电容式触摸传感器触摸屏的实现原理

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

触摸传感器的广泛使用已经有很多年了。不过,随着近期混合信号可编程器件的发展,使得电容式触摸传感器成为各种消费电子产品中机械式开关的一种实用、增值型替代方案。

对于典型的电容式传感器,规定其覆盖层的厚度为3mm或更薄。随着覆盖层厚度的增加,来传感手指的触摸将变得越来越困难。换句话说,伴随着覆盖层厚度的增加,系统调整过程将必须从“科学”跨越到“精益求精”。为了说明如何制作一个能够提升目前技术极限的电容式传感器,在本文所述的实例中,选用玻璃覆盖层的厚度为10mm。玻璃易于使用,购买方便,而且是透明的,因此您可以看到下面的感应垫。玻璃覆盖层还被直接应用于白色家电。

手指电容

所有电容式触摸传感系统的核心部分都是一组与电场相互作用的导体。在皮肤下面,人体组织中充满了传导电解质(一种有损电介质)。正是手指的这种导电特性,使得电容式触摸传感成为可能。

简单的平行板电容器具有两个导体,其间隔着一层电介质。该系统中的大部分能量直接*在电容器极板之间。少许能量会泄露到电容器极板以外的空间,而由这些泄露能量所形成的电场被称为“边缘场”。制作实用电容式传感器的部分难题在于:需要设计一组印制导线,将上述的边缘场引导到用户易接近的有效感应区域中。显然,对于这种传感器模式来说,平行板电容器并非上佳之选。

把手指放在边缘电场的附近将增加电容式传感系统的导电表面积。由手指所产生的额外电荷存储容量就是已知的手指电容CF。无手指触摸时的传感器电容用CP来表示。在本文中,它代表寄生电容。

关于电容式传感器的一个常见的误解是:为了使系统正常工作,手指必须接地。实际上,手指被传感的原因在于它带有电荷,而这与其是否悬空或接地完全无关。

传感器的PCB布局

图1显示了一块PCB的顶视图,该PCB实现了本例中的一个电容式传感器按键。

图1:传感器的PCB顶视图(online)

该按键的直径为10mm,这是一个成人指尖的平均尺寸。为该演示电路而组装的PCB包含4个按键,它们的中心相隔20mm。如图1中所示,接地平面也位于顶层。金属感应垫和接地平面之间设置了一个均匀的

隔离间隙。该间隙的尺寸是一个重要的设计参数。如果间隙设置得过小,则过多的电场能量将直接传递至地。而如果间隙设置得过大,则将无法控制能量穿越覆盖层的方式。选择0.5mm的间隙尺寸可以很好地使边缘场透过10mm厚的玻璃覆盖层。

如图所示,PCB中的过孔将金属感应垫与电路板底面上的印制导线相连。当电场试图找到最短的接地路径时,介电常数εr将对进入材料中的电场能量的密度产生影响。标准玻璃窗的εr约为8,PCB的FR4材料的εr约为4,而白色家电中常用的耐热玻璃的εr大约为5。在本例中,采用标准的窗户玻璃。需要注意的是,在PCB上贴有玻璃纸,即3M公司的468-MP绝缘胶膜。

电容式传感系统101

该电容式传感系统的基本元件包括:一个可编程电流源、一个精密模拟比较器和一根用来按顺序传输一组电容式传感器信号的多路复用总线。在本文所讨论的系统中,一个弛张振荡器起着电容传感器的作用。该振荡器的简化电路示意图如图2所示。

图2:电容式传感弛张振荡器电路。(online)

比较器的输出被送进脉冲宽度调制器(PWM)的时钟输入电路,该PWM负责对一个时钟频率为24MHz的16位计数器进行门控。传感器上面的手指使电容增大,从而导致计数值增加。就是基于这一原理来检测到手指的存在。该系统的典型波形示于图3中。

图3:电容式传感弛张振荡器电路的波形。(online)

该设备的实现原理图如图4所示。

图4:电容式传感电路原理图。(online)

为了实现电容式传感和串行通信,该电路采用了赛普拉斯的CY8C21x34系列中的PSoC IC芯片。该芯片包含一组模拟和数字功能块,这些功能块可由存储于板上闪存中的固件来配置。另一颗芯片负责处理RS232的电平移位,以便建立到主机的通信链接,并实现波特率为115,200的电容式传感数据记录。四个电容传感按键的引脚分配在图5的表中给出。PSoC是通过一个包含电源、地以及编程引脚SCL和SDA的ISSP 接头来实现编程的。而通过一个DB9连接器将电脑与电容式传感电路板相连。

PSoC利用程序固件来配置,还采用一个5V工作电源和一个内部生成的24MHz系统时钟。对该24MHz 时钟进行1:26分频,产生一个为实现115,200波特率的TX8模块时钟。电容传感用户模块选择以“周期法”(Period Method)来运行,在该工作模式中,计数在固定数量的弛张振荡器周期中累加。换言之,16位计数器值代表了一个与传感器电容成正比的周期。

代码段1(详见本刊网站)罗列了系统固件的功能。与设立电容式传感系统相关的大部分工作都已被编为一组由C程序来调用的标准CSR例行程序。例如:CSR_1_Start()负责配置PSoC的内部布线,以使电流源DAC与模拟多路复用器相连,而比较器与经过正确初始化的PWM和16位计数器相连。

调整传感器

每次调用上列程序中的调用函数CSR_1_Start()时,均对Button1的电容进行测量。原始计数值被存储于CSR_1_iaSwResult[ ]阵列中。用户模块还跟踪一个用于原始计数的基线。每个按键的基线值均为一个由软件中的IIR滤波器进行周期性计算的平均原始计数值。IIR滤波器的更新速率是可编程的。基线使得系统能够适应于由于温度和其它环境影响而引起的系统中的漂移。

开关差分阵列CSR_1_iaSwDiff[ ]包含消除了基线偏移的原始计数值。利用开关差值来决定按键目前的开/关状态。这可使系统的性能保持恒定,即便在基线有可能随着时间的推移而发生漂移的情况下也是如此。

图5显示了固件中实现的差分计数与按键状态之间的转移函数。

图5:差分计数与按键状态之间的转移函数。(online)

该转移函数中的迟滞提供了开关状态之间的干净利落的转换,即使计数是有噪声的情况下也不例外。这也为按键提供了一种反跳功能。低门限被称为“噪声门限”,而高门限则被称为“手指门限”。门限水平的设定决定了系统的性能。当覆盖层非常厚时,信噪比很低。在此类系统中设定门限水平是一项具有挑战性的工作,而这恰好是电容式传感设计技巧的一部分。

图6显示了一个持续时间为3秒的按键触压操作的理想原始计数波形。

相关文档
最新文档