不同活性炭对过硫酸盐活化效能及活化机理研究
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不同活性炭对过硫酸盐活化效能及活化机理研究
1 引言(Introduction)
过硫酸盐氧化技术是近年来新兴的一种高级氧化技术.过硫酸盐本身在室温下氧化能力有限, 但在一定的条件下可以活化生成强氧化性的硫酸根自由基, 通过电子转移等反应实现难降解污染物的氧化去除.与基于羟基自由基的高级氧化技术相比, 活化过硫酸盐氧化技术受pH影响较小, 原料和自由基都具有良好的稳定性, 且价格低廉, 在废水、地下水及土壤中有机污染物的治理方面具有广阔的应用前景.研究表明, 光、热和过渡金属离子等都可以活化过硫酸盐产生硫酸根自由基(Liu et al., 2016;Nie et al., 2014;Epold et al., 2015).但光、热等活化方式需外加能量, 过渡金属离子活化可在常温常压下实现, 但反应后体系内往往存在较高浓度的金属离子, 需通过沉淀等方式进一步去除, 增加了处理成本, 且存在二次污染的风险.
活性炭(AC)是一种常见的吸附剂, 在水处理领域应用广泛.近年来, 有研究发现, 活性炭可以活化过硫酸盐用于有机污染物的降解(Liang et al., 2009).与其它过硫酸盐活化剂相比, 活性炭性质稳定, 反应无需外加能量, 也无金属离子引入.Yang等(2011)选用商业颗粒活性炭活化过硫
酸盐降解染料酸性橙7;孙延花(2012)采用椰壳活性炭活化过硫酸盐降解染料橙黄G;刘子乐等(2017)采用硝酸氧化联合高温处理对活性炭进行表面改性, 并将其用于活化过硫酸盐降解苯酚.相关研究均选择单一的活性炭-目标物质体系, 事实上, 活性炭可以由多种原料在不同条件下制备而成, 不同活性炭的物理化学性质差异显著, 因此, 其活化过硫酸盐的性能可能会出现差别.辨析这种差别并探明相关机理及规律, 可以极大地促进活性炭活化过硫酸盐技术的推广和应用.
因此, 本研究选取3种商业活性炭(煤质活性炭、木质活性炭和椰壳活性炭)作为过硫酸盐活化剂, 以偶氮染料橙黄G作为目标有机物, 通过动力学实验研究不同活性炭对过硫酸盐的活化效能及活化机理, 考察氯化钠和碳酸钠对活性炭/过硫酸盐体系的影响, 以期为活性炭在过硫酸盐氧化技术中的推广和应用提供科学依据与技术支撑.
2 材料与方法(Materials and methods)2.1 实验材料
煤质活性炭F400D(Flitrasorb 400D)购自美国Calgon 公司, 木质活性炭Norit(Norit C CRAN)购自荷兰Norit公司, 椰壳活性炭Youshi购自宁波优适活性炭厂, 3种活性炭均研磨过100目筛后备用.
过硫酸钠(PS)、氯化钠和碳酸钠购自南京化学试剂有限公司, 甲醇购自德国默克公司, 橙黄G购自国药集团化学试剂有限公司, 其结构如图 1所示.
图 1
图 1橙黄G的化学结构
2.2 实验方法2.2.1 活性炭的物化性质表征
采用美国康塔公司的Autosorb iQ比表面积与孔径分析仪对活性炭的孔径结构进行分析.在77 K条件下测得活性炭对氮气的吸附-脱附等温线, 由BET法计算总比表面积(SBET), 采用密度函数理论计算孔径分布, 利用系统软件计算总孔容(Vt)和平均孔径(AP), 由t-plot法计算微孔比表面积(Smic)和微孔孔容(Vmic), 由差减法计算微孔以外的孔(主要是介孔)的比表面积(Sext)和孔容(Vext).
参考相关文献(Ribeiro et al., 2013), 采用Bohem滴定法分析表面的含氧官能团, 测定活性炭等电点pH(pHzpc).采用日本ULVAC-PHI公司的PHI 5000 VersaProbeX射线光电子能谱仪研究活性炭表面的元素组成及形态.
2.2.2 活性炭/过硫酸盐体系降解橙黄G实验
取100 mL浓度为40 mg·L-1的橙黄G溶液于锥形瓶中, 依次加入过硫酸钠(5 mmol·L-1)和活性炭(0.5 g·L-1), 密封后置于恒温振荡器中以110 r·min-1的转速振荡.在设定时间取样, 样品用0.45 μm滤膜过滤, 取其滤液, 采用Yoke公司UV752N型紫外分光光度计在478 nm条件下测定吸光度, 计算染料的剩余浓度.
3 结果与讨论(Results and discussion)3.1 活性炭的物化性质
活性炭比表面积和孔容分析结果如表 1和图 2所示.可以看出, 3种活性炭的比表面积在1000~1500 m2·g-1范围内, 其中, Youshi活性炭含有90%以上的微孔, 是典型的微孔材料, 而Norit活性炭中含有大量介孔, 微孔仅占40%左右, F400D活性炭的微孔比例介于两者之间, 平均孔径接近于微孔.3种活性炭的孔径分布呈现出不同的特点.
图 2
图 2活性炭的孔径分布
pHzpc测定结果显示, F400D和Youshi两种活性炭的等电点pH大于7, Norit的等电点pH小于7.Bohem滴定法的结果显示, 煤质活性炭F400D和椰壳活性炭Youshi表面的碱性官能团显著高于酸性官能团, 而木质活性炭Norit表面则是酸性官能团占优势(表 1).X射线光电子能谱分析结果如表 2所示.3种活性炭表面的主要组成元素是碳和氧, 其中, 碳占有绝对优势, 质量分数超过88%, Norit表面还检
测出了少量的氮元素.相比F400D和Youshi两种活性炭, 木质活性炭Norit含有较多的氧元素, 碳元素含量较少.将C1s 的谱图进行分峰拟合(Terzyk, 2001), 结果如图 3所示.可以看出, 3种活性炭中碳元素的形态以sp2杂化碳为主, 其比例超过71%, 以C—O/C—S、C=O、O=C—O和π-π*形式存在的碳的比例较少.
图 3
图 3活性炭的X射线光电子能谱C1s图
3.2 活性炭/过硫酸盐体系对橙黄G的去除效果
在AC/PS体系中, 橙黄G的去除可以通过以下3种途径实现:过硫酸盐自身的氧化作用、活性炭的吸附作用和活性炭活化过硫酸盐的氧化降解作用.因此, 对上述3种途径可能发挥的作用分别进行了研究, 结果如图 4所示.
图 4
图 4活性炭/过硫酸盐体系对橙黄G的去除效果
对于单独PS体系, 其对橙黄G的去除作用很弱, 180 min时的去除率仅有5%.对于单独的活性炭体系, 3种活性炭对橙黄G均有一定的吸附作用.其中,F400D和Youshi对橙黄G的吸附作用相当,180 min时的去除率可达到69%,Norit 对橙黄G的吸附作用较弱,180 min时的去除率仅有34%.这可能与活性炭的孔径分布及表面化学性质有关.F400D和