(完整版)容斥原理例题

(完整版)容斥原理例题
(完整版)容斥原理例题

学科:奥数

教学内容:第四讲容斥原理(二)

上一讲我们已经初步研究了简单的容斥原理,今天我们继续研究较复杂的容斥问题。

例1五年级一班有45名同学,每人都积极报名参加暑假体育训练班,其中报足球班的有25人,报篮球班的有20人,报游泳班的有30人,足球、篮球都报者有10人,足球、游泳都报者有10人,足球、篮球都报者有12人。请问:三项都报的有多少人?

分析:由于问题比较复杂,我们把它简化成下图.要计算阴影部分的面积,我们记A∩B 为圆A与圆B公共部分的面积,B∩C为圆B与圆C公共部分的面积,A∩C表示圆A与圆C 的公共部分的面积,x为阴影部分的面积则图形盖住的面积为:A+B+C-A∩B-B∩C-A∩C+X。请同学们注意:阴影部分的面积先加了3次,然后又被减了3次,最后又加了1次。

解答:设三项都报的有x人,由容斥原理有

30+25+20-10-10-12+x=45

解得 x=2。

答:三项都报名的有2人。

说明:在“A+B+C-A∩B-B∩C-A∩C+X”式中,A,B,C,A∩B,B∩C,A∩C,x和总量这8个数中,只要知道了7个数,就可通过列方程求出第8个数。

例2从1至1000这1000个自然数中,不能被3、5、7中任何一个自然数整除的数一共有多少个?

分析:第一步先求出:能被3、5、7中任何一个自然数整除的数一共有多少个?第二步再求出:不能被3、5、7中任何一个自然数整除的数一共有多少个?能被3整除的自然数的个数+能被5整除的自然数的个数+能被7整除的自然数的个数-(既能被3整除又能被5整除的自然数的个数+既能被3整除又能被7整除的自然数的个数+既能被5整除又能被7整除的自然数的个数)+能同时被3、5、7整除的自然数的个数=能被3、5、7中任何一个自然数整除的数的个数。

解答:能被3整除的自然数有多少个?

1000÷3=333……1 有333个。

能被5整除的自然数有多少个?

1000÷5=200 有200个。

能被7整除的自然数有多少个?

1000÷7=142……6 有142个。

既能被3整除又能被5整除的自然数有多少个?

1000÷15=66……10 有66个。

既能被3整除又能被7整除的自然数有多少个?

1000÷21=47……13 有47个。

既能被5整除又能被7整除的自然数有多少个?

1000÷35=28……20 有28个。

能同时被3、5、7整除的自然数的个数有多少个?

1000÷(3×5×7)=9……55 有9个。

能被3、5、7中任何一个自然数整除的数一共有:

333+200+142-(66+47+28)+9=457个。

所以不能被3、5、7中任何一个自然数整除的数一共有:1000-543=457

例3 某个班的全体学生进行了短跑、游泳、篮球三个项目的测试,有4名学生在这三个项目上都没有达到优秀,其余每人至少有一个项目达到优秀。这部分达到优秀的项目、人

短跑游泳篮球短跑

游泳

游泳

篮球

篮球

短跑

短跑、游

泳、篮球

17 18 15 6 6 5 2

请问:这个班有多少名学生?

分析:本题是较复杂的容斥原理的题目,可以画一个长方形表示全班学生,再画三个相交的圆分别表示短跑、游泳、篮球得优秀的学生。注意计算短跑人数+游泳人数+篮球人数时,短跑游泳人数、游泳篮球人数、篮球短跑人数分别被算过两次,而短跑游泳篮球人数则被计算了3次。

解答:至少一项优秀人数=短跑人数+游泳人数+篮球人数-(短跑游泳人数+游泳篮球人数+篮球短跑人数)+短跑游泳篮球人数=17+18+15-(6+6+5)+2=35所以全班人数=至少一项优秀人数+未得优秀人数=39。

说明:本题解中的公式是三个不同集合相互相交而得的问题所用的容斥原理公式,本题也可依次计算图中每一小块所代表的集合的人数最后再求和。如图所示,图中分成8个部分:G=短跑游泳篮球三项优秀人数=2

D=只有短跑游泳两项优秀人数=短跑、游泳优秀人数-短跑游泳篮球三项优秀人数=6-2=4 E=只有游泳篮球两项优秀人数=游泳、篮球优秀人数-短跑游泳篮球三项优秀人数=6-2=4 F=只有篮球短跑两项优秀人数=篮球、短跑优秀人数-短跑游泳篮球三项优秀人数=5-2=3 A=只有短跑一项优秀人数=短跑优秀人数-(D+G+F)=17-(4+2+3)=8

B=只有游泳一项优秀人数=游泳优秀人数-(D+G+E)=18-(4+2+4)=8

C=只有篮球一项优秀人数=篮球优秀人数-(E+G+F)=15-(4+2+3)=6

H=三个项目均未达到优秀人数=4;

所以A+B+C+D+E+F+G+H=8+8+6+4+4+3+2+4=39

例4 如下图,在长方形ABCD中,AD=15厘米,AB=8厘米,四边形OEFG的面积是9平方厘米。请问:阴影部分的面积是多少平方厘米?

分析:注意到三角形ABD、三角形ACD面积的和比所求的阴影部分多算了三角形AED与三角形DOG面积的和,而这两个三角形的面积和可由三角形AFD的面积减去四边形OEFG的面积得到,这样就可以求出阴影部分的总面积。

解答:三角形ABD、三角形AFD、三角形ACD都可以AD为底,AB为高,故它们的面积都等于AD×AB÷2=15×8÷2=60(平方厘米)。

阴影部分面积=(三角形ABD面积+三角形ACD面积)-

(三角形AFD面积-四边形DEFG面积)

=(60+60)-(60-9)=69(平方厘米)。

说明:本题还有其它(例3的第2中方法)的方法,请你想一想。

例5 某班同学参加期末测试,得优秀成绩的人数如下:数学20人,语文20人,英语20人,数学、英语两科都是优秀成绩的有8人,数学、语文两科成绩都是优秀的有7人,语文、英语两科成绩都是优秀的有9人,三科都没得优秀成绩的有3人。请问:这个班最多有多少人?最少有多少人?

分析:如下图,数学、语文、英语得优秀成绩的的同学都包含在这个班中,设这个班有y人,用长方形表示.A、B、C分别表示数学、语文、英语得优秀成绩的的人,由已知有A∩C=8,A∩B=7,B∩C=9,A∩B∩C=X.

解答:由容斥原理有

Y=A+B+C-A∩B-A∩C-B∩C+A∩B∩C+3

即y=20+20+20-7-8-9+x+3=39+x。

以下我们考虑如何求y的最大值与最小值。

由y=39+x可知,当x取最大值时,y也取最大值;当x取最小值时,y也取最小值。因为x是数学、语文、英语三科都得优秀成绩的人数,所以他们中的人数一定不超过两科得优秀成绩的人数,即x=7,x=8且x=9,由此我们得到x=7.另一方面数学得优秀成绩的的同学有可能语文都没得优秀成绩的,也就是说也有这种可能:没有三科都得优秀成绩的的同学,故x=0,故x =0或x=7。

当x取最大值7时,y有最大值39+7=46,当x取最小值0时,y有最小值39+0=39。

答:这个班最多有46人,最少有39人。

例6 五年级2班有46名学生参加三项课外兴趣活动,其中24人参加了数学小组,20人参加了语文小组,参加文艺小组的人数是既参加数学小组又参加文艺小组人数的3.5倍,又是三项活动都参加人数的7倍,既参加文艺小组又参加语文小组相当于三项活动都参加人数的2倍,既参加数学小组又参加语文小组的学生有10人。请问:参加文艺小组的学生有多少人?

分析:这里涉及了三个对象:数学小组、语文小组、文艺小组,然而从题目的叙述来

看,在容斥原理的等式中都涉及了一个关键的量,即三项活动都参加人数。因而必须先求出这个三项活动都参加人数。再利用参加文艺小组的人数与它的关系即可求解。

解答:设三项活动都参加人数为x ,根据题意得参加文艺小组的人数为7x ,既参加数学小组又参加文艺小组的人数为7x ÷3.5=2x ,既参加文艺小组又参加语文小组的人数为2x 。根据容斥原理可以得到下面等式:

24+20+7x-(2x+2x+10)+x=46

4x=16

x=3人

所以:7x=21人。

所以:参加文艺小组的学生有21人。

说明:在很多问题中涉及一个基准量,经过分析找到这个基准量后,问题便可以解决。 阅读材料

“1名数学家=10个师”的由来

第二次世界大战中,美国曾经宣称:一名优秀的数学家的作用超过10个师的兵力。你可知这句话的由来吗?

1943年以前,在大西洋上英美运输船队常常受到德国潜艇的袭击,当时,英美两国限于实力,无力增派更多的护航舰,一时间,德军的"潜艇战"搞得盟军焦头烂额。

为此,有位美国海军将领专门去请教了几位数学家,数学家们运用概率论分析后发现,舰队与敌潜艇相遇是一个随机事件,按数学角度来看这一问题,它有一定的规律。一定数量的船(如100艘)编队规模越小,编次就越多(如每次20艘,就要有5个编次);编次越多,与敌人相遇的概率就越大。比如5位同学放学都回自己家里,老师要找一位同学的话,随便去哪家都行,但若这5位同学都在其中某一家的话,老师要找几家才能找到,一次找到的可能性只有20%。美国海军接受了数学家的建议,命令船队在指定海域集合,再集体通过危险海域,然后各自驶向预定港口。结果奇迹出现了:盟军舰队遭袭被击沉的概率由原来的25%降低为1%,大大减少了损失,保证了物资的及时供应。

练习题

1.如下图,长方形长为4厘米,宽为3厘米,请你求出四边形GHEF 的面积。

分析与解答:所求四边形四条边的长都不知道,我们还不会直接求它的面积.由于所求四边形面积与4个三角形面积之和等于长方形面积,我们可以利用容斥原理把不规则图形HEFG 的面积转化为求规则图形的面积。

S HEFG =S ABCD -S △AHE -S △EBF -S △CFG -S △GDH

122113211221132143??-??-??-??-?=

=7(平方厘米)

2.在边长是10厘米的正方形纸片中间挖掉一个小正方形后,成为一个宽度为1厘米的方框,把5个这样的方框放在桌面上(如下图)。请你算一算:桌面被这些方框所盖住的面积是多少平方厘米?

分析:观察图,可知重叠部分相当于8个边长1厘米的正方形。

解答:(102-82)×5-12×8=172(平方厘米)

3.张宏、王刚、李立三人练习投篮球,一共投了100次,有43次没投进,已知张宏和王刚一共投进了32次,王刚和李立一共投进了46次,王刚投进了多少次?

分析与解答:三人投的总次数减去没投进的次数,就是三人共投进100-43=57次。张宏和王刚、王刚和李立共投进的次数为32+46=78次,这是三人共投进的次数,在加上王刚投进的次数,从中减去共投进的次数,就是王刚投进的次数,列式为78-57=21次,所以王刚投进了21次。

答:王刚投进了21次。

4.育新小学举行各年级学生画展,其中有18幅画不是六年级的,20幅画不是五年级的。现在知道五、六年级共展出22幅画,请问:其他年级共展出多少幅画?

分析与解答:其中18幅不是六年级的,换句话说,一至五年级共展出18幅,20幅不是五年级的,换句话说,就是一、二、三、四、六年级共展出20幅,从中可以看出一、二、三、四年级总张数的2倍加上五、六年级张数的和,一共是18+20=38幅,又因为五、六年级共展出22幅画,,因此一至四年级张数和的2倍是38-22=16张。从而可以求出一至四年级共展出16÷2=8张。

答:其它年级共展出8张。

5.在一根长木棍上,有三种刻度线,它们分别将木棍分成10等分、12等分、15等分。如果沿每条刻度线把木棍锯断,请问:木棍总共被锯成多少段?

分析:由于木棍的端点处没有刻度线,所以,这三种刻度线分别有10-1=9(条),12-1=11(条),15-1=14(条),不妨设木棍长为60厘米。那么,与三种刻度线相对应的每一份长分别是:60÷10=6(厘米),60÷12=5(厘米),60÷15=4(厘米)。根据5和6的最小公倍数是30,可算出第一、第二种刻度线重复的条数是60÷30-1=1(条),用同样的方法可以求出:另两种重复的刻度线分别有2条、4条。

解答:(9+11+14-1-2-4)+1=28(段)

想一想:(1)在计算刻度线条数时为什么都要减去1?(2)为什么可以设木棍长是60厘米?(3)最后为什么要用所有刻度线条数加1?

6.某班45名同学参加了体育测试,其中百米得优者20人,跳远得优者18人,又知百米、跳远均得优者7人,跳高、百米均得优者6人,跳高、跳远均得优者8人,跳高得优者22人,全班只有1名同学各项都没达到优,请问:三项都是优的有多少人?

解答:设三项都达到优的有x人,由逐步排除法有:

20+18+22-7-8-6+x+1=45

解得x=5

7.“六一”儿童节,某校有25个小朋友得奖,学校为他们准备了甲、乙、丙三种奖品

让他们自由选择,有14人要甲种奖品,12人要乙种奖品,10人要丙种奖品,其中4人既要甲种又要乙种,但不要丙种奖品,2人既要甲种又要丙种,但不要乙种,只有1人三种都要。每个小朋友至少选择其中的一种,请问:有多少人要乙种和丙种而不要甲种奖品?

分析与解答:根据题意,可以画图表示已知量之间的关系,并用A、B、C表示图中的三个未知量。则

A+B=10-(2+1)=7

B+C=12-(4+1)=7

A+B+C=25-14=11

B=(A+B)+(B+C)-(A+B+C)=7+7-11=3(人)

8.如下图,在桌面上放置两两重叠,边长都相等的三个正方形纸片。已知盖住桌面的总面积是144平方厘米。三张纸片共同重叠部分的面积是42平方厘米,图中阴影面积为72平方厘米。请问:正方形的边长是多少厘米?

解答:三个正方形总面积是:144+阴影面积×(2-1)+中间重叠面积×(3-1)=144+72×(2-1)+42×(3-1)=300(平方厘米);每一个正方形的面积是:300÷3=100(平方厘米);因为一个正方形面积是100平方厘米,所以正方形边长是10厘米。

9.某班四年级时、五年级时和六年级时分别评出10名三好学生,又知四、五年级连续三好生4人,五、六年级连续三好生3人,四年级六年级两年评上三好生的有5人,四、五、六三年没评过三好生的有20人,请问:这个班最多有多少名同学?最少有多少名同学?

解答:设该班有y人,三年连续三好生有x人,由容斥原理有

y=10+10+10-3-4-5+x+20

y=38+x

由于三年都连续包含在三年连续中,故0≤x≤3。

y的最大值=38+3=41;

y的最小值=38+0=38。

答:该班最多有41人,最少有38人。

10.某校五年级二班有49人参加了数学、英语、语文学习小组,其中数学有30人参加,英语有20人参加,语文小组有10人.老师告诉同学既参加数学小组又参加语文小组的有3人,既参加数学又参加英语和既参加英语又参加语文的人数均为质数,而三种全参加的只有1人,请问:你能求出既参加英语又参加数学小组的人数吗?

分析与解答:根据已知条件可以画出集合图.根据已知三圆盖住的总体为49人,A=30,B=20,C=10,A∩B=X,B∩C=Y,A∩C=3,A、B、C的公共部分记为A∩B∩C=1,由逐步排除

法有49=A+B+C-A∩B-B∩C-A∩C+A∩B∩C,即:

49=30+20+10-x-y-3+1

故 x+y=9。

由于x,y都是质数,而它们的和为奇数9.因而这两个质数中必有一个偶质数2,另外由x+y=9知另一个质数为7。

答:既参加英语又参加数学小组的人为2个或7个。

7-7-5 容斥原理之最值问题.教师版

1. 了解容斥原理二量重叠和三量重叠的内容; 2. 掌握容斥原理的在组合计数等各个方面的应用. 一、两量重叠问题 在一些计数问题中,经常遇到有关集合元素个数的计算.求两个集合并集的元素的个数,不能简单地把两个集合的元素个数相加,而要从两个集合个数之和中减去重复计算的元素个数,即减去交集的元素个数,用式子可表示成:A B A B A B =+-(其中符号“”读作“并”,相当于中文“和”或者“或”的意思;符号“”读作“交”,相当于中文“且”的意思.)则称这一公式为包含与排除原理,简称容斥原理.图示如下:A 表示小圆部分,B 表示大圆部分,C 表示大圆与小圆的公共部分,记为:A B ,即阴影面积.图示如下:A 表示小圆部分,B 表示大圆部分, C 表示大圆与小圆的公共部分,记为:A B ,即阴影面积. 包含与排除原理告诉我们,要计算两个集合A B 、的并集A B 的元素的个数,可分以下两步进行: 第一步:分别计算集合A B 、的元素个数,然后加起来,即先求A B +(意思是把A B 、的一切元素都“包含”进 来,加在一起); 第二步:从上面的和中减去交集的元素个数,即减去C A B =(意思是“排除”了重复计算的元素个数). 二、三量重叠问题 A 类、 B 类与 C 类元素个数的总和A =类元素的个数B +类元素个数C +类元素个数-既是A 类又是B 类的元素个数-既是B 类又是C 类的元素个数-既是A 类又是C 类的元素个数+同时是A 类、B 类、C 类的元素个数.用符号表示为:A B C A B C A B B C A C A B C =++---+.图示如下: 教学目标 知识要点 7-7-5.容斥原理之最值问题 1.先包含——A B + 重叠部分A B 计算了2次,多加了1次; 图中小圆表示A 的元素的个数,中圆表示B 的元素的个数, 1.先包含:A B C ++ 重叠部分A B 、B C 、C A 重叠了2次, 多加了1次. 2.再排除:A B C A B B C A C ++---

《三集合容斥原理》

三集合容斥原理 华图教育梁维维 我们知道容斥原理的本质是把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复的一种计数的方法。之前我们叙述过了两集合容斥原理,下面我们来看一下三集合容斥原理,相对于两集合容斥原理而言,三集合容斥原理的难度有所增加,但总体难度适中,所以三集合容斥原理在国家公务员考试中出现的频率较高,在其他省份考试以及各省份联考当中也时有出现,下面我们了解一下三集合容斥原理的公式。 三集合容斥原理公式: 三者都不满足的个数。 总个数- = + - - - + + =| | | | | | | | | | | | | || |C B A C B C A B A C B A C B A 有些问题,可以直接代入三集合容斥原理的公式进行求解。 【例1】如图所示,X、Y、Z分别是面积为64、180、160的三张不同形状的纸片。它们部分重叠放在一起盖在桌面上,总共盖住的面积为290。且X与Y、Y与Z、Z与X重叠部分面积分别为24、70、36。问阴影部分的面积是多少?( ) A.15 B.16 C.14 D.18 【解析】依题意,假设阴影部分的面积为x,代入公式可得:64+180+160-24-70-36+x=290,解得x=16,正确答案为B选项。 近几年,直接套用三集合公式的题目有所减少,开始出现条件变形的题目,往往告诉大家“只满足两个条件的共有多少”这样的信息,看似无法直接套用公式,其实只要掌握本质,仍然可以直接套用公式。 【例2】(2012河北-44)某通讯公司对3542个上网客户的上网方式进行调查,其中1258个客户使用手机上网,1852个客户使用有线网络上网,932个客户使用无线网络上网。如果使用不只一种上网方式的有352个客户,那么三种上网方式都使用的客户有多少个?() A. 148 B. 248

容斥原理公式及运用

容斥原理公式及运用 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

在计数时,必须注意无一重复,无一遗漏。为了使重叠部分不被重复计算,研究出一种新的计数方法。这种方法的基本思路是:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。 一、容斥原理1:两个集合的容斥原理 如果被计数的事物有A、B两类,那么,先把A、B两个集合的元素个数相加,发现既是A类又是B类的部分重复计算了一次,所以要减去。如下图所示。【示例1】一次期末考试,某班有15人数学得满分,有12人语文得满分,并且有4人语、数都是满分,那么这个班至少有一门得满分的同学有多少人 数学得满分人数→A,语文得满分人数→B,数学、语文都是满分人数→A∩B,至少有一门得满分人数→A∪B。A∪B=15+12-4=23,共有23人至少有一门得满分。 二、容斥原理2:三个集合的容斥原理

如果被计数的事物有A、B、C三类,那么,将A、B、C三个集合的元素个数相加后发现两两重叠的部分重复计算了1次,三个集合公共部分被重复计算了2次。 如下图所示,灰色部分A∩B-A∩B∩C、B∩C-A∩B∩C、C∩A-A∩B∩C都被重复计算了1次,黑色部分A∩B∩C被重复计算了2次,因此总数A∪B∪C=A+B+C-(A∩B-A∩B∩C)-(B∩C-A∩B∩C)-(C∩A-A∩B∩C)-2A∩B∩C=A+B+C-A∩B-B∩C-C∩A+A∩B∩C。即得到: 【示例2】某班有学生45人,每人都参加体育训练队,其中参加足球队的有25人,参加排球队的有22人,参加游泳队的有24人,足球、排球都参加的有12人,足球、游泳都参加的有9人,排球、游泳都参加的有8人,问:三项都参加的有多少人 参加足球队→A,参加排球队→B,参加游泳队→C,足球、排球都参加的→A∩B,足球、游泳都参加的→C∩A,排球、游泳都参加的→B∩C,三项都参加的→A∩B∩C。三项都参加的有A∩B∩C=A∪B∪C-A-B-C+A∩B+B∩C+C∩A=45-25-22-24+12+9+8=3人。

小学数学容斥原理

容斥原理 知识结构 一、两量重叠问题 在一些计数问题中,经常遇到有关集合元素个数的计算.求两个集合并集的元素的个数,不能简单地把两个集合的元素个数相加,而要从两个集合个数之和中减去重复计算的元素个数,即减去交集的元素个数,用式子可表示成:A B A B A B =+-(其中符号“ ”读作“并”,相当于中文“和”或者“或” 的意思;符号“”读作“交”,相当于中文“且”的意思.)则称这一公式为包含与排除原理,简称容斥原理.图示如下:A 表示小圆部分,B 表示大圆部分,C 表示大圆与小圆的公共部分,记为:A B ,即阴影面积.图示如下:A 表示小圆部分,B 表示大圆部分,C 表示大圆与小圆的公共部分,记为:A B , 即阴影面积. 包含与排除原理告诉我们,要计算两个集合A B 、的并集A B 的元素的个数,可分以下两步进行: 第一步:分别计算集合A B 、的元素个数,然后加起来,即先求A B +(意思是把A B 、的一切元素都“包含” 进来,加在一起); 第二步:从上面的和中减去交集的元素个数,即减去C A B =(意思是“排除”了重复计算的元素个数). 二、三量重叠问题 A 类、 B 类与 C 类元素个数的总和A =类元素的个数B +类元素个数C +类元素个数-既是A 类又是B 类的元素个数-既是B 类又是C 类的元素个数-既是A 类又是C 类的元素个数+同时是A 类、B 类、C 类的元素个数.用符号表示为:A B C A B C A B B C A C A B C =++---+.图示如下: 在解答有关包含排除问题时,我们常常利用圆圈图(韦恩图)来帮助分析思考. 1.先包含——A B + 重叠部分A B 计算了2次,多加了1次; 2.再排除——A B A B +- 把多加了1次的重叠部分A B 减去. 图中小圆表示A 的元素的个数,中圆表示B 的元素的个数, 大圆表示C 的元素的个数. 1.先包含:A B C ++ 重叠部分A B 、B C 、C A 重叠了2次,多加了1次. 2.再排除:A B C A B B C A C ++--- 重叠部分A B C 重叠了3次,但是在进行A B C ++- A B B C A C --计算时都被减掉了. 3.再包含:A B C A B B C A C A B C ++---+.

容斥原理的极值问题

容斥原理的极值问题文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]

有关容斥原理的极值问题 所谓“极值问题”就是通常说的最大值,最小值的问题,题干中通常有“至少”,“至多”等题眼,解决这类问题通常有两种方法,一是极限思想,另一种就是逆向思维。 通过以下几个例题具体看一下: 1. 某社团共有46人,其中35人爱好戏剧,30人爱好体育,38人爱好写作,40人爱好收藏,至少有几个4个活动都参加 解析: 逆向思维,分别考虑不喜欢其中某项活动的人数是多少,由题意可知,分别为11,16,8,6,只有当这四项集合互相没有交集的时候,四项活动都喜欢的人数才最少,因此最少人数为46-11-16-8-6=5 2. 参加某部门招聘考试的共有120人,考试内容共有6道题。1至6道题分别有86人,88人,92人,76人,72人和70人答对,如果答对3道题或3道以上的人员能通过考试,那么至少有多少人能通过考试 解析(极限思想):要使通过的人最少,那么就是对1道,2道的人最多,并且应该是对2道的人最多(这样消耗的总题目数最多),假设都只对了2道,那120人总共对了240道,而现在对了86+88+92+76+72+70=484,比240多了244道,每个人还可以多4道(这样总人数最少),244/4=61。(逆向思维):先算出来1-6题每题错的人数120-86=34 120-88=32 120- 92=28 120-76=44 120-72=48 120-70=50 要使通过的人数最少,就是没通过的人数最多,让错的人都只错4道就错的人最多,总的错的题数为 34+32+28+44+48+50=236236/4=59120-59=61

容斥原理公式及运用

容斥原理公式及运用 在计数时,必须注意无一重复,无一遗漏。为了使重叠部分不被重复计算,研究出一种新的计数方法。这种方法的基本思路是:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。 一、容斥原理1:两个集合的容斥原理 如果被计数的事物有A、B两类,那么,先把A、B两个集合的元素个数相加,发现既是A类又是B类的部分重复计算了一次,所以要减去。如下图所示。 【示例1】一次期末考试,某班有15人数学得满分,有12人语文得满分,并且有4人语、数都是满分,那么这个班至少有一门得满分的同学有多少人?数学得满分人数→A,语文得满分人数→B,数学、语文都是满分人数→A∩B,至少有一门得满分人数→A∪B。A∪B=15+12-4=23,共有23人至少有一门得满分。 二、容斥原理2:三个集合的容斥原理 如果被计数的事物有A、B、C三类,那么,将A、B、C三个集合的元素个数相加后发现两两重叠的部分重复计算了1次,三个集合公共部分被重复计算了2次。如下图所示,灰色部分A∩B-A∩B∩C、B∩C-A∩B∩C、C∩A-A∩B∩C都被重复计算了1次,黑色部分A∩B∩C被重复计算了2次,因此总数A∪B∪C=A+B+C-(A∩B-A∩B∩C)-(B∩C-A∩B∩C)-(C∩A-A∩B∩C)-2A∩B∩C=A+B+C-A∩

B-B∩C-C∩A+A∩B∩C。即得到: 【示例2】某班有学生45人,每人都参加体育训练队,其中参加足球队的有25人,参加排球队的有22人,参加游泳队的有24人,足球、排球都参加的有12人,足球、游泳都参加的有9人,排球、游泳都参加的有8人,问:三项都参加的有多少人? 参加足球队→A,参加排球队→B,参加游泳队→C,足球、排球都参加的→A∩B,足球、游泳都参加的→C∩A,排球、游泳都参加的→B∩C,三项都参加的→A∩B ∩C。三项都参加的有A∩B∩C=A∪B∪C-A-B-C+A∩B+B∩C+C∩ A=45-25-22-24+12+9+8=3人。

三者容斥问题3个公式

三集合容斥原理按题型可以分为两种题型,一种为标准型公式,另一种为变异型公式,接下来,我们就着重看看三集合容斥原理的标准型公式。 集合Ⅰ、Ⅱ、Ⅲ,满足标准型公式: 三集合容斥原理标准型公式:Ⅰ+Ⅱ+Ⅲ-Ⅰ·Ⅱ-Ⅰ·Ⅲ-Ⅱ·Ⅲ+Ⅰ·Ⅱ·Ⅲ=总个数-三者都不满足个数 通过观察公式,我们可以看到在公式中,出现了9个量,而这个式子的适用前提就是知8求1,即在题目中,若我们看到了8个已知量,要求1个未知量的时候,就要使用这个公式(注:而题目中有时候也是知7求1,其中的三者都不满足的个数可能为零),具体题目如下: (陕西2015)针对100名旅游爱好者进行调查发现,28人喜欢泰山,30人喜欢华山,42人喜欢黄山,8人既喜欢黄山又喜欢华山,10人既喜

欢泰山又喜欢黄山,5人既喜欢华山又喜欢黄山,3人喜欢这三个景点,则不喜欢这三个景点中任何一个的有( )人。 A.20 B.18 C.17 D.15 E.14 F.13 G.12 H.10 解:通过观察,我们发现了八个已知量,还要我们求另一个未知量,故可以用上述公式,我们将数据逐个代入可得: 28+30+42-8-10-5+3=100-x,其中x为我们要求的量,求得x=20,答案选择A。 接着,我们来看一下三集合变异型的公式,如下图示:

从上式中,我们可以看出,要使用变异型公式,题目中必须要出现仅满足2个情况的个数,这就是与标准型公式最大的不同,下面我们就看看具体的题目: (广东2015)某乡镇举行运动会,共有长跑、跳远和短跑三个项目。参加长跑的有49人,参加跳远的有36人,参加短跑的有28人,只参加其中两个项目的有13人,参加全部项目的有9人。那么参加该次运动会的总人数为( )。 A.75 B.82 C.88 D.95 解:由于题目中出现“只参加其中两个项目的有13人”,故使用变异型公式,得到下面列式:49+36+28-1×13-2×9=x,通过尾数法(若题目中选项的尾数都不一样的话,就可以用尾数法快速得到答案),判断出答案为82,选B。 但是,现在变异型公式也出现一些变形的形式,例如国考2015中的这道三集合容斥原理,就给我带来了一写在解题是需要着重注意的地方,下面我们仔细分析一下题目 (国家2015)某企业调查用户从网络获取信息的习惯,问卷回收率为90%。调查对象中有179人使用搜索引擎获取信息,146人从官方网站获取信息,246人从社交网络获取信息,同时使用这三种方式的有115人,使用其中两种的有24人,另有52人这三种方式都不使用,问这次调查共发出了多少份问卷?( ) A.310 B.360

三集合非标准型容斥原理

国家公务员| 事业单位| 村官| 选调生| 教师招聘| 银行招聘| 信用社| 乡镇公务员| 各省公务员|政法干警| 招警| 军转干| 党政公选| 法检系统| 路转税| 社会工作师 三集合非标准型容斥原理 ———————————————海南华图数资老师,胡军亮近些年考试经常出现容斥原理的题型,容斥原理分为两集合型跟三集合型,三集合容斥原理又包括标准型和非标准型,三集合容斥原理与三集合标准型容斥原理都是相对好掌握的。这里给大家讲解三集合非标准型容斥原理题的解题方法。首先看下面三个公式 (1) 都不满足 总数- ) (= + + + - + +C B A C A C B B A C B A (2)三条件都不满足 总数 只满足两条件- * 2 -= - + +C B A C B A (3)满足三条件 只满足两条件 只满足一个条件* 3 * 2+ + = + +C B A 公式(1)是标准型公式,公式(2)、(3)都是非标准型公式。 【例1】某乡镇对集贸市场36种食品进行检查,发现超过保质期的7种,防腐添加剂不合格的9种,产品外包装标识不规范的6种。其中,两项同时不合格的5种,三项同时不合格的2种。问三项全部合格的食品有多少种?() A. 14 B. 21 C. 23 D. 32 解析:该题目为典型的容斥原理题,但是题目提到“两项同时不合格的有5种”,这句话的意思就是只满足两个条件的数量是5,该题属于三集合容斥原理非标准型题,带入公式(2)得到: 7+9+6-5-2*2=36-X,尾数法知道答案选C。 【例2】某市对52种建筑防水卷材产品进行质量抽检,其中有8种产品的低温柔度不合格,10种产品的可溶物含量不达标,9种产品的接缝剪切性能不合格,同时两项不合格的有7种,有1种产品这三项都不合格。则只有一项不合格的建筑防水卷材产品有多少种? A. 17 B. 12 C. 15 D. 20 解析:该题涉及到只满足一项不合格、同时两项不合格、三项都不合格,属于三个集合非标准型容斥原理的题,带入公式(3)得到: 8+10+9=X+2*7+1,尾数法知道答案选B。 从上面的两道例题的讲解可以看到三集合非标准型容斥原理虽然不是很好理解,但是记住题型的特征,用正确的公式直接套用来解题还是很容易掌握的。

容斥原理公式及运用完整版

容斥原理公式及运用 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

在计数时,必须注意无一重复,无一遗漏。为了使重叠部分不被重复计算,研究出一种新的计数方法。这种方法的基本思路是:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。 一、容斥原理1:两个集合的容斥原理 如果被计数的事物有A、B两类,那么,先把A、B两个集合的元素个数相加,发现既是A类又是B类的部分重复计算了一次,所以要减去。如下图所示。 【示例1】??一次期末考试,某班有15人数学得满分,有12人语文得满分,并且有4人语、数都是满分,那么这个班至少有一门得满分的同学有多少人? 数学得满分人数→A,语文得满分人数→B,数学、语文都是满分人数→A∩B,至少有一门得满分人数→A∪B。A∪B=15+12-4=23,共有23人至少有一门得满分。 二、容斥原理2:三个集合的容斥原理 如果被计数的事物有A、B、C三类,那么,将A、B、C三个集合的元素个数相加后发现两两重叠的部分重复计算了1次,三个集合公共部分被重复计算了2次。 如下图所示,灰色部分A∩B-A∩B∩C、B∩C-A∩B∩C、C∩A-A∩B∩C都被重复计算了1次,黑色部分A∩B∩C被重复计算了2次,因此总数A∪B∪C=A+B+C-(A∩B-A∩B∩C)-(B∩C-A∩B∩C)-(C∩A-A∩B∩C)-2A∩B∩C=A+B+C-A∩B-B∩C-C∩A+A∩B∩C。即得到: 【示例2】??某班有学生45人,每人都参加体育训练队,其中参加足球队的有25人,参加排球队的有22人,参加游泳队的有24人,足球、排球都参加的有12人,足球、游泳都参加的有9人,排球、游泳都参加的有8人,问:三项都参加的有多少人? 参加足球队→A,参加排球队→B,参加游泳队→C,足球、排球都参加的→A∩B,足球、游泳都参加的→C∩A,排球、游泳都参加的→B∩C,三项都参加的→A∩B∩C。三项都参加的有A∩B∩C=A∪B∪C-A-B-C+A∩B+B∩C+C∩A=45-25-22-24+12+9+8=3人。

公务员笔试之行测:巧解三集合容斥原理问题

2014年公务员行测:巧解三集合容斥原理问题 华图教育 三集合容斥原理此类题型主要出现在近年来各省的省考中,主要是有三个独立的个体,此类题型主要的做题方法是公式法和作图法。近年来直接套用三集合公式的题目有所减少,开始出现条件变形的题目,不管容斥原理的题目怎么变化,但我们只要掌握住核心思想——剔除重复,那么做任何一个容斥原理题目都能够得心应手。 根据上图,可得三集合容斥原理核心公式: =A +B +C -A B -B C -A C +A B C =-x A B C 总数 一、直接利用公式型 【例1】(2012年4月联考)某公司招聘员工,按规定每人至多可投考两个职位,结果共42人报名,甲、乙、丙三个职位报名人数分别是22人、16人、25人,其中同时报甲、乙职位的人数为8人,同时报甲、丙职位的人数为6人,那么同时报乙、丙职位的人数为: A. 7人 B. 8人 C. 5人 D. 6人 【答案】A 【解析】设同时报乙、丙职位的人数为x ,则根据三集合容斥原理公式有:22+16+25-8-6-x+0=42-0,解得x=7。因此,本题答案为A 选项。 二、三集合容斥原理作图型 若在题目中任何一个位置看到“只满足”或“仅满足”,则公式法不能够再用,采用作图法来解题,注意,在作图的时候不管三七二十一,先画三个两两相交的圈,再往里填数字即可,填的时候注意从中间往外一层一层填。 【例2】(2007年江苏)一次运动会上,17名游泳运动员中,有8名参加了仰泳,有10 C x B A

名参加蛙泳,有12名参加了自由泳,有4名既参加仰泳又参加蛙泳,有6名既参加蛙泳又参加自由泳,有5名既参加仰泳又参加自由泳,有2名这3个项目都参加,这17名游泳运动员中,只参加1个项目的人有多少?() A.5名 B.6名 C.7名 D.4名 【答案】B 【解析】本题问题中出现了“只”,故只能采用作图法。于是有 仰 1 2 2 2 3 4 3 蛙自由 只参加1个项目的人数为1+2+3=6。因此,本题答案为B选项。 【例3】(2012年河北)某乡镇对集贸市场36种食品进行检查,发现超过保持期的7种,防腐添加剂不合格的9种,产品外包装标识不规范的6种。其中,两项同时不合格的5种,三项同时不合格的2种。问三项全部合格的食品有多少种?() A.14 B.21 C.23 D.32 【答案】C 【解析】 a d b c 其中d为三项同时不合格的部分,a+b+c为两项同时不合格的部分。设三项全部合格的食品有x种。根据题意有:36-x=7+9+6-5-2×2,解得x=23。因此,本题答案为C选项。 【注】该题注意,由于7+6+9这部分把三项同时不合格的部分共加了3次,减去5的

容斥原理(二)

才子教育小学奥数系列 容斥原理(二) 【例题分析】 例1. 有25人参加跳远达标赛,每人跳三次,每人至少有一次达到优秀。第一次达到优秀的有10人,第二次达到优秀的有13人,第三次达到优秀的有15人,三次都达到优秀的只有1人。只有两次达到优秀的有多少人? 分析与解:“每人至少有一次达到优秀”说明没有三次都没达到优秀的。要求只有两次达到优秀的人数,就是求重叠两层的部分(图中阴影部分)。 (人) 答:只有两次达到优秀的有11人。 例2. 在一个炎热的夏日,几个小朋友去冷饮店,每人至少要了一样冷饮,其中有6人要了冰棍,6人要了汽水,4人要了雪碧,只要冰棍和汽水的有3人,只要冰棍和雪碧的没有,只要汽水和雪碧的有1人;三样都要的有1人。问:共有几个小朋友去了冷饮店? 分析与解:根据题意画图。

才子教育小学奥数系列 方法一:(人) 方法二:(人) 答:共有10个小朋友去了冷饮店。 例3. 有28人参加田径运动会,每人至少参加两项比赛。已知有8人没参加跑的项目,参加投掷项目的人数与参加跑和跳两项的人数都是17人。问:只参加跑和投掷两项的有多少人? 分析与解:“每人至少参加两项比赛”说明没有不参加的,也没有参加一项比赛的,我们可以在下图中参加一项的区域用0表示。 (人) 答:只参加跑和投掷两项的有3人。 例4. 某校六年级二班有49人参加了数学、英语、语文学习小组,其中数学有30人参加,英语有20人参加,语文小组有10人。老师告诉同学既参加数学小组又参加语文小组的有3人,既参加数学又参加英语和既参加英语又参加语文的人数均为质数,而三种全参加的只有1人,求既参加英语又参加数学小组的人数。 分析与解:根据已知条件画出图。

三集合非标准规范型容斥原理

三集合非规范型容斥原理 ———————————————海南华图数资老师,胡军亮近些年考试经常出现容斥原理的题型,容斥原理分为两集合型跟三集合型,三集合容斥原理又包括规范型和非规范型,三集合容斥原理与三集合规范型容斥原理都是相对好掌握的。这里给大家讲解三集合非规范型容斥原理题的解题方法。首先看下面三个公式 (1) (2) (3) 公式(1)是规范型公式,公式(2)、(3)都是非规范型公式。 【例1】某乡镇对集贸市场36种食品进行检查,发现超过保质期的7种,防腐添加剂不合格的9种,产品外包装标识不规范的6种。其中,两项同时不合格的5种,三项同时不合格的2种。问三项全部合格的食品有多少种?() A. 14 B. 21 C. 23 D. 32 解读:该题目为典型的容斥原理题,但是题目提到“两项同时不合格的有5种”,这句话的意思就是只满足两个条件的数量是5,该题属于三集合容斥原理非规范型题,带入公式(2)得到: 7+9+6-5-2*2=36-X,尾数法知道答案选C。 【例2】某市对52种建筑防水卷材产品进行质量抽检,其中有8种产品的低温柔度不合格,10种产品的可溶物含量不达标,9种产品的接缝剪切性能不合格,同时两项不合格的有7种,有1种产品这三项都不合格。则只有一项不合格的建筑防水卷材产品有多少种? A. 17 B. 12 C. 15 D. 20 解读:该题涉及到只满足一项不合格、同时两项不合格、三项都不合格,属于三个集合非规范型容斥原理的题,带入公式(3)得到: 8+10+9=X+2*7+1,尾数法知道答案选B。 从上面的两道例题的讲解可以看到三集合非规范型容斥原理虽然不是很好理解,但是记住题型的特征,用正确的公式直接套用来解题还是很容易掌握的。 1 / 1

容斥原理公式及运用

容斥原理公式及运用 在计数时,必须注意无一重复,无一遗漏。为了使重叠部分不被重复计算,研究出一种新的计数方法。这种方法的基本思路就是:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。 一、容斥原理1:两个集合的容斥原理 如果被计数的事物有A、B两类,那么,先把A、B两个集合的元素个数相加,发现既就是A类又就是B类的部分重复计算了一次,所以要减去。如下图所示。 【示例1】一次期末考试,某班有15人数学得满分,有12人语文得满分,并且有4人语、数都就是满分,那么这个班至少有一门得满分的同学有多少人? 数学得满分人数→A,语文得满分人数→B,数学、语文都就是满分人数→A∩B,至少有一门得满分人数→A∪B。A∪B=15+12-4=23,共有23人至少有一门得满分。 二、容斥原理2:三个集合的容斥原理 如果被计数的事物有A、B、C三类,那么,将A、B、C三个集合的元素个数相加后发现两两重叠的部分重复计算了1次,三个集合公共部分被重复计算了2次。 如下图所示,灰色部分A∩B-A∩B∩C、B∩C-A∩B∩C、C∩A-A∩B∩C都被重复计算了1次,黑色部分A∩B∩C被重复计算了2次,因此总数A∪B∪C=A+B+C-(A∩B-A∩B∩C)-(B∩C-A∩B∩C)-(C∩A-A∩B∩C)-2A∩B∩C=A+B+C-A∩B-B∩C-C∩

A+A∩B∩C。即得到: 【示例2】某班有学生45人,每人都参加体育训练队,其中参加足球队的有25人,参加排球队的有22人,参加游泳队的有24人,足球、排球都参加的有12人,足球、游泳都参加的有9人,排球、游泳都参加的有8人,问:三项都参加的有多少人? 参加足球队→A,参加排球队→B,参加游泳队→C,足球、排球都参加的→A∩B,足球、游泳都参加的→C∩A,排球、游泳都参加的→B∩C,三项都参加的→A∩B∩C。三项都参加的有A∩B∩C=A∪B∪C-A-B-C+A∩B+B∩C+C∩ A=45-25-22-24+12+9+8=3人。

快乐学堂小升初数学专题三容斥原理

快乐学堂小升初数学专题三容斥原理 在计数时,必须注意无一重复,无一遗漏。为了使重叠部分不被重复计算,人们研究出一种新的计数方法,这种方法的基本思想是:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。 容斥原理1 如果被计数的事物有A、B两类,那么,A类B类元素个数总和= 属于A类元素个数+ 属于B类元素个数—既是A类又是B类的元素个数。(A∪B = A+B - A∩B ) 例1 一次期末考试,某班有15人数学得满分,有12人语文得满分,并且有4 人语、数都是满分,那么这个班至少有一门得满分的同学有多少人? 分析 依题意,被计数的事物有语、数得满分两类,“数学得满分”称为“A 类元素”,“语文得满分”称为“B类元素”,“语、数都是满分”称为“既是A类又是B类的元素”,“至少有一门得满分的同学”称为“A类和B类元素个数”的总和。 答案 15+12-4=23 试一试 电视台向100人调查前一天收看电视的情况,有62人看过2频道,34人看过8频道,其中11人两个频道都看过。两个频道都没看过的有多少人? 100-(62+34-11)=15 课堂训练 1. 在1,2,3,…,100这100个自然数中,能被5或9整除的数有( )。

2. 在1,2,3,…,100这100个自然数中,能被2和3整除,但不能被5整除的数有( )个。 3. 500以内既是完全平方数也是完全立方数的数有( )个。 容斥原理2 如果被计数的事物有A、B、C三类,那么,A类和B类和C类元素个数总和= A类元素个数+ B类元素个数+C类元素个数—既是A类又是B类的元素个数—既是A类又是C类的元素个数—既是B类又是C类的元素个数+既是A类又是B类而且是C类的元素个数。(A∪B∪C = A+B+C - A∩B - B∩C - C∩A + A∩B∩C) 例2 某校六(1)班有学生45人,每人在暑假里都参加体育训练队,其中参加足球队的有25人,参加排球队的有22人,参加游泳队的有24人,足球、排球都参加的有12人,足球、游泳都参加的有9人,排球、游泳都参加的有8人,问:三项都参加的有多少人? 分析:参加足球队的人数25人为A类元素,参加排球队人数22人为B 类元素,参加游泳队的人数24人为C类元素,既是A类又是B类的为足球排球都参加的12人,既是B类又C类的为足球游泳都参加的9人,既是C 类又是A类的为排球游泳都参加的8人,三项都参加的是A类B类C类的总和设为X。注意:这个题说的每人都参加了体育训练队,所以这个班的总人数既为A类B类和C类的总和。 答案:25+22+24-12-9-8+X=45 解得X=3 例3 在1到1000的自然数中,能被3或5整除的数共有多少个?不能被3或5整除的数共有多少个? 分析:显然,这是一个重复计数问题(当然,如果不怕麻烦你可以分别去数3的倍数,5的倍数)。我们可以把“能被3或5整除的数”分别看成A类元素和B类元素,能“同时被3或5整除的数(15的倍数)”就是被重复计算的数,即“既是A类又是B类的元素”。求的是“A类或B类元素个数”。现在我们还不能直接计算,必须先求出所需条件。

容斥原理习题加答案

1.现有50名学生都做物理、化学实验,如果物理实验做正确的有40人,化学实验做正确的有31人,两种实验都错的有4人,则两种实验都做对的有( ) A、27人 B、25人 C、19人 D、10人 【答案】B 【解析】直接代入公式为:50=31+40+4-A∩B 得A∩B=25,所以答案为B。 2.某服装厂生产出来的一批衬衫大号和小号各占一半。其中25%是白色的,75%是蓝色的。如果这批衬衫共有100件,其中大号白色衬衫有10件,小号蓝色衬衫有多少件() A、15 B、25 C、35 D、40 【答案】C 【解析】这是一种新题型,该种题型直接从求解出发,将所求答案设为A∩B,本题设小号和蓝色分别为两个事件A和B,小号占50%,蓝色占75%,直接代入公式为:100=50+75+10-A∩B,得:A∩B=35。 3.某高校对一些学生进行问卷调查。在接受调查的学生中,准备参加注册会计师考试的有63人,准备参加英语六级考试的有89人,准备参加计算机考试的有47人,三种考试都准备参加的有24人,准备只选择两种考试都参加的有46人,

不参加其中任何一种考试的都15人。问接受调查的学生共有多少人()A.120 B.144 C.177 D.192 【答案】A 【解析】本题画图按中路突破原则,先填充三集合公共部分数字24,再推其他部分数字: 根据每个区域含义应用公式得到: 总数=各集合数之和-两两集合数之和+三集合公共数+三集合之外数 =63+89+47-{(x+24)+(z+24)+(y+24)}+24+15 =199-{(x+z+y)+24+24+24}+24+15 根据上述含义分析得到:x+z+y只属于两集合数之和,也就是该题所讲的只选择两种考试都参加的人数,所以x+z+y的值为46人;得本题答案为120. 4.对某单位的100名员工进行调查,结果发现他们喜欢看球赛和电影、戏剧。其中58人喜欢看球赛,38人喜欢看戏剧,52人喜欢看电影,既喜欢看球赛又喜欢看戏剧的有18人,既喜欢看电影又喜欢看戏剧的有16人,三种都喜欢看的有12人,则只喜欢看电影的有多少人() 人人人人 【答案】A 【解析】本题画图按中路突破原则,先填充三集合公共部分数字12,再推其他部分数字: 根据各区域含义及应用公式得到: 总数=各集合数之和-两两集合数之和+三集合公共数+三集合之外数 100=58+38+52-{18+16+(12+ x)}+12+0,因为该题中,没有三种都不喜欢的人,所以三集合之外数为0,解方程得到:x=14。52=x+12+4+Y=14+12+4+Y,得到Y=22人。

容斥原理之最值问题

教学目标 1. 了解容斥原理二量重叠和三量重叠的内容; 2. 掌握容斥原理的在组合计数等各个方面的应用. 知识要点 一、两量重叠问题 在一些计数问题中,经常遇到有关集合元素个数的计算?求两个集合并集的元素的个数,不能简单地把 两个集合的元素个数相加,而要从两个集合个数之和中减去重复计算的元素个数,即减去交集的元素个数, 用式子可表示成: AUB A B AI B (其中符号“ U ”读作“并”,相当于中文“和”或者“或”的意思; 符号“ I ”读作“交”,相当于中文“且”的意思. )则称这一公式为包含与排除原理,简称容斥原理?图示 AI B ,即阴影面积?图示 第一步:分别计算集合 A 、B 的元素个数,然后加起来,即先求 A B (意思是把A B 的一切元素都“包含” 进来,加在一起); 第二步:从上面的和中减去交集的元素个数,即减去 C AI B (意思是“排除”了重复计算的元素个数 )? 、三量重叠问题 A 类、 B 类与 C 类元素个数的总和 A 类元素的个数 B 类元素个数 C 类元素个数 既是A 类又是B 类 的元素个数 既是B 类又是C 类的元素个数 既是A 类又是C 类的元素个数 同时是A 类、B 类、C 类的元 素个数.用符号表示为: AUBUC A B C AI B BI C AI C AI BI C .图示如下: 如下:A 表示小圆部分, B 表示大圆部分, C 表示大圆与小圆的公共部分,记为: 包含与排除原理告诉我们,要计算两个集合 A B 的并集AU B 的元素的个数,可分以下两步进行:

例题精讲 【例1】 “走美”主试委员会为三?八年级准备决赛试题。 每 个年级12道题,并且至少有8道题与其他各年 级都不同。如果每道题出现在不同年级,最多只能出现 3次。本届活动至少要准备 道决赛 试题。 【考点】容斥原理之最值问题 【难度】4星 【题型】填空 【关键词】走美杯,4年级,决赛,第9题 【解析】每个年级都有自己8道题目,然后可以三至五年级共用 4道题目,六到八年级共用 4道题目,总共有 8 6 4 2 56 (道)题目。 【答案】56题 【例2】 将1?13这13个数字分别填入如图所示的由四个大小相同的圆分割成的 个圆内的7个数相加,最后把四个圆的和相加,问:和最大是多少? 【考点】容斥原理之最值问题 【难度】4星 【题型】填空 【解析】越是中间,被重复计算的越多,最中心的区域被重复计算四次,将数字按从大到小依次填写于 被重复计算多的区格中,最大和为: 13 X 4+ (12+11 + 10+9 ) X 3+ 8+7+6+5 ) X 2+ 4+3+2+1 ) =240. 【答案】240 【例3】如图,5条同样长的线段拼成了一个五角星?如果每条线段上恰有 这个五角星上红色点最少有多少个 ? 目 tMlF 13个区域中,然后把每 1994个点被染成红色,那么在

容斥原理之最值问题

1. 了解容斥原理二量重叠和三量重叠的内容; 2. 掌握容斥原理的在组合计数等各个方面的应用. 一、两量重叠问题 在一些计数问题中,经常遇到有关集合元素个数的计算.求两个集合并集的元素的个数,不能简单地把两个集合的元素个数相加,而要从两个集合个数之和中减去重复计算的元素个数,即减去交集的元素个数,用式子可表示成:A B A B A B =+-(其中符号“”读作“并”,相当于中文“和”或者“或”的意思;符号“”读作“交”,相当于中文“且”的意思.)则称这一公式为包含与排除原理,简称容斥原理.图示如下:A 表示小圆部分,B 表示大圆部分,C 表示大圆与小圆的公共部分,记为:A B ,即阴影面积.图示如下:A 表示小圆部分,B 表示大圆部分, C 表示大圆与小圆的公共部分,记为:A B ,即阴影面积. 包含与排除原理告诉我们,要计算两个集合A B 、的并集A B 的元素的个数,可分以下两步进行: 第一步:分别计算集合A B 、的元素个数,然后加起来,即先求A B +(意思是把A B 、的一切元素都“包含”进来,加在一起); 第二步:从上面的和中减去交集的元素个数,即减去C A B =(意思是“排除”了重复计算的元素个数). 二、三量重叠问题 A 类、 B 类与 C 类元素个数的总和A =类元素的个数B +类元素个数C +类元素个数-既是A 类又是B 类的元素个数-既是B 类又是C 类的元素个数-既是A 类又是C 类的元素个数+同时是A 类、B 类、C 类的元素个数.用符号表示为:A B C A B C A B B C A C A B C =++---+.图示如下: 教学目标 知识要点 7-7-5.容斥原理之最值问题 1.先包含——A B + 重叠部分A B 计算了2次,多加了1次; A B A B +-1 A B

容斥原理之最值问题

7-7-5.容斥原理之最值问题 教学目标 1.了解容斥原理二量重叠和三量重叠的内容; 2.掌握容斥原理的在组合计数等各个方面的应用. 知识要点 一、两量重叠问题 在一些计数问题中,经常遇到有关集合元素个数的计算.求两个集合并集的元素的个数,不能简单地把两个集合的元素个数相加,而要从两个集合个数之和中减去重复计算的元素个数,即减去交集的元素个数,用式子可表示成:A U B=A+B-A I B(其中符号“U”读作“并”,相当于中文“和”或者“或”的意思;符号“I”读作“交”,相当于中文“且”的意思.)则称这一公式为包含与排除原理,简称容斥原理.图示如下:A表示小圆部分,B表示大圆部分,C表示大圆与小圆的公共部分,记为:A I B,即阴影面积.图示如下:A表示小圆部分,B表示大圆部分,C表示大圆与小圆的公共部分,记为:A I B,即阴影面积. 1.先包含——A+B 重叠部分A I B计算了2次,多加了1次; 包含与排除原理告诉我们,要计算两个集合A、B的并集A U B的元素的个数,可分以下两步进行: 第一步:分别计算集合A、B的元素个数,然后加起来,即先求A+B(意思是把A、B的一切元素都“包含” 进来,加在一起); 第二步:从上面的和中减去交集的元素个数,即减去C=A I B(意思是“排除”了重复计算的元素个数).二、三量重叠问题 A类、B类与C类元素个数的总和=A类元素的个数+B类元素个数+C类元素个数-既是A类又是B类的元素个数-既是B类又是C类的元素个数-既是A类又是C类的元素个数+同时是A类、B类、C类的元素个数.用符号表示为:A U B U C=A+B+C-A I B-B I C-A I C+A I B I C.图示如下:

公务员考试行测备考:巧解三集合容斥原理问题

公务员考试行测备考:巧解三集合容斥原理问题 三集合容斥原理此类题型主要出现在近年来各省的省考中,主要是有三个独立的个体,此类题型主要的做题方法是公式法和作图法。近年来直接套用三集合公式的题目有所减少,开始出现条件变形的题目,不管容斥原理的题目怎么变化,但我们只要掌握住核心思想--剔除重复,那么做任何一个容斥原理题目都能够得心应手。 根据上图,可得三集合容斥原理核心公式: 一、直接利用公式型 【例1】(2012年4月联考)某公司招聘员工,按规定每人至多可投考两个职位,结果共42人报名,甲、乙、丙三个职位报名人数分别是22人、16人、25人,其中同时报甲、乙职位的人数为8人,同时报甲、丙职位的人数为6人,那么同时报乙、丙职位的人数为: A. 7人 B. 8人 C. 5人 D. 6人 【答案】A 【解析】设同时报乙、丙职位的人数为x,则根据三集合容斥原理公式有: 22+16+25-8-6-x+0=42-0,解得x=7。因此,本题答案为A选项。 二、三集合容斥原理作图型 国家公务员| 事业单位| 村官| 选调生| 教师招聘| 银行招聘| 信用社| 乡镇公务员| 各省公务员|

若在题目中任何一个位置看到“只满足”或“仅满足”,则公式法不能够再用,采用作图法来解题,注意,在作图的时候不管三七二十一,先画三个两两相交的圈,再往里填数字即可,填的时候注意从中间往外一层一层填。 【例2】(2007年江苏)一次运动会上,17名游泳运动员中,有8名参加了仰泳,有10名参加蛙泳,有12名参加了自由泳,有4名既参加仰泳又参加蛙泳,有6名既参加蛙泳又参加自由泳,有5名既参加仰泳又参加自由泳,有2名这3个项目都参加,这17名游泳运动员中,只参加1个项目的人有多少?() A.5名 B.6名 C.7名 D.4名 【答案】B 【解析】本题问题中出现了“只”,故只能采用作图法。于是有 仰 只参加1个项目的人数为1+2+3=6。因此,本题答案为B选项。 国家公务员| 事业单位| 村官| 选调生| 教师招聘| 银行招聘| 信用社| 乡镇公务员| 各省公务员|

容斥原理公式

容斥原理 1.关键提示:容斥原理关键内容就是两个公式,考生只要把这两个公式灵活掌握就可全面应对此类题型。另外在练习及真考的过程中,请借助图例将更有助于解题。 2.2.核心公式:(1)两个集合的容斥关系公式:A+B=A∪B+A∩B (2)三个集合的容斥关系公式:A+B+C=A∪B∪C+A∩B+B∩C+C∩A-A∩B∩C 例题1:2004年中央A类真题某大学某班学生总数为32人,在第一次考试中有26人及格,在第二次考试中有24人及格,若两次考试中,都没有及格的有4人,那么两次考试都及格的人数是( )。A.22 B.18 C.28 D.26 解析:设A=第一次考试中及格的人(26),B=第二次考试中及格的人(24)显然,A +B=26+24=50;A∪B=32-4=28,则根据公式A∩B=A+B-A∪B=50-28=22 所以,答案为A。 例题2:2004年山东真题某单位有青年员工85人,其中68人会骑自行车,62人会游泳,既不会骑车又不会游泳的有12人,则既会骑车又会游泳的有()人A.57 B.73 C.130 D.69 解析:设A=会骑自行车的人(68),B=会游泳的人(62)显然,A+B=68+62=130;A∪B=85-12=73,则根据公式A∩B =A+B-A∪B=130-73=57 所以,答案为A。 例题3:电视台向100人调查前一天收看电视的情况,有62人看过2频道,34人看过8频道,11人两个频道都看过。两个频道都没看过的有多少人?解析:设A=看过2频道的人(62),B=看过8频道的人(34)显然,A+B=62+34=96;A∩B=两个频道都看过的人(11)则根据公式A∪B=A+B-A∩B =96-11=85 所以,两个频道都没有看过的人数=100-85=15 所以,答案

相关文档
最新文档