二氧化钛的各种制备方法1

二氧化钛的各种制备方法1
二氧化钛的各种制备方法1

1.回流脱水法制备Cu2+/TiO2粉体

一、化学试剂

钛酸四正丁醋[Ti(OC4H9)4简称TNB](C.P.)、氯化铜(CuCl2·2H2O)(A.R.)、无水乙醇(A.R.)、盐酸、丙酮(A.R.)、蒸馏水

二、主要仪器

1、DF-101T集热式恒温加热磁力搅拌器(巩义市英峪予华仪器厂)

2、202-1型电热恒温干燥箱(上海实验仪器厂)

3、pHS-3C型酸度计(上海雷磁仪器厂)

4、电子分析天平METTLER AE200(梅特勒-托利多仪器有限公司)

5、离心机LD5-10(北京医用离心机厂)

6、回流装置

三、实验过程

称取一定量的CuCl2·2H2O溶于50mL蒸馏水,用1mol·L-1HCl调pH=3,加热搅拌至回流,缓慢滴入2mL Ti(OC4H9)4与10mL无水乙醇的混和溶液,继续回流2h。室温下陈化12h,将得到的浅绿色沉淀离心洗涤,于70℃干燥12h,制得铜离子掺杂量为1%(质量比)的二氧化钛粉体。

2.超声辐射法制备Cu2+/TiO2粉体

一、化学试剂

钛酸四正丁醋[Ti(OC4H9)4](C.P.)、氯化铜(CuCl2·2H2O)(A.R.)、无水乙醇(A.R.)、盐酸、丙酮(A.R.)、蒸馏水

二、主要仪器

1、KQ-250B型超声波清洗池(频率40KHZ,功率250W)

2、202-1型电热恒温干燥箱

3、离心机LD5-10

3、pHS-3C型酸度计5、电子分析天平METTLER AE200

三、实验过程

称取一定量的CuCl2·2H2O溶于100mL蒸馏水,用1mol·L-1HCl调pH=3,于70℃超声振荡下滴入5mL TNB与10mL无水乙醇的混和液,继续超声3h。室温陈化12h,离心洗涤,70℃干燥12h,得1wt%Cu2+/TiO2粉体。

3.TiCl4直接水解法制备金红石型TiO2

一、化学试剂

四氯化钛(TiCl4)(C.P.)、丙酮(A.R.)、蒸馏水

二、主要仪器

1、D40-2F型电动搅拌机(杭州仪表电机厂)

2、离心机LD5-10

3、202-1电热恒温干燥箱

三、实验过程

以TiCl4为原料,在冰水浴中强力搅拌下,将一定量的TiCl4滴入蒸馏水中,配制成3mol·L-1TiCl4溶液。将此溶液稀释至0.3mol·L-1的溶液,置于70℃烘箱中保温6h,冷却至室温,将沉淀过滤、洗涤、烘干、得到金红石型纳米TiO2粉体。

4.Ti(SO4)2中和法制备锐钛矿型TiO2粉体

一、化学试剂硫酸钛(Ti(SO4)2)(C.P.)、氨水(A.R.)、蒸馏水

二、主要仪器

1、D40-2F型电动搅拌机

2、pHS-3C型酸度计

3、循环水多用真空泵(郑州杜甫仪器厂)

4、202-1电热恒温干燥箱

5、马沸炉SX2-12-10、电阻炉温控器(KSW-4D-16)(上海高潮自控设备厂)

三、实验过程

按照张春光等[72]的合成方法,在常温下将3 mol/L的Ti(SO4)2溶液与25%的氨水反应,调节到设定的pH值得到Ti(OH)4沉淀,再真空抽滤;所得产物在105℃干燥后放入研钵研磨,然后在600℃锻烧1h,得到锐钛矿型纳米TiO2粉体。

5.溶胶凝胶法制TiO2 纳米粒子

以钛酸正丁酯为原料,量取17.0mL钛酸正丁酯和4.8mL冰醋酸溶于34mL无水乙醇中,搅拌30min,然后边搅拌边缓慢滴入1mL水和10mL无水乙醇的混合溶液, 再搅拌1h,即得到淡黄色的稳定、均匀、透明的TiO2 溶胶。将配好的溶胶首先在常温下干燥使其凝胶化,静置1~ 2d后,放入100℃的马弗炉中保温一定时间; 将炉温升至500℃,再保温2h后,冷却至常温;将冷却后的TiO2取出,放在研钵中磨细, 即得纯TiO2粉末。

聚乙烯醇水凝胶的制备方法及设备

1.实验 1.1试剂和仪器 (1)仪器:Alpha-Centau“FT.IR型红外光谱仪 (日本岛津),S540—SEM型扫描电镜(日本日立),热 分析(DT A_TG)(Du Pont 1090B型热分析仪),紫 外一可见光谱仪(日本日立)UV-3400紫外可见分光光度计,PH孓3C型精密pH计(上海精密科学有限 公司)。 (2)试剂:壳聚糖(CS)(浙江玉环县化工厂,分 子量:1.5×105,脱乙酰度:93%),聚乙烯醇(PVA) (佛山市化工实验厂,日本进口分装,Mw一1.o× 105),冰乙酸(分析纯),甲醛(37%,分析纯),盐酸 (分析纯),氢氧化钠(分析纯)。 1.2水凝胶的制备及其溶胀性能测试 1.2.1水凝胶的制备 取50mL圆底烧瓶,向其中加入o.5 g CS、 15mL二次水和2mL冰乙酸(3 m01/L),搅拌均匀 后,再加入o.39 PVA,搅拌混合均匀,然后抽真空, 向其中加入2mL甲醛(37%),室温反应24h;成胶 后,取出,切成1mm3左右的颗粒,用二次水浸泡,每 天换1次水,1周后取出;真空干燥,最后置于干燥 器中备用。

2. 实验 1.1 实验样品的制备 1.1.1 银溶胶的制备 将0.001mol/L的单宁酸和0.1mol/L的Naz COs溶液加热 至6O℃并搅拌,逐滴滴加0,001mol/L的AgNO3。当混合物颜 色逐渐加深至橙红色时,形成稳定的银溶胶。反应的关键是控 制AgNOa溶液的滴加速度和加入量。其反应机理l1]为: 6 AgNOs+ 6H52046+ 3 Na2C03— 6Ag +C76H52049+6 NaNO3+3 0 1.1.2 Ag/聚乙烯醇复合水凝胶的制备 制备浓度为1O%的PVA溶胶,将新制备的银溶胶在搅拌 的条件下加入PVA溶胶中,其混合液在室温下静置5min后倒 入模具中,放入THCD-04低温恒温槽中,采用冷冻一解冻法使之 结晶成型。每个循环的冷冻一解冻工艺见图1。按此做7个循环 制得样品,即得到Ag/PVA水凝胶。同理可制得Ag 浓度为 O%、0.125%、0.25 、0.5% (即Ag 占PVA的质量百分比 为:O%、1.25%、2.5 和5 )的Ag/PVA复合水凝胶。将样品制成哑铃形,测试区宽度约4mm,厚度约lmm(每个样品在测试前用千分尺精确测定其宽度和厚度)。每个样品裁5个样条,结果取平均值。2.1 Ag/PVA复合水凝胶的制备 微粒由于比表面积很大和表面不饱和键较多,具有很高的 表面能,所以极易团聚_3]。如果金属微粒发生团聚,则其光、电、

纳米二氧化钛太阳能电池的制备及其性能的测试实验报告

华南师范大学实验报告 学生姓名学号 专业化学(师范) 班级12化教五班 课程名称化学综合实验实验项目纳米二氧化钛太阳能电池的 制备及其性能测试 实验类型□验证□设计□综合实验时间2016 年 4 月21 日实验指导老师李红老师实验评分 纳米二氧化钛太阳能电池的制备及其性能测试 一、前言 1.实验目的 (1)了解纳米二氧化钛染料敏化太阳能电池的组成、工作原理及性能特点。 (2)掌握实合成纳米二氧化钛溶胶、组装成电池的方法与原理。 (3)学会评价电池性能的方法。 2.实验意义 能源问题是制约目前世界经济发展的首要问题,太阳能作为一种取之不尽用之不竭无污染洁净的天然绿色能源而成为最有希望的能源之一。目前研究和应用最广泛的太阳能电池主要是硅系太阳能电池。但硅系电池原料成本高、生产工艺复杂、效率提高潜力有限(其光电转换效率的理论极限值为30%),限制了其民用化,急需开发低成本的太阳能电池。 1991 年,Gratzal等[1]将纳米多孔TiO2薄膜应用于一种新型的,基于光电化学过程的太阳电池-染料敏化纳米薄膜电池中,光电转换效率达到7.1%-7.9%,引起了世人的广泛关注。随后,该小组

[2]开发了光电能量转换效率达10-11%的DSSC,其光电流密度大于12 mA/cm2,。目前,染料敏化纳米二氧化钛太阳能电池的光电转换效率已达到了11.18%。染料敏化纳米二氧化钛太阳能电池在世界范围内已经成为了研究的热点。 DSSC与传统的太阳电池相比有以下一些优势: (1) 寿命长:使用寿命可达15-20年; (2) 结构简单、易于制造,生产工艺简单,易于大规模工业化生产; (3) 制备电池耗能较少,能源回收周期短; (4) 生产成本较低,仅为硅太阳能电池的1/5~1/10,预计每蜂瓦的电池的成本在10元以内。 (5) 生产过程中无毒无污染; 3.文献综述与总结 蓝鼎等[3]采用溶胶2凝胶、浆体涂敷、磁控溅射等方法制备了二氧化钛单层以及多层膜。结果表明:以磁控溅射薄膜为基底制备的复合膜太阳电池性能一般优于溶胶-凝胶薄膜为基底制备的复合膜太阳电池性能,利用单层纳米粉可以实现效率较高的太阳电池。 王瑞斌等[4]提出:控制热处理温度,可得到不同粒径和不同晶相比例的纳米TiO2,这对染料敏化纳米薄膜电池的光电转换效率影响很大。这是因为不同性能的纳米TiO2薄膜对染料的吸收程度不同,从而导致纳米TiO2膜对光的吸收、透过、反射性能也不同。而且,纳米TiO2薄膜的不同性能对载流子的传输有较大影响,合适的纳米TiO2膜可以有效地减少载流子复合,这些因素都将最终影响到太阳电池的光电转换效率。 黄娟茹等[5]在概述染料敏化太阳能电池工作原理基础上, 着重分析电池光阳极TiO2薄膜的特性,并指出该薄膜在电池中所起的作用:负载染料、收集光生电子、分离电荷和传输光生电子;继而从表面修饰、离子掺杂、量子点敏化、制备复合薄膜、设计微观有序空间结构、设计核壳结构以及多手段共改性等方面对TiO2薄膜改性手段进行综述, 并详细分析改性手段优化染料敏化太阳能电池性能的原因。作者认为应把优化光阳极TiO2薄膜制备工艺及探讨薄膜接触面工作机理等作为今后的研究重点。

二氧化钛胶体制备过程

1、纯TiO2溶胶制备 开恒温磁力搅拌器,设定温度为70℃,将大烧杯内的水恒温至70℃,待用。移取1.7ml,67%的浓HNO3(1.49g/cm3)稀释至250ml。称取8.5gNaOH固体溶于100ml蒸馏水中。量取3ml钛酸丁酯,用22ml无水乙醇稀释至25ml(即将钛酸丁酯溶解在无水乙醇中)。在室温下,一边搅拌一边缓慢的将上述所得溶液用滴液漏斗滴加,控制流速融入到30ml蒸馏水中,滴加完毕后,并在此温度下继续搅拌15min。再放入70℃的热水浴中搅拌成糊状,约用时30min;加入70mlPH=1的稀HNO3溶液,在密闭环境下70℃恒温继续搅拌4h,用保鲜膜盖严,再用橡皮筋套住。最后所得溶液移取25ml至100ml的容量瓶中,定容至100ml,即得到透明,均匀的TiO2胶体。即样品纯TiO2溶胶。 2、ZnO溶胶制备 (1)准确称取0.0988g二水合醋酸锌,放入一个在超声清洗器内清洗干净并干燥的100mL烧杯中,用移液管向其中移入90mL无水乙醇,之后加入干净且干燥的磁子放在搅拌器上搅拌,待固体完全溶解后得溶液A. (2)准确称取0.008g氢氧化钠,放入一个在超声清洗器内清洗干净并干燥的50mL烧杯中,用移液管向其中移入10mL无水乙醇,加入干净且干燥的磁子放在搅拌器上搅拌,待固体完全溶解后得溶液B. (3)搅拌下,将溶液B逐滴加入溶液A中,再搅拌30min后将磁子取出,用保鲜膜将烧杯密封,放入干燥箱内陈化三天。 3、SiO2溶胶的制备

于250ml的烧杯中加入26ml的无水乙醇并放置在恒温磁力搅拌器上,在剧烈搅拌下依次加入25ml的正硅酸乙酯,4ml蒸馏水,0.15ml浓硝酸,然后在60℃恒温条件下剧烈搅拌2h,得到SiO2溶胶。 将得到的TiO2溶胶与SiO2溶胶以1:0.25、1:0.5、1:0.75、1:1、1:1.25、1:1.5、1:2的体积比进行掺杂,便得到不同比例的TiO2-SiO2掺杂纳米溶胶。(ZnO同样)

一种气凝胶的制备方法

化学分析计量2017年,第26卷,第6期94 [5] 方文,孙枫,范李捷,等.未硫化橡胶门尼粘度测量不确定度的评定[J].中国石油和化工标准与质量,2010,30(9): 30–32. [6] JJF 1059.2–2012 用蒙特卡洛法评定测量不确定度[J]. [7] Wen X L, Zhao Y B. Adaptive Monte Carlo and GUM methods for the evaluation of measurement uncertainty of cylindricity error[J]. Precision Engineering, 2013,37: 856–864. [8] Gonzalez A,Herrador M. Evaluation of measurement uncertainty in analytical assays by means of Monte Carlo simulation[J].Talanta,2004,64(2): 415–422. [9] Ferreo A, Salicone S. A Monte Carlo-like approach to uncertainty es-timation in electric power quality measurements[J]. The International Journal of Computation and Mathematics in Electrical and Electronic Engineering,2004,23(1): 119–132. [10] Michela Sega, Francesca Pennecchi, Sarah Rinaldi, et al. Uncertainty evaluation for the quantification of low masses of benzo[a]pyrene: Comparison between the Law of Propagation of Uncertainty and the Monte Carlo method[J]. Analytica Chimica Acta,2016,920: 10–17.[11] Theodorou D, Zannikou Y, Anastopoulos G, et al. Coverage interval estimation of the measurement of Gross Heat of Combustion of fuel by bomb calorimetry: Comparison of ISO GUM and adaptive Monte Carlo method[J]. Thermochimica Acta, 2011, 526: 122–129. [12] Octavian Sima, Marie-Christine Lépy. Application of GUM Supplement 1 to uncertainty of Monte Carlo computed efficiency in gamma-ray spectrometry[J]. Applied Radiation and Isotopes, 2016(109): 493–499. [13] Chen Andrew, Chen Chiachung. Comparison of GUM and Monte Carlo methods for evaluating measurement uncertainty of perspiration measurement systems[J]. Measurement, 2016, 87: 27–30. [14] Theodoroua Dimitrios,Meligotsidou Loukia, Karavoltsos Sotirios, et al. Comparison of ISO–GUM and Monte Carlo methods for the evaluation ofmeasurement uncertainty:Application to direct cadmium measurement in water by GFAAS[J]. Talanta, 2011(83): 1 568–1 570. 一种利用离子液体合成桐油多元醇的方法 申请公布号:CN107151209A 申请公布日:2017.09.12 申请人:中国石油化工股份有限公司 摘要 本发明公开了一种利用离子液体合成桐油多元醇的方法,是将桐油、羟基化试剂、离子液体、过渡金属催化剂按比例混合,并升温至35~45℃;在搅拌条件下滴加过氧化氢溶液,控制滴加速度使反应维持在40~65℃,滴加完毕后,维持反应3~5 h;反应结束后静置分层,取上层物料进行减压蒸馏,得到桐油多元醇。本发明利用桐油的共轭双键能够提高环氧基团反应活性的特点,在环氧化的同时加入羟基化试剂,使反应体系可采用离子液体/过渡金属催化体系进行催化氧化,能够有效地避免交联副反应的发生,高效合成桐油多元醇产品。所制备桐油多元醇的羟值为120~270 mg KOH/g,酸值低于1.0 mg KOH/g,水分低于0.1%,产率高于93%,可用于制备聚氨酯材料。 一种高纯铂粉的制备方法 申请公布号:CN107150128A申请公布日:2017.09.12 申请人:江西铜业集团公司 摘要 本发明提供了一种高纯铂粉的制备方法,涉及到贵金属冶炼中铂族金属的提纯,具体步骤为以含铂氯化液为原液,进行铂耦合萃取,得到铂萃余液和铂反萃液,铂萃余液送其它有价元素回收,铂反萃液调节pH后进行氯化铵沉淀,得到沉铂液和沉铂渣,沉铂液返回萃铂原液,沉铂渣用碱性溶液浆化后还原成铂粉,还原铂粉分别用浓硝酸和去离子水洗涤后烘干,得到高纯海绵铂产品。所述的铂耦合萃取过程为原液先进行三级逆流萃铂,得到的一级反萃液调节pH后再次进行铂萃取,得到萃余液和反萃液,萃余液返回萃铂原液。与其它方法相比,本发明方法可以处理金、银、钯、铑、铱、钌等杂质含量较高的含铂液,并且铂直收率高,容易操作。 一种气凝胶的制备方法 申请公布号:CN107151019A 申请公布日:2017.09.12 申请人:徐文忠 摘要 本发明涉及一种气凝胶的制备方法,采用甘油和聚氧化乙烯为置换液,在置换槽中将凝胶前置液进行置换,形成湿凝胶,再进一步干燥,得到气凝胶。本发明的有益效果为:本发明的气凝胶的制备方法选择甘油和聚氧化乙烯为置换液,替换了正己烷和乙醇;仅使用一步置换工艺,即可得到性能及使用寿命都俱佳的气凝胶。本发明的气凝胶的制备方法,使用安全环保的原料,减少危险化学品的使用和污染排放,让气凝胶的生产更加安全、环保,同时降低生产成本,保证了生产的安全操作,减少了生产环境当中挥发性化学品的污染,提高了生产环境的空气质量,简化工艺的同时减少了污染物的排放。 一种多色低辐射玻璃的制备方法 申请公布号:CN107151808A 申请公布日:2017.09.12 申请人:哈尔滨工业大学 摘要 一种多色低辐射玻璃的制备方法,本发明涉及低辐射玻璃的制备方法。本发明要解决现有制备多色低辐射玻璃方法需要添加重金属离子作着色剂,造成环境污染的技术问题。方法:一、基底ITO玻璃的清洗;二、金属膜层的制备;三、介质层的制备。Low-E玻璃市场发展前景广阔,整个工艺过程简单,无需特殊设备和工艺。本发明在原有Low-E玻璃的制备工艺基础上进行改进,无需增添特殊的设备。本发明制备的具有多种颜色的Low-E玻璃将为建筑装饰等领域提供更为广阔的应用范围。

纳米二氧化钛的制备方法及形貌特征

纳米二氧化钛的制备方法及形貌特征 盛丽雯重庆交通大学应用化学08300221 摘要:纳米二氧化钛以其优异的性能成为半导体光催化剂的杰出代表,探寻优良的二氧化钛制备工艺有着重要的现实意义。本文主要介绍了近年来国内外纳米二氧化钛制备工艺的研究状况,根据反应体系的物理形态将制备工艺分成气相、液相、固相三大类进行阐述,在此基础上分析比较了不同制备工艺的优缺点,最后展望了今后的发展方向。 关键词:纳米二氧化钛、制备方法、形貌特征。 1 纳米二氧化钛的制备方法 1.1 气相法 气相水解法利用氮气、氧气或空气作载气,把TiC1 或钛醇盐蒸气和水蒸气分别导人反应器,进行瞬间混合快速水解反应。通过改变各种气体的停留时间、浓度、流速以及反应温度等来调节纳米TiO的晶型和粒径。该方法制得的产品纯度高、分散性好、表面活性大,操作温度较低,能耗小,且对材质纯度要求不是很高,可实现连续生产;但控制过程复杂,并且直接影响着产品的晶型和粒径。气相氧化法是以TiC1 为原料,氧气为氧源,氮气作为载气的氧化反应,反应经气、固分离后制得纳米TiO:。该法制得的产品纯度高、分散性好;但设备结构复杂,材料要求耐高温、耐腐蚀,自动化程度高,研究开发难度大。气相氢氧火焰法以TiC1 ,H2,O:为原料,将TiC1 气体在氢氧焰中(700~1 000℃)高温水解制得纳米TiO。产品一般是锐钛型和金红石型的混晶型,产品纯度高、粒径小、表面活性大、分散性好、团聚程度较小,自动化程度高;但所需温度高,对设备材质要求较高,对工艺参数控制要求精确。气相热解法以TiC1 为原料,在真空或原料惰性气氛下加热至所需温度后,导入反应气体,使之发生热分解反应,最后在反应区沉积出纳米TiO。产品化学活性高、分散性好,可以通过控制反应气体的浓度和炉温来控制纳米TiO的粒径分布;但投资大、成本高。 1.2 液相法 溶胶一凝胶法以钛醇盐Ti(OR) 为原料,经水解与缩聚过程而逐渐凝胶化,再经低温干燥、烧结处理即可得到纳米TiO粒子。该法制得的产品纯度高、粒径小、尺寸均匀、干燥后颗粒自身的烧结温度低;但原料价格昂贵、生产成本高,凝胶颗粒之间烧结性差,产物干燥时收缩大。化学沉淀法将沉淀剂加入TiOSO,H TiO,或TiC1 溶液中,沉淀后进行热处理。该法工艺过程简单,易工业化,但易引入杂质,粒度不易控制,产物损失多。水解法以四氯化钛或钛醇盐为原料,经水解、中和、洗涤、烘干和焙烧制得纳米TiO。该法制得的产品纯度高、粒径均匀;但水解速度快、反应难控制、成本大、能耗高、难以工业化生产。水热法以TiOSO,TiC14或Ti(OR)4为原料,高温高压下在水溶液中合成纳米TiO。该法制得的产品纯度高、粒径分布窄、晶型好;但对设备要求高、能耗较大、操作复杂、成本偏高。在综合对比研究了纳米二氧化钛的各种制备方法后,提出了利用偏钛酸原料廉价易得的特点,简化工艺过程,采用化学沉淀法来制备纳米TiO的工艺方案,并进行了长时间的中试,现就该工艺的特点及中试过程中所遇到的问题进行阐述。 1 气相法制备二氧化钛 气相法一般是通过一些特定的手段先将反应前体气化,使其在气相条件下发生物理或化学变化,然后在冷却过程中成核、生长,最后形成纳米TiO2颗粒。 1.1 化学气相沉积法

【CN109988319A】一种水凝胶的制备方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910144318.X (22)申请日 2019.02.27 (71)申请人 韩建中 地址 610000 四川省成都市青羊区人民中 路一段20号26栋1单元3号 申请人 杨凯文 (72)发明人 邢孟秋  (51)Int.Cl. C08J 3/075(2006.01) C08B 37/08(2006.01) C08L 5/08(2006.01) (54)发明名称 一种水凝胶的制备方法 (57)摘要 本发明公开了一种水凝胶的制备方法,所述 水凝胶制备原料比重如下:羧甲基壳聚糖200- 1200份,CE 10-100份,双蒸馏水1-10份,EDTA游 离酸100-300份,EDC -HCI 100-200份,通过将一 定比例的羧甲基壳聚糖和CE粉末进行混合制得 水凝胶,改水凝胶用于医学领域,具备抗菌抗感 染,刺激细胞增长的功能,同时该制备方法具备 简单,制备难度较低, 生产成本低等特点。权利要求书1页 说明书2页CN 109988319 A 2019.07.09 C N 109988319 A

权 利 要 求 书1/1页CN 109988319 A 1.一种水凝胶的制备方法,其特征在于:所述水凝胶制备原料比重如下:羧甲基壳聚糖200-1200份,CE10-100份,双蒸馏水1-10份,EDTA游离酸100-300份,EDC-HCI100-200份。 2.根据权利要求1所述的一种水凝胶的制备方法,其特征在于:所述CE的制备步骤如下: S1、将200份羧甲基壳聚糖溶入10份的双蒸馏水中; S2、在溶液中加入240份的EDTA游离酸; S3、再加入160份的EDC-HCI形成胺键; S4、将反应混合物在室温下酝酿,再用透析管进行提纯; S5、将提纯后的溶液冷冻干燥,得到CE粉末。 3.根据权利要求1所述的一种水凝胶的制备方法,其特征在于:所述水凝胶制备步骤如下: S1、取80份CE粉末,将其溶入5份的双蒸馏水中; S2、在溶液中加入定量的羧甲基壳聚糖,然后持续搅拌; S3、将搅拌得到的物质以3000r/min的速度进行分离一定的时间,使得气泡得以消除。 4.根据权利要求2所述的一种水凝胶的制备方法,其特征在于:所述冷冻干燥的时长为72h。 5.根据权利要求3所述的一种水凝胶的制备方法,其特征在于:所述持续搅拌的时长为2h。 6.根据权利要求3所述的一种水凝胶的制备方法,其特征在于:所述分离的时长为5min。 2

太阳能电池板及其工作原理

太阳能电池板及其工作原理

太阳能电池板及其工作原理 性能及特点: 太阳能电池分为单晶硅太阳电池(坚固耐用,使用寿命一般可达20年。光电转换效率为15%。)多晶硅太阳电池(其光电转换效率约14.5%,材料制造简便,节约电耗,总的生产成本较低非晶硅太阳电池。)非晶硅太阳能电池(其光电转换率为10%,成本低,重量轻,应用方便。) 太阳能发电原理: 太阳能不象煤和石油一样用交通工具进行运输,而是应用光学原理,通过光的反射和折射进行直接传输,或者将太阳能转换成其它形式的能量进行间接传输。直接传输适用于较短距离。基本上有三种方法:基本上有三种方法:通过反射镜及其它光学元件组合,改变阳光的传播方向,达到用能地点;通过光导纤维,可以将入射在其一端的阳光传输到另一端,传输时光导纤维可任意弯曲;采用表面镀有高反

射涂层的光导管,通过反射可以将阳光导入室内。间接传输适用于各种不同距离。将太阳能转换为热能,通过热管可将太阳能传输到室内;将太阳能转换为氢能或其它载能化学材料,通过车辆或管道等可输送到用能地点;空间电站将太阳能转换为电能,通过微波或激光将电能传输到地面。 太阳能的光电转换是指太阳的辐射能光子通过半导体物质转变为电能的过程,通常叫做"光生伏打效应”,太阳电池就是利用这种效应制成的。 当太阳光照射到半导体上时,其中一部分被表面反射掉,其余部分被半导体吸收或透过。被吸收的光,当然有一些变成热,另一些光子则同组成半导体的原子价电子碰撞,于是产生电子-空穴对。这样,光能就以产生电子-空穴对的形式转变为电能、如果半导体内存在P-n结,则在P型和n型交界面两边形成势垒电场,能将电子驱向n 区,空穴驱向P区,从而使得n区有过剩的电子,P区有过剩的空穴,在P-n结附近形成与势垒电场方向相反光的生电场。光生电场的一部分除抵销势垒电场外,还使P型层带正电,n型层带负电,在n区与p区之间的薄层产生所谓光生伏打电动势。若分别在P型层和n型层焊上金属引线,接通负载,则外电路便有电流通过。如此形成的一个个电池元件,把它们串联、并联起来,就能产生一定的电压和电流,输出功率。 太阳能发电原理图如下:

溶胶-凝胶法制备纳米二氧化钛及其性质研究

溶胶-凝胶法制备纳米二氧化钛及其性质研究 实验目的 1.溶胶-凝胶法合成纳米级半导体材料TiO2 2.复习及综合应用无机化学的水解反应理论,物理化学的胶体理论 3.了解纳米粒性和物性 4.研究纳米二氧化钛光催化降解甲基橙水溶液 5.通过实验,进一步加深对基础理论的理解和掌握,做到有目的合成,提高实 验思维与实验技能 实验原理 纳米粉体是指颗粒粒径介于1~100 nm之间的粒子。由于颗粒尺寸的微细化,使得纳米粉体在保持原物质化学性质的同时,与块状材料相比,在磁性、光吸收、热阻、化学活性、催化和熔点等方面表现出奇异的性能。 纳米TiO2具有许多独特的性质。比表面积大,表面张力大,熔点低,磁性强,光吸收性能好,特别是吸收紫外线的能力强,表面活性大,热导性能好,分散性好等。基于上述特点,纳米TiO2具有广阔的应用前景。利用纳米TiO2作光催化剂,可处理有机废水,其活性比普通TiO2(约10 μm)高得多;利用其透明性和散射紫外线的能力,可作食品包装材料、木器保护漆、人造纤维添加剂、化妆品防晒霜等;利用其光电导性和光敏性,可开发一种TiO2感光材料。如何开发、应用纳米TiO2,已成为各国材料学领域的重要研究课题。目前合成纳米二氧化钛粉体的方法主要有液相法和气相法。由于传统的方法不能或难以制备纳米级二氧化钛,而溶胶-凝胶法则可以在低温下制备高纯度、粒径分布均匀、化学活性大的单组分或多组分分子级纳米催化剂[1~3],因此,本实验采用溶胶-凝胶法来制备纳米二氧化钛光催化剂。 制备溶胶所用的原料为钛酸四丁脂(Ti(O-C4H9)4)、水、无水乙醇(C2H5OH)以及冰醋酸。反应物为Ti(O-C4H9)4和水,分相介质为C2H5OH,冰醋酸可调节体系的酸度防止钛离子水解过速。使Ti(O-C4H9)4在C2H5OH中水解生成Ti(OH)4,脱水后即可获得TiO2。在后续的热处理过程中,只要控制适当的温度条件和反应时间,就可以获得金红石型和锐钛型二氧化钛。

二氧化钛的制备方法

纳米 !"#$光催化剂的制备方法 方世杰 徐明霞 (天津大学材料学院,天津 %&&&’$) 摘 要 介绍了二氧化钛粉体和薄膜的制备技术,比较了各种方法的优缺点。其中对液相法作了较为全面的介绍。 关键词 纳米 !"#$催化剂 气相法 液相法 国家自然科学基金资助项目((&&’$&)*);天津市自然科学基金资助(&)%+&%,)))作者简介:方世杰()-’+ . ),男,硕士/ ) 引言 纳米 !"#$光催化剂是一种新型的并且正在 迅速发展的高效光谱催化剂,成为近年来环保技 术中的一个研究热点。一种良好的催化剂必须具 有很大的催化表面,并且有很高的光子利用率。 当 !"#$达到纳米时,会表现出更优良的光催化降 解性能。关于纳米 !"#$的制备技术已有很多论 述,本文试图对近年来纳米二氧化钛的制备技术 作一个综述。 $ !"#$纳米粉体的制备 目前制备 !"#$纳米微粒的方法有很多种,根 据对所要求制备微粒的性状、结构、尺寸、晶型、用 途,采用不同的制备方法。按照原料的不同大致 分为 $ 类:气相法和液相法。但无论采用何种方 法,制备纳米粒子都有如下要求[)]:表面光洁;粒 子的形状及粒径、粒度分布可控,粒子不易团聚; 易于收集;热稳定性优良;产率高。 !/" 气相法 气相法是直接利用气体或通过各种手段将物 质变为气体,使之在气态下发生物理变化或化学 变化,最后在冷却过程中凝聚长大形成纳米粒子 的方法。气相法的特点是粉体纯度高、颗粒尺寸 小、颗粒团聚少、组分更易控制。 $/)/) 化学气相沉积法(012) [$]

化学气相法制备纳米 !"#$的初级过程包括: 气相化学反应、表面反应、均相成核、非均相成核、 凝结聚集或融合。气相反应所需的母体有 $ 类: !"03*和钛醇盐。化学反应可分为 * 类。 ())!"03*与 #$氧化,化学反应方程式为: !"03* (4)5 #$ (4)6 !"#$5 $03$ 7 !"#$ (4)6(!"#$)7 (8) ($)钛醇盐直接热裂法[%],化学反应方程式 为: !" (#9)*6 !"#$5 *07:$75 $:$# (%)钛醇盐气相水解法(气溶胶法),化学反应 方程式为: !" (#9)*5 $:$# 6 !"#$5 *9#: (*)气相氢火焰法,化学反应方程式为: !"03*5 $:$5 #$6 !"#$5 *:03 $/$/$ 激光 012 法 激光 012 法也是一种很好的制备方法。在 ,& 年代由美国的 :;44<=>[)]提出,目前该法已合成 出一批具有颗粒粒径小、不团聚、粒径分布窄等优 点的超细粉,产率较高。? 2;@"A 0;8<>[*]对激光 012 法进行了进一步的研究指出,在激光 012 法 中,用 !" (=B#C=)*作反应物要比采用 !" (#BDE)*效果要好,!" (=B#C=)*是一种很有前途的反应物。 $/$/% 等离子 012 法 等离子 012 法是利用等离子体产生的超高 温激发气体发生反应,同时利用等离子体高温区 , % 硅酸盐通报 !##! 年第 ! 期 综合与述评 万方数据 与周围环境巨大的温度梯度,通过急冷作用得到 纳米颗粒。该方法有 ! 个特点: (")产生等离子体 时没有引入杂质,因此生成的纳米粒子纯度较高; (!)等离子体所处空间大,气体流速慢,致使反应 物在等离子空间停留时间长,物质可以充分加热 和反应。 气相法制备的纳米 #$%!具有粒度好、化学活 性高、粒子呈球形、凝聚粒子小、可见透光性好及 吸收紫外线以外的光能力强等特点,但产率低,成

探究水凝胶材料的制备方法

龙源期刊网 https://www.360docs.net/doc/672970547.html, 探究水凝胶材料的制备方法 作者:张晓春刘嘉豪梁飞 来源:《中国化工贸易·上旬刊》2018年第04期 摘要:水凝胶是一类兼具应用价值和经济效益的新型功能高分子材料,由于其具有良好 的生物相容性和亲水性,在生物医学领域有着广泛的应用。重点研究物理水凝胶和化学水凝胶的制备方法,为环境敏感水凝胶提供研究基础。环境敏感型水凝胶因为这种特殊的性质,被广泛应用在药物控制释放材料、传感器、形状记忆材料等,使得智能水凝胶在生物医药、仿生工程等领域拥有广泛的前景。 关键词:水凝胶;制备方法;环境敏感 水凝胶是指具有三维网络结构的水溶性高分子中引入一部分疏水基团和亲水残基,亲水残基与水分子结合,将水分子连接在网状内部,而疏水残基遇水膨胀的交联聚合物,水凝胶可以吸收自身重量的上千倍的水,且仅溶胀不溶解。由于水凝胶具有良好的生物相容性和亲水性,形态柔软类似生物体组织,目前在生物医学领域,如药物控释、细胞的固定化载体、生物分子、组织工程和传输体系等,有着广泛的应用。根据水凝胶的网络的交联方式,可分为物理凝胶和化学凝胶。 1 水凝胶材料的制备 1.1 物理凝胶的制备 物理凝胶通过物理作用如氢键、静电作用、链的缠绕等分别或者共同形成的。制备物理凝胶通常采用下列几种方法: ①缔合交联。两亲性高分子聚合物是指具有不同极性链段的高分子,具有表面活性,可以通过疏水相互作用等在水中自组装形成水凝胶及胶束等有序结构,接枝共聚物有丙烯酸接枝聚N-异丙基丙烯酰胺(PNIPAM)、改性淀粉接枝聚乙烯醇(PVA)等,多嵌段共聚物有左旋聚乳酸(PLLA)和PEO的三嵌段共聚物(PLLA-PEO-PLLA)、聚环氧丙烷(PPO)和PEO的共聚物(PEO-PPO-PEO)、聚乙二醇(PEG)和聚乳酸/轻基乙酸(PLGA)的共聚物(PEG-PLGA-PEG)、聚氨醋(PU)和PAA的共聚物等。 ②离子交联。向带有中正电荷的高分子或者负电荷的高分子中加入交联剂就可以得到由离子交联而形成的水凝胶,离子桥的形成使高分子链连结成一个三维网络,如海藻酸可在Ca+存在下交联形成开放的三维网状结构。 ③氢键和疏水相互作用。纤维素、壳聚糖等可以通过氢键交联作用而形成凝胶。例如,室温下的纤维素可以溶解于尿素和NaOH的混合溶液中,纤维素分子与混合溶液分子之间形成的

实验溶胶凝胶法制备纳米二氧化钛实验

实验八溶胶-凝胶法制备纳米二氧化钛实验 一、实验目的 1、掌握溶胶-凝胶法制备纳米粒子的原理。 2、了解TiO 2 纳米粒子光催化机理。 二、实验原理 溶胶-凝胶法(Sol-Gel法)是指无机物或金属醇盐经过溶液、溶胶、凝胶而固化,再经热处理而成的氧化物或其它化合物固体的方法。 溶胶凝胶法制备TiO 2 纳米粒子是通过钛酸四丁酯的水解和缩聚反应来实现的,其分步水解方程式为: Ti(OR)n+H 2O Ti(OH)(OR) n-1 +ROH Ti(OH)(OR)n-1+H 2O Ti(OH) 2 (OR) n-2 +ROH …… 反应持续进行,直到生成Ti(OH)n. 缩聚反应: —Ti—OH+HO—Ti——Ti—O—Ti+H 2 O —Ti—OR+HO—Ti——Ti—O—Ti+ROH 最后获得氧化物的结构和形态依赖于水解与缩聚反应的相对反应程度,当金属-氧桥-聚合物达到一定宏观尺寸时,形成网状结构从而溶胶失去流动性,即凝胶形成。 三、原料及设备仪器 1、原料:钛酸正四丁脂(分析纯)、无水乙醇(分析纯)、冰醋酸(分析纯)、盐酸(分析纯)、蒸馏水 2、设备仪器:电磁搅拌器、恒温干燥箱、高温炉 四、实验步骤 以钛酸正丁酯[Ti(OC 4H 9 ) 4 ]为前驱物,无水乙醇(C 2 H 5 OH)为溶剂,冰醋酸(CH 3 COOH)为螯合剂, 从而控制钛酸正丁酯均匀水解,减小水解产物的团聚,得到颗粒细小且均匀的二氧化钛溶胶。 1、室温下量取10 mL钛酸丁酯,缓慢滴入到35 mL无水乙醇中,用磁力搅拌器强力搅拌10 min,混合均匀,形成黄色澄清溶液A。 2、将2 mL冰醋酸和10 mL蒸馏水加到另35 mL无水乙醇中,剧烈搅拌,得到溶液B,滴入2-3滴盐酸,调节pH值使pH=3。 3、室温水浴下,在剧烈搅拌下将溶液A缓慢滴入溶液B中。 4、滴加完毕后得浅黄色溶液,40℃水浴搅拌加热,约1 h后得到白色凝胶(倾斜烧瓶凝胶不流动)。 5、置于80 ℃下烘干,大约20 h,得黄色晶体,研磨,得到淡黄色粉末。 6、在 600 ℃下热处理2 h,得到二氧化钛(纯白色)粉体。 五、思考题 1、溶胶-凝胶法制备材料有哪些优点? 2、纳米二氧化钛粉体有哪些用途? 六、实验报告要求 实验报告按照学校统一模板书写,包括下列内容: 1、实验名称、目的和实验步骤。 2、解答思考题。

二氧化钛的制备方法

1.3二氧化钛的制备方法 1.3.1常规二氧化钛制备方法 二氧化钛的工业化生产方法有两种:硫酸法和氯化法。 1)硫酸法 用硫酸酸解含钛矿物,得到硫酸氧钛溶液,经纯化和水解得到偏钛酸沉淀, 再进入转窑焙烧产出二氧化钛颜料产品,是非连续生产工艺,工艺流程复杂,需要20道左右的步骤,排放废弃物较多。晶型转变需更多操作步骤,采用的焚烧工艺需要消耗大量能源[9]。 硫酸法工艺主要包括以下几个步骤: 除杂:FQ6+3H2SCH=Fe2(SO4)3+3H2O, TiO2+2H2SO4=Ti(SO4) 2+2H2O 然后:Fe+F&(SO4)3=3Fe2 SO4 调PH 至5-6,使Ti(SO4)2水解:Ti(SO4)2+3H2O=H2TiO3 J +2H2SO4 过滤沉淀加热得到TiO2:H2TiO3= TQ2+H2O T 2)氯化法 氯化法是以钛铁矿、高钛渣、人造金红石或天然金红石等与氯气反应生成四氯化钛,经精馏提纯,再进行气相氧化;速冷后,经过气固分离得到二氧化钛。由于没有转窑焙烧工艺形成的烧结,其二氧化钛原级粒子易于解聚,所以在产品精制的过程较硫酸法大幅度节省能量[10]0 氯化法工艺主要包括以下几个步骤:先用盐酸除杂:Fe2O3+6HCI=2FeCl3+3H2O 过滤洗涤然后加焦炭和氯气:TiO2 (粗)+C+2Cl2=TiCl4(气)+CO2 冷却、收集TiCl4 (液)小心水解:TiCl4+3H2O =H2TiO3+4HCl 加热提纯得到精制二氧化钛:H2TiO3=TiO2(精)+H2O T 1.3.2微细二氧化钛的制备工艺 粉体的超微细加工通常有物理方法和化学方法两大类。物理加工法是将粗粒子粉碎得到微粉体的方法。虽然目前粉碎技术已有改进,但粉碎过程很容易混入杂质,很难制备1ym以下的超微粒子。化学法是由离子、原子形核,然后再长大,分两步过程制备微粒子的方法,这种方法易得到粒径1ym以下的超微粒子。微细二氧化钛的制备主要包括气相法和液相法。气相法是指直接利用气体或采用激光、电子束照射等方法将原料变为气体或离子体,使之在气体状态下发生化学或物理变化,然后再经冷却、凝结、长大等过程制备微细颗粒的方法,由于气相法生产

纳米二氧化钛的制备

纳米二氧化钛的制备及其光催化活性评价 实 验 报 告 组别:第七组 组员:曲红玲高晗 班级:应121-2 指导老师:翁永根老师

纳米二氧化钛的制备及其光催化活性评价 一、实验目的 1、掌握利用简单的原料制备纳米材料的基本方法和原理。 2、了解二氧化钛的应用和多种制备方法的优缺点。 3、了解纳米半导体材料的性质。 4、了解纳米半导体光催化的原理。 5、掌握光催化材料活性的评价方法。 二、实验原理 二氧化钛,化学式为2TiO ,俗称钛白粉。多用于光触媒、化妆品,能靠紫外线消毒及杀菌。以纳米级2TiO 为代表的具有光催化功能的光半导体材料,因其颗粒细小、比表面积大而具有常规材料所不具备的优点,以及较高的光催化活性、高效的光点转化性能等,在抗菌除雾、空气净化、废水处理、化学合成及燃料敏化太阳能电池等方面显出广阔的应用前景。 1、纳米二氧化钛的制备 纳米二氧化钛的制备方法有很多。主要分为两类:一类是液相法合成,包括液相沉淀法、液相凝胶法、醇盐水解法、微乳液法及水热法;另一类是气相法合成,包括四氯化钛氢氧焰水解法、四氯化钛气相氧化法、钛醇盐气相氧化法、钛醇盐气相水解法、钛醇盐气相热解法。其中,溶胶凝胶法是近年来制备二氧化钛广泛使用的方法。本试验采用溶胶凝胶法制备二氧化钛。 溶胶凝胶法中,反应物为水、钛酸四丁酯,分相介质为乙醇,冰醋酸可调节体系的酸度防止钛离子水解过度,使钛酸四丁酯在无水乙醇中水解生成()4OH Ti ,脱水后即可得到2TiO 。在后续的热处理过程中,只要控制适当的温度条件和反应时间,就可以得到二氧化钛。 在以乙醇为溶剂,钛酸四丁酯和水发生不同程度的水解反应,钛酸四丁酯在酸性条件下,在乙醇介质中水解反应是分步进行的。 一般认为,在含钛离子溶液中钛离子通常与其它离子相互作用形成复杂的网状基团。上述溶胶体系静置一段时间后,由于发生胶凝作用,最后形成稳定的凝胶。此过程中涉及的反应为: ()()OH H C OH Ti O H H OC Ti 944249444+=+ ()()OH H C TiO H OC Ti OH Ti 942494442+=+ ()O H TiO OH Ti 2242+? 2、光催化活性评价 光触媒在光照条件下(可以是不同波长的光照)所起到的催化作用的化学反应,通称为光反应。光催化一般是多种相态之间的催化反应。 本次试验是进行紫外光催化活性评价,分别通过测量在亚甲基蓝和甲基橙中,反应前

纳米TiO2在太阳能电池中的应用

纳米TiO2在太阳能电池中的应用 姓名:周蕊 学号:201005010333 单位:西安建筑科技大学华清学院 材料科学与工程1003班 指导老师:杨春利 摘要:利用纳米尺度的半导体材料如TiO2、ZnO、SnO2等作为太阳能电池的光电极的研究是世界范围的研究热点,其中纳米TiO2由于光稳定、无毒成为研究光电太阳能转 在太阳能电池中的应用研究的最新进换电池使用最普遍的材料。目的:研究纳米TiO 2 在其中的应用开发提供参考和借鉴。方法展状况,为国内太阳能电池的研发与纳米TiO 2 应用以最新的文献为基础,进行归纳分析,研究其应用研究的新进展。结果:纳米TiO 2于太阳能电池,主要介绍了纳米管、线、薄膜等在染料敏化太阳能电池(DSSCs)和有机光伏太阳能电池(OPV)中的应用研究的一些最新成果。这2种太阳能电池也是新型太阳能电池研究中的2 个热点研究对象,太阳能电池作为洁净环境友好的绿色可再生能源, 在太阳能电池中的的应用,使太阳能电是未来开发与应用研究的重点。结论:纳米TiO 2 池的光电转化效率大大提高,使用寿命大为延长,但是在商业化批量生产的征途中依然有许多问题有待解决。 关键词: 纳米TiO2,太阳能电池,绿色能源,染料敏化,光电转化 1.引言 关于纳米TiO 的研究动态的文献分析已经有报道[ 1], 但是其中并未涉及具体应用例证, 2 仅仅就全球范围内进入21 世纪以来的研究文献( 包括专利文献和非专利文献) 进行了统 在电池中的应用进展进行简要概述。 计分析, 而本文是将纳米TiO 2 随着矿物燃料的枯竭和燃烧后对环境带来的负面效应( 主要是温室效应) , 使人们对环境友好型清洁能源的开发和利用越来越重视, 倡导低碳经济就是在可持续发展与环境保

二氧化钛的各种制备方法

取200mL浓度为1mol/L的TiOSO 4 溶液装入容量为500mL的烧杯中,将烧杯放入高 压蒸气釜内,用温度为125℃的蒸气加热2 h后取出,TiOSO 4 水热解生成的白色偏钛酸,过滤后,用蒸馏水洗涤数次,得含固量为%的偏钛酸备用。取200mL浓度为 1mol/L的TiOSO 4 溶液,在搅拌条件下,用2 mol/L氢氧化钠溶液中和,直至溶液的pH=5,溶液中生成胶状二氧化钛前驱体正钛酸,过滤后,用蒸馏水洗涤数次,得含固量为%的正钛酸备用。 1.载银二氧化钛的制备方法: 分别在46gH 2TiO 3 和195gH4TiO4中加入50mL浓度为L的AgNO3溶液,磁力搅拌并加热 直至大部分水挥发,置于80℃的干燥箱中烘干,取出碾磨得未煅烧的载银粉体;在偏钛酸和正钛酸上进行载银的样品分别记为AT1和AT2。分别将AT1和AT2放入马弗炉中,在空气环境下分别以2℃/min速度从室温加热至700℃或900℃煅烧并保温2 h,取出自然冷却后,放入研磨机内研磨4h得含银%的载银二氧化钛粉体。700℃和900℃煅烧后AT1和AT2载银粉 2.溶胶凝胶法制备纯TiO2 薄膜 以钛酸丁酯为前驱体,按n[Ti( OC 4H 9 ) 4 ]∶n[C 2 H 5 OH]∶n[NH( CH 2 CH 2 OH) 2 ]∶ n[H 2 O]=1∶23∶2.5∶10摩尔配比,先将2 /3 无水乙醇、钛酸四丁酯和二乙 醇胺混合,搅拌2 h。再将余下1 /3 无水乙醇和去离子水的混合溶液逐滴加入上述溶液中,继续搅拌 h,得到稳定澄清的溶胶溶液,静置48h。采用自制的拉膜机,以石英玻璃为薄膜载体(实验前依次经过丙酮、水、乙醇超声清洗10 min),每浸渍提拉一层膜在100℃下干燥10 min,涂膜四层后,将样品置于马弗炉中以 约2℃·min-1升温到600℃保温2 h 后,随炉温冷却,制得纯TiO 2 薄膜。 3.在空心微球表面定向生长TiO2纳米棒 配制1mol/L的钛酸四丁酯甲苯溶液, 将空心微球在其中浸没10min, 然后抽滤,用甲苯、去离子水洗涤. 如此循环10次, 使空心微球表面包覆一层TiO2 薄膜.将如此处理过的空心微球放入马弗炉中, 在550℃下煅烧2h,自然冷却后取出.在60mL盐酸(37%)/水(1∶1, 体积比)溶液中, 加入2g钛酸四丁酯, 搅拌至透明. 加入上述煅烧过的空心微球, 搅拌10 min后转入水热反应釜中, 密封并在150℃下水热反应4 h.自然冷却后, 经过离心分离、乙醇洗涤、干燥, 得到表面定向生长有二氧化钛纳米棒的空心微球. 4.硬脂酸凝胶法合成纳米TiO2 将硬脂酸放入三口瓶中,70℃下使硬脂酸熔融形成透明的溶液,机械搅拌下将一定量的钛酸四丁酯加入到已熔融的硬脂酸中,硬脂酸:钛酸四丁酯=1:2(摩尔比),75℃下磁力搅拌3 h,形成半透明的棕红色溶胶,自然冷却形成凝胶后,置于马弗炉中450℃煅烧2 h,研磨后得到纳米T iO2粉体。

相关文档
最新文档