放电时通过飞轮的带动发电机发电,并通过电力电子装置的转换成可利用的电能,保持阶段保持飞轮的额定转速转动,既不充电也不放电。其经济性较强,满足绿色和高效的需求,安全性和可靠性显著、功率容量十分巨大,具有发展前景良好,拥有巨大的市场潜力。因此,飞轮储能系统受到行业内很大的关注。有人提出了一种基于模糊控制的光伏飞轮储能系统有功平滑控制策略,将模糊控制应用于平抑有功功率,有效地提高了功率的平滑输出、较大程度地减小了光伏发电的功率波动、提高了电能质量、降低了对电网的冲击。 3.3超导磁场储能在光伏发电系统中的应用 超导磁场储能是将超导体放在一定的磁场当中,对超导体进行降温,一直到超导体的临界的温度以下,然后把磁场撤掉,超导体内部将在临界温度下因磁场磁力影响下出现感应电流。目前为了利用超导体在临界温度下产生持续性的电能,进而获取长时间储存电能的效果, 是现在技术和实际应用上亟待解决的问题。光伏发电系统和超导储能系统通过交流母线相连为本地负荷供电。有学者就利用光伏出力与本地负荷需求的差值作为SMES 控制器的功率控制信号策略,建立了超导储能系统模型,并对其在光伏发电系统的中的运行控制方式进行研究,很好地解决光伏发电功率易受环境影响、不可调节、难于满足负荷需求的问题,对由负荷变化引起的母线电压波动和故障引起的母线电压跌落具有良好的补偿作用。 4 复合储能型光伏并网系统 现在,简单的光伏系统具有输出功率不稳定的特点,负荷储能型光伏并网系统是储能技术在光伏并网当中的应用具有一定的代表性,

光伏储能电站的三种模式

光伏储能电站的三种模式 众所周知太阳能光伏发电一直是实现我国能源和电力可持续发展战略的重要组成部分。 但光伏输出功率具有很强的波动性、随机性,光伏电力的不稳定性严重制约了光伏电力的接入和输送。 而光伏储能技术可以实现削峰填谷、负荷跟踪、调频调压、电能质量治理等功能。 光伏储能系统还可以在光伏电站遇到弃光限制发电时将多余电能存入储能电池内。光伏发电量低于限幅值或晚上用电高峰时通过储能逆变器将电池内电能送入电网,储能系统参与电网削峰填谷。 储能系统还可利用峰谷电价差创造更大的经济效益,提高系统自身的调节能力,作为解决大规模可再生能源发电接入电网的一种有效支撑技术。 1、配置在电源直流侧的储能系统

配置在电源直流侧的储能系统主要可安装在诸如光伏发电的直流系统中,这种设计可将蓄电池组合光伏发电阵列在逆变器直流段进行配接调控。 ▲配置在电源直流侧的储能系统 该系统中的光伏发电系统和蓄电池储能系统共享一个逆变器,但是由于蓄电池的充放电特性和光伏发电阵列的输出特性差异较大,原系统中的光伏并网逆变器中的最大功率跟踪系统(MPPT)是专门为了配合光伏输出特性设计的,无法同时满足储能蓄电池的输出特性曲线。 因此,此类系统需要对原系统逆变器进行改造或重新设计制造,不仅需要使逆变器能满足光伏阵列的逆变要求,还需要增加对蓄电池组的充放电控制器,和蓄电池能量管理等功能。 一般而言,该系统是单向输出的,也就是说该系统中的蓄电池是完全依靠光伏发电充电的,电网的电力是不能给蓄电池充电的。

该系统光伏发电阵列发出的电力在逆变器前端就与蓄电池进行了自动直流平衡,这种模式的主要特点是系统效率高,电站发电出力可由光伏电站内部调度,可以达到无缝连接,输出电能质量好,输出波动非常小等,可大大提高光伏发电输出的平滑、稳定性和可调控性能,缺点是使用的逆变器需要特殊设计,不适用于对现有已经安装好的大部分光伏电站进行升级改造。另一个缺点是,该储能系统中的蓄电池组只能接受本发电单元的电力为其充电,而其他临近的光伏发电单元或电站的多余电力无法为其充电。也就是说这种方案缺乏大电站内部电力调配的功能。 2、配置在电源交流侧的储能系统 配置在电源交流侧的储能系统也可以称之为配置在交流侧的储能系统,单元型交流侧的储能模式如图所示。

储能技术在光伏发电系统中的应用研究

储能技术在光伏发电系统中的应用研究 储能技术的发展对新能源发电的应用具有一定的促進作用。针对光伏发电稳定性问题,在总结各类储能技术研究现状和优缺点对比的基础上,分析了储能装置对光伏发电系统的积极作用,并在PSCAD中搭建典型光储模型进行仿真研究。结果表明,储能装置能够维持光伏发电系统的功率稳定,对确保电力系统运行的可靠性与稳定性具有不可或缺的作用。 标签:光伏发电;储能技术;稳定性 光伏太阳能是一种分布广泛、取之不尽、用之不竭的可再生能源。光伏发电作为太阳能利用的一种方式,在过去的几年里迅猛发展。光伏电源不同于传统电源,它的输出功率随光照强度、温度等环境因素的改变而剧烈变化。因此,光伏发电若要取代传统能源实现大规模发电,对电网产生的冲击影响不可忽视[1]。随着光伏发电系统在电网中所占比例的不断增大,它对电网带来的影响必须得到有效治理,以保证供电的安全可靠性[2] 1、光伏储能系统的组成 光伏储能系统的典型结构包含四部分:光伏阵列、最大功率点跟踪装置、储能系统和逆变器。光伏阵列是光伏发电系统的基本环节,是光伏组件根据系统电压、电流的需要,经过串并联安装在支架上构成。光伏阵列是将太阳能转化为电能的能量转换单元。光伏电池阵列具有强烈的非线性特性,输出直接受光照、温度以及负载等因素的影响,最大功率点跟踪控制可以保证在当时的自然条件下获得最大的功率输出,从而充分利用光伏能源[3]。储能系统起着调节、控制作用,在光照良好、发电充足时储存部分电能,需要时释放这部分电能,起到稳定光伏电源输出和调节供用电平衡的作用。逆变器和变压器作用是将光伏阵列发出的电压较低的直流电转化为电压等级适合的交流电,从而为光伏发电提供必备条件。 2、无储能光伏发电系统对电网的影响 目前,由于光伏发电系统规模相对于电网规模较小,也由于储能系统成本较高,光伏发电系统通常不采用储能系统,使得光伏系统对电网带来了一些不良影响。随着光伏发电系统规模的不断扩大和光伏电源在系统中所占比例的不断增加,这些影响变得不可忽视[4]。光伏发电系统对电网的影响主要是由于光伏电源的不稳定性造成的,从电网安全、稳定以及经济运行的角度分析,不加储能的光伏发电系统对电网造成的影响主要有以下几点。 2.1 对线路潮流的影响 未接入光伏系统时,电网支路潮流一般单向流动,且对配电网来说随着距变电站的距离增加,有功潮流单调减少。然而,当光伏电源接入电网后,从根本上改变了系统潮流的模式,且潮流变得无法预测,同时也可能造成支路潮流越限、

“光伏+储能”-—分布式光伏未来的发展趋势

“光伏+储能”—分布式光伏未来的发展趋势 近日,古瑞瓦特与泰国EA及泰国电网公司签署了关于部署分布式储能充电网络的合作备忘录,古瑞瓦特作为中国最大的户用储能系统解决方案供应商,将为这一次合作提供非常可靠的产品和技术支撑,此次在储能领域具有国际影响力的三强合作,充分说明了古瑞瓦特在储能领域的技术实力。 中国储能市场的现状 储能技术是构建能源互联网,促进能源新业态发展的核心基础,未来三大新兴产业——新能源并网、智能电网、电动汽车的发展瓶颈都指向储能技术,市场潜力巨大。 储能目前正在走向商业应用的初期过渡阶段。储能产业将直接改善能源供给在时间与空间上的布均,亦能改善能源结构,与政府的电力体制改革脚步密不可分,作为国家鼓励发展的产业,今年三月,中国国家能源局下发了《关于促进储能技术与产业发展的指导意见(征求意见稿)》公文,给储能行业的发展指明了方向;同年四月,在苏州举行的第七届中国国际储能大会上获悉,储能扶持政策细则将陆续出台,产业发展有望进入快车道。 “光伏+储能” 光伏平价时代必将到来,光伏储能势不可挡 一直以来,国家高度鼓励并支持分布式光伏的发展,分布式光伏按照2013年发布的《国家发展改革委关于发挥价格杠杆作用促进光伏产业健康发展的通知》,电价补贴标准为每千瓦时0.42元(含税)执行。分布式光伏补贴标准维持近4年不变,且不纳入配额制范围,企业及个人能及时获得补贴。 这期间,一至三类资源区新建光伏电站的标杆上网电价分别由2013年政策规定的每千瓦时0.90元、0.95元、0.90元,调整至2016年执行的每千瓦0.80元、0.88元、0.98元,最终下调至现在的每千瓦时0.65元、0.75元、0.85元。 随着标杆上网电价的连续下调,分布式却连续4年保持补贴电价不变,可以预料,分布式光伏并网的补贴下调,是一种趋势和必然,最终目的是实现光伏的平价上网,而补贴的下调最直接影响的就是度电成本加大,收益下降,光伏储能的出现就是要最大化光伏系统的收益。 “光伏+储能”的优势在哪里呢?

相关文档
最新文档