北师大版六年级阴影部分面积拓展练习
北师大版2024-2025学年六年级数学上册典型例题系列第一单元:求含圆的阴影部分面积“提高型”专项
2024-2025学年六年级数学上册典型例题系列第一单元:求含圆的阴影部分面积“提高型”专项练习1.求阴影部分面积。
2.求下列图形中阴影部分的面积。
(单位:cm)3.求阴影部分的面积。
4.计算阴影部分的周长和面积。
(单位:cm)5.求阴影部分的面积(单位:cm)。
6.求图中阴影部分的面积。
7.求下图阴影部分的面积,圆的半径为4厘米。
8.计算图中阴影部分的面积。
(单位:厘米)9.如图,已知AC=CD=DB=2cm,求阴影部分的周长和面积。
10.求下图中阴影部分的面积。
(单位:cm)11.下图长方形的面积和圆的面积相等,求阴影部分的面积。
12.已知三角形的面积是4平方厘米,求圆的面积。
13.计算下面图形中阴影部分的面积。
14.计算下面各图中涂色部分的面积。
(1)(2)5.计算下面图形阴影部分的面积。
16.求图中阴影部分的面积(单位:cm)。
17.求下列图形中阴影部分的面积。
(单位:厘米)18.求下图中阴影部分的面积和周长。
(单位:厘米)2024-2025学年六年级数学上册典型例题系列第一单元:求含圆的阴影部分面积“提高型”专项练习=14.13-4.5=9.63(cm2)(5×2)×(5×2)-3.14×52=10×10-3.14×25=100-78.5=21.5(cm2)3.求阴影部分的面积。
【答案】117.75 cm2;57.12 cm2【分析】第一个图形,阴影部分是圆环面积的一半,根据圆环面积=π(R2-r2),求出圆环面积,除以2即可;第二个图形,阴影部分的面积=长方形面积+半圆面积,长方形面积=长×宽,半圆面积=πr2÷2。
【详解】3.14×(102-52)÷2=3.14×(100-25)÷2=3.14×75÷2=117.75(cm2)8÷2=4(cm)8×4+3.14×42÷2=32+3.14×16÷2=32+25.12=57.12(cm2)4.计算阴影部分的周长和面积。
【小学】北师大版小学六年级上册数学计算阴影部分的面积已审
文档从网络中收集,已重新整理排版.word 版本可编辑.欢迎下载支持. 1word 版本可编辑.欢迎下载支持. 【关键字】小学(1)计算阴影部分的面积.(2)计算阴影部分的面积及周长。
(3)计算阴影部分的面积及周长。
(单位:cm )(4)计算阴影部分的面积及周长(cm)。
(5)计算阴影部分的面积及周长。
(6)计算阴影部分的面积及周长。
(单位:cm ) (7)(此题只求周长 单位:cm ) (8)计算阴影部分的面积及周长。
(9) (10)计算阴影部分的面积及周长。
(单位:cm )(11)计算阴影部分的面积及周长。
(单位:cm )(12)计算阴影部分的面积及周长。
(13)计算阴影部分的面积及周长。
(14)计算阴影部分的面积及周长。
(15)计算阴影部分的面积及周长。
(16)(17)计算阴影部分的面积. (18)计算阴影部分的面积及周长。
(19)计算阴影部分的面积。
(20)计算阴影部分的面积及周长。
(21)计算阴影部分的面积及周长。
(22)计算阴影部分的面积。
(23)计算阴影部分的面积及周长。
(24)计算阴影部分的面积及周长。
(25) 如图,在一个长6m 、宽3m 的长方形中画一个最大的半圆,求图中阴影部分的面积和周长。
(26)计算阴影部分的面积及周长。
(27)计算阴影部分的面积.(单位:cm ) (28)计算阴影部分的面积 (单位:cm ) (29)计算阴影部分的面积及周长。
(单位:cm )(30)如图,在正方形中剪下一个面积为314厘米²的1/4圆,求阴影部分的面积。
(31)已知:C 圆=18.84dm ,求阴影部分的面积。
(32)S 阴影=15厘米²,求S 圆环。
(33)正方形的面积为16cm ²,求圆的面积。
.(34)下图中,四个圆的半径都是2cm ,求阴影部分的面积。
(35)将半径分别是3厘米和2厘米的两个半圆如图放置,求阴影部分的周长。
北师大版小学六年级上册数学计算阴影部分的面积(2021年整理)
北师大版小学六年级上册数学计算阴影部分的面积(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(北师大版小学六年级上册数学计算阴影部分的面积(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为北师大版小学六年级上册数学计算阴影部分的面积(word版可编辑修改)的全部内容。
计算阴影部分的面积和周长。
(1)(2)(3)(单位:cm)(4)(5)(6)(单位:cm)(7)(单位:cm)(8)(9)(10)(11)(12)(13)(14)(15)(16)(17)(18)(19)(20)(21)(22)(23)(24)(25)(26)如图,在一个长6m、宽3m的长方形中画一个最大的半圆,求图中阴影部分的面积和周长。
(27)(28)(单位:cm)(29)(单位:cm)(30)(单位:cm)(31)(单位:cm)(32)(33)(单位:cm)(34)如图,在正方形中剪下一个面积为314厘米²的1/4圆,求阴影部分的面积。
(35)已知:C圆=18。
84dm,求阴影部分的面积.(36)S阴影=15厘米²,求S圆环。
(37)正方形的面积为16cm²,求圆的面积。
.(38)下图中,四个圆的半径都是2cm,求阴影部分的面积。
(39)将半径分别是3厘米和2厘米的两个半圆如图放置,求阴影部分的周长。
(40)(41)(单位:cm)。
小学六年级阴影部分面积专题复习经典例题(含答案)
小学六年级阴影部分面积专题复习经典例题(含答案)欢迎下载研究必备资料,本文主要涉及组合图形的面积计算。
以下是各题的解答和点评:1.求如图阴影部分的面积。
(单位:厘米)分析:阴影部分的面积等于梯形的面积减去直径为4厘米的半圆的面积。
利用梯形和半圆的面积公式代入数据即可解答。
解答:$(4+6)\times4\div2\div2-3.14\times2^2=10-6.28=3.72$(平方厘米)。
答案:阴影部分的面积是3.72平方厘米。
点评:组合图形的面积一般都是转化到已知的规则图形中利用公式计算,这里考查了梯形和圆的面积公式的灵活应用。
2.如图,求阴影部分的面积。
(单位:厘米)分析:根据图形可以看出,阴影部分的面积等于正方形的面积减去4个扇形的面积。
正方形的面积等于(10×10)100平方厘米,4个扇形的面积等于半径为(10÷2)5厘米的圆的面积。
解答:扇形的半径是:$10\div2=5$(厘米);$10\times10-3.14\times5\times5=100-78.5=21.5$(平方厘米)。
答案:阴影部分的面积为21.5平方厘米。
点评:组合图形的面积计算需要注意各部分之间的关系,特别是涉及到圆形时需要注意半径的计算。
3.求如图阴影部分面积。
(单位:厘米)解答:该题缺少图形,无法回答。
4.求出如图阴影部分的面积:单位:厘米。
解答:该题缺少图形,无法回答。
5.求如图阴影部分的面积。
(单位:厘米)解答:该题缺少图形,无法回答。
6.求如图阴影部分面积。
(单位:厘米)解答:该题缺少图形,无法回答。
7.计算如图中阴影部分的面积。
单位:厘米。
解答:该题缺少图形,无法回答。
8.求阴影部分的面积。
单位:厘米。
解答:该题缺少图形,无法回答。
9.如图是三个半圆,求阴影部分的周长和面积。
(单位:厘米)分析:阴影部分可以看成是两个半圆和一个矩形组成的,可以分别计算各部分的周长和面积再相加。
解答:矩形的长和宽分别为$8-4\pi$和$4$,面积为$(8-4\pi)\times4=32-16\pi$(平方厘米);半圆的半径为$4$,周长为$2\pi r=8\pi$(厘米),面积为$\pi r^2=16\pi$(平方厘米)。
数学北师大版六年级试卷 小学六年级_阴影部分面积_专题_复习_经典例题(含答案)
小升初阴影部分面积专题2.如图,求阴影部分的面积.(单位:厘米)3.计算如图阴影部分的面积.(单位:厘米)4.求出如图阴影部分的面积:单位:厘米.5.求如图阴影部分的面积.(单位:厘米)6.求如图阴影部分面积.(单位:厘米)7.计算如图中阴影部分的面积.单位:厘米.8.求阴影部分的面积.单位:厘米.9.如图是三个半圆,求阴影部分的周长和面积.(单位:厘米)10.求阴影部分的面积.(单位:厘米)11.求下图阴影部分的面积.(单位:厘米)12.求阴影部分图形的面积.(单位:厘米)13.计算阴影部分面积(单位:厘米).14.求阴影部分的面积.(单位:厘米)15.求下图阴影部分的面积:(单位:厘米)16.求阴影部分面积(单位:厘米).17.(2012•长泰县)求阴影部分的面积.(单位:厘米)☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆参考答案与试题解析1.求如图阴影部分的面积.(单位:厘米)考点组合图形的面积;梯形的面积;圆、圆环的面积.分析阴影部分的面积等于梯形的面积减去直径为4厘米的半圆的面积,利用梯形和半圆的面积公式代入数据即可解答.解答解:(4+6)×4÷2÷2﹣3.14×÷2,=10﹣3.14×4÷2,=10﹣6.28,=3.72(平方厘米);答:阴影部分的面积是3.72平方厘米.点评组合图形的面积一般都是转化到已知的规则图形中利用公式计算,这里考查了梯形和圆的面积公式的灵活应用.2.如图,求阴影部分的面积.(单位:厘米)考点组合图形的面积.分析根据图形可以看出:阴影部分的面积等于正方形的面积减去4个扇形的面积.正方形的面积等于(10×10)100平方厘米,4个扇形的面积等于半径为(10÷2)5厘米的圆的面积,即:3.14×5×5=78.5(平方厘米).解答解:扇形的半径是:10÷2,=5(厘米);10×10﹣3.14×5×5,100﹣78.5,=21.5(平方厘米);答:阴影部分的面积为21.5平方厘米.点评解答此题的关键是求4个扇形的面积,即半径为5厘米的圆的面积.3.计算如图阴影部分的面积.(单位:厘米)考点组合图形的面积.分析分析图后可知,10厘米不仅是半圆的直径,还是长方形的长,根据半径等于直径的一半,可以算出半圆的半径,也是长方形的宽,最后算出长方形和半圆的面积,用长方形的面积减去半圆的面积也就是阴影部分的面积.解答解:10÷2=5(厘米),长方形的面积=长×宽=10×5=50(平方厘米),半圆的面积=πr2÷2=3.14×52÷2=39.25(平方厘米),阴影部分的面积=长方形的面积﹣半圆的面积,=50﹣39.25,=10.75(平方厘米);答:阴影部分的面积是10.75.点评这道题重点考查学生求组合图形面积的能力,组合图形可以是两个图形拼凑在一起,也可以是从一个大图形中减去一个小图形得到;像这样的题首先要看属于哪一种类型的组合图形,再根据条件去进一步解答.4.求出如图阴影部分的面积:单位:厘米.考点组合图形的面积.专题平面图形的认识与计算.分析由题意可知:阴影部分的面积=长方形的面积﹣以4厘米为半径的半圆的面积,代入数据即可求解.解答解:8×4﹣3.14×42÷2,=32﹣25.12,=6.88(平方厘米);答:阴影部分的面积是6.88平方厘米.点评解答此题的关键是:弄清楚阴影部分的面积可以由哪些图形的面积和或差求出.5.求如图阴影部分的面积.(单位:厘米)考点圆、圆环的面积.分析由图可知,正方形的边长也就是半圆的直径,阴影部分由4个直径为4厘米的半圆组成,也就是两个圆的面积,因此要求阴影部分的面积,首先要算1个圆的面积,然后根据“阴影部分的面积=2×圆的面积”算出答案.解答解:S=πr2=3.14×(4÷2)2=12.56(平方厘米);阴影部分的面积=2个圆的面积,=2×12.56,=25.12(平方厘米);答:阴影部分的面积是25.12平方厘米.点评解答这道题的关键是重点分析阴影部分是由什么图形组成的,再根据已知条件去计算.6.求如图阴影部分面积.(单位:厘米)考点长方形、正方形的面积;平行四边形的面积;三角形的周长和面积.分析图一中阴影部分的面积=大正方形面积的一半﹣与阴影部分相邻的小三角形的面积;图二中阴影部分的面积=梯形的面积﹣平四边形的面积,再将题目中的数据代入相应的公式进行计算.解答解:图一中阴影部分的面积=6×6÷2﹣4×6÷2=6(平方厘米);图二中阴影部分的面积=(8+15)×(48÷8)÷2﹣48=21(平方厘米);答:图一中阴影部分的面积是6平方厘米,图二中阴影部分的面积是21平方厘米.点评此题目是组合图形,需要把握好正方形、三角形、梯形及平行四边形的面积公式,再将题目中的数据代入相应的公式进行计算.7.计算如图中阴影部分的面积.单位:厘米.考点组合图形的面积.分析由图意可知:阴影部分的面积=圆的面积,又因圆的半径为斜边上的高,利用同一个三角形的面积相等即可求出斜边上的高,也就等于知道了圆的半径,利用圆的面积公式即可求解.解答解:圆的半径:15×20÷2×2÷25,=300÷25,=12(厘米);阴影部分的面积:×3.14×122,=×3.14×144,=0.785×144,=113.04(平方厘米);答:阴影部分的面积是113.04平方厘米.点评此题考查了圆的面积公式及其应用,同时考查了学生观察图形的能力.8.求阴影部分的面积.单位:厘米.考点组合图形的面积;三角形的周长和面积;圆、圆环的面积.分析(1)圆环的面积等于大圆的面积减小圆的面积,大圆与小圆的直径已知,代入圆的面积公式,从而可以求出阴影部分的面积;(2)阴影部分的面积=圆的面积﹣三角形的面积,由图可知,此三角形是等腰直角三角形,则斜边上的高就等于圆的半径,依据圆的面积及三角形的面积公式即可求得三角形和圆的面积,从而求得阴影部分的面积.解答解:(1)阴影部分面积:3.14×﹣3.14×,=28.26﹣3.14,=25.12(平方厘米);(2)阴影部分的面积:3.14×32﹣×(3+3)×3,=28.26﹣9,=19.26(平方厘米);答:圆环的面积是25.12平方厘米,阴影部分面积是19.26平方厘米.点评此题主要考查圆和三角形的面积公式,解答此题的关键是找准圆的半径.9.如图是三个半圆,求阴影部分的周长和面积.(单位:厘米)考点组合图形的面积;圆、圆环的面积.专题平面图形的认识与计算.分析观察图形可知:图中的大半圆内的两个小半圆的弧长之和与大半圆的弧长相等,所以图中阴影部分的周长,就是直径为10+3=13厘米的圆的周长,由此利用圆的周长公式即可进行计算;阴影部分的面积=大半圆的面积﹣以10÷2=5厘米为半径的半圆的面积﹣以3÷2=1.5厘米为半径的半圆的面积,利用半圆的面积公式即可求解.解答解:周长:3.14×(10+3),=3.14×13,=40.82(厘米);面积:×3.14×[(10+3)÷2]2﹣×3.14×(10÷2)2﹣×3.14×(3÷2)2,=×3.14×(42.25﹣25﹣2.25),=×3.14×15,=23.55(平方厘米);答:阴影部分的周长是40.82厘米,面积是23.55平方厘米.点评此题主要考查半圆的周长及面积的计算方法,根据半圆的弧长=πr,得出图中两个小半圆的弧长之和等于大半圆的弧长,是解决本题的关键.10.求阴影部分的面积.(单位:厘米)考点圆、圆环的面积.分析先用“3+3=6”求出大扇形的半径,然后根据“扇形的面积”分别计算出大扇形的面积和小扇形的面积,进而根据“大扇形的面积﹣小扇形的面积=阴影部分的面积”解答即可.解答解:r=3,R=3+3=6,n=120,,=,=37.68﹣9.42,=28.26(平方厘米);答:阴影部分的面积是28.26平方厘米.点评此题主要考查的是扇形面积计算公式的掌握情况,应主要灵活运用.11.求下图阴影部分的面积.(单位:厘米)考点组合图形的面积.分析先求出半圆的面积3.14×(10÷2)2÷2=39.25平方厘米,再求出空白三角形的面积10×(10÷2)÷2=25平方厘米,相减即可求解.解答解:3.14×(10÷2)2÷2﹣10×(10÷2)÷2=39.25﹣25=14.25(平方厘米).答:阴影部分的面积为14.25平方厘米.点评考查了组合图形的面积,本题阴影部分的面积=半圆的面积﹣空白三角形的面积.12.求阴影部分图形的面积.(单位:厘米)考点组合图形的面积.分析求阴影部分的面积可用梯形面积减去圆面积的,列式计算即可.解答解:(4+10)×4÷2﹣3.14×42÷4,=28﹣12.56,=15.44(平方厘米);答:阴影部分的面积是15.44平方厘米.点评解答此题的方法是用阴影部分所在的图形(梯形)面积减去空白图形(扇形)的面积,即可列式解答.13.计算阴影部分面积(单位:厘米).考点组合图形的面积.专题平面图形的认识与计算.分析如图所示,阴影部分的面积=平行四边形的面积﹣三角形①的面积,平行四边形的底和高分别为10厘米和15厘米,三角形①的底和高分别为10厘米和(15﹣7)厘米,利用平行四边形和三角形的面积公式即可求解.解答解:10×15﹣10×(15﹣7)÷2,=150﹣40,=110(平方厘米);答:阴影部分的面积是110平方厘米.点评解答此题的关键是明白:阴影部分的面积不能直接求出,可以用平行四边形和三角形的面积差求出.14.求阴影部分的面积.(单位:厘米)考点梯形的面积.分析如图所示,将扇形①平移到扇形②的位置,求阴影部分的面积就变成了求梯形的面积,梯形的上底和下底已知,高就等于梯形的上底,代入梯形的面积公式即可求解.解答解:(6+10)×6÷2,=16×6÷2,=96÷2,=48(平方厘米);答:阴影部分的面积是48平方厘米.点评此题主要考查梯形的面积的计算方法,关键是利用平移的办法变成求梯形的面积.15.求下图阴影部分的面积:(单位:厘米)考点组合图形的面积.分析根据三角形的面积公式:S=ah,找到图中阴影部分的底和高,代入计算即可求解.解答解:2×3÷2=6÷2=3(平方厘米).答:阴影部分的面积是3平方厘米.点评考查了组合图形的面积,本题组合图形是一个三角形,关键是得到三角形的底和高.16.求阴影部分面积(单位:厘米).考点组合图形的面积.分析由图意可知:阴影部分的面积=梯形的面积﹣圆的面积,梯形的上底和高都等于圆的半径,上底和下底已知,从而可以求出阴影部分的面积.解答解:(4+9)×4÷2﹣3.14×42×,=13×4÷2﹣3.14×4,=26﹣12.56,=13.44(平方厘米);答:阴影部分的面积是13.44平方厘米.点评解答此题的关键是明白:梯形的下底和高都等于圆的半径,且阴影部分的面积=梯形的面积﹣圆的面积.17.(2012•长泰县)求阴影部分的面积.(单位:厘米)考点组合图形的面积.分析由图可知,阴影部分的面积=梯形的面积﹣半圆的面积.梯形的面积=(a+b)h,半圆的面积=πr2,将数值代入从而求得阴影部分的面积.解答解:×(6+8)×(6÷2)﹣×3.14×(6÷2)2=×14×3﹣×3.14×9,=21﹣14.13,=6.87(平方厘米);答:阴影部分的面积为6.87平方厘米.点评考查了组合图形的面积,解题关键是看懂图示,把图示分解成梯形,半圆和阴影部分,再分别求出梯形和半圆的面积.。
北师大版六年级上册数学 第一单元 阴影部分的面积 典型题
1、一个长方形,长是10厘米,宽是6厘米,如果在这个长方形内画一个最大的半圆,这个半圆的面积是多少平方厘米.
2、一个圆的半径是4厘米,它的面积是多少平方厘米.
3、一个圆的周长是25.12厘米,它的面积是多少平方厘米.
4、一个圆的半径是4厘米,它的面积是多少平方厘米.
5、一个圆的周长是12.56厘米,它的面积是多少平方厘米.
6、一个圆的周长是15.7厘米,它的面积是多少平方厘米.
7、一个圆的半径是3分米,它的面积是多少平方分米.
8、一个圆的周长是18.84厘米,它的面积是多少平方厘米.
9、一个圆的周长是25.12厘米,它的面积是多少平方厘米.
10、一个圆的周长是15.7米,它的面积是多少平方米.。
北师大版小学数学六年级上册期中《计算题》专项复习训练——图形计算(含答案)
期中专项复习训练——图形计算1.求阴影部分的面积。
2.计算下图中阴影部分的面积。
3.下图中阴影部分的面积是( )平方厘米。
4.计算下面图形阴影部分的面积之和。
5.下图中阴影部分面积之和是多少平方厘米?6.求阴影部分的面积。
7.下图中阴影部分的面积是( )平方厘米。
8.求阴影部分的面积。
9.求阴影部分的面积。
(单位:厘米)10.求图中阴影的周长(单位:厘米)。
11.求阴影部分面积。
(单位:厘米)12.求阴影部分面积。
(单位:厘米)13.求下图中阴影部分的面积。
14.计算下面图形的周长。
15.求出阴影部分的面积。
(单位:厘米)16.计算下面图形阴影部分的周长和面积。
17.计算操场的周长。
18.计算下面图形中阴影部分的周长和面积。
19.计算下面图形阴影部分的面积。
20.求阴影部分的面积(图中长度单位为“厘米”)。
参考答案:1.45.76cm2【分析】阴影部分的面积=长是12cm,宽是8cm的长方形面积-直径是8cm的圆的面积;根据长方形面积公式:面积=长×宽;圆的面积公式:面积=π×半径2;代入数据,即可解答。
【详解】12×8-3.14×(8÷2)2=96-3.14×16=96-50.24=45.76(cm2)2.21.5平方厘米【分析】用边长是10厘米的正方形的面积,减去半径是5厘米的圆的面积就是阴影部分的面积。
利用圆的面积公式S=πr2和正方形面积公式S=a2,代入数值求解即可。
【详解】10×10-3.14×52=100-78.5=21.5(平方厘米)3.8平方厘米【分析】观察图形可知,小正方形部分阴影面积等于长方形空白处面积,如下图:,阴影部分面积等于长是(2+2)厘米,宽是2厘米长方形面积;根据长方形面积公式:面积=长×宽,代入数据,即可解答。
【详解】(2+2)×2=4×2=8(平方厘米)4.50.24平方厘米【分析】把上面阴影部分的扇形通过旋转与下面的阴影部分组成一个大的扇形,再根据圆的面积公式:S=π2r,求出圆的面积,再除以4,即可求出阴影部分的面积之和;据此代入数据计算即可。
北师大版2024-2025学年六年级数学上册典型例题系列第一单元:求含圆的阴影部分面积“拓展型”专项
2024-2025学年六年级数学上册典型例题系列第一单元:求含圆的阴影部分面积“拓展型”专项练习1.计算阴影部分的周长和面积。
2.求阴影部分面积。
3.大圆半径5厘米,小圆半径3厘米,求两圆中阴影部分的面积差。
4.求阴影部分的面积。
(单位:厘米)5.图中圆的周长是25.12厘米,空白部分是一个正方形,阴影部分的面积是多少平方厘米?6.求阴影部分的面积。
7.计算如图中阴影部分的面积。
8.根据图中的数据求阴影部分的面积。
(单位:米)9.下图中,底边和高都是6厘米的等腰三角形,分别以高的长为直径画圆,以底的一半长为直径画两个半圆,求阴影部分的面积。
(π取3.14)10.图中阴影部分的面积是400平方厘米,环形的面积是多少?( 取3.14)11.求下图阴影部分的面积。
12.求出阴影部分的面积和周长。
13.求图中阴影部分的面积。
(单位:cm)14.求阴影部分的面积。
(1)(2)15.求阴影部分的周长和面积。
16.计算下面图形中阴影部分的面积。
17.求阴影部分的面积。
(单位:厘米)18.如图,阴影部分的面积是25平方米,求圆环面积。
2024-2025学年六年级数学上册典型例题系列 第一单元:求含圆的阴影部分面积“拓展型”专项练习【分析】C 2r π=圆形,C d 圆形π,阴影部分的周长=直径为10厘米圆的周长×12+半径为10厘米圆的周长×14+10厘米;2S r 圆形π,阴影部分的面积=半径为10厘米圆的面积×14-直径为10厘米圆的面积×12,据此解答。
【详解】3.1412rπ”表示出大圆和小圆的面积,再求出它们的差,据此解【分析】1【分析】观察图形可知,如图所示:将左上角的两小块阴影部分移到右下角的空白部分,此时阴影部分的面积即是底为8cm,高为8cm 的三角形的面积,再根据三角形的面积公式:S=ah÷2,据此代入数值进行计算即可。
【详解】8×8÷2=64÷2=32(cm2)14.求阴影部分的面积。
北师大版六年级数学上册第一单元:不规则或组合图形的周长“拓展型”专项练习(原卷版+解析)
2023-2024学年六年级数学上册典型例题系列第一单元:不规则或组合图形的周长“拓展型”专项练习一、图形计算。
1.下图正方形的边长为2cm,求阴影部分的周长。
2.求阴影部分的周长。
(单位:cm)3.如图,已知ABCD为正方形,以B为圆心,正方形的边长4cm为半径画弧,以AB为直径作半圆,形成下图图形(阴影部分),求此阴影部分的周长。
4.求下面图中阴影部分的周长。
5.求出阴影部分的面积和周长。
6.下图是一个直角梯形,求图中阴影部分的周长和面积。
(单位:厘米)7.求阴影部分的面积、周长。
(单位:cm )8.计算下列各图中阴影部分的周长.(1) (2)9.计算阴影部分的周长和面积。
(1)(2)二、解答题。
10.如图,是篮球场的一部分。
篮球场上的3分线是由两条平行线和一个半圆组成的。
请你根据图中的数据计算出3分线的长度(图中粗线为3分线)。
(得数保留一位小数)11.如图中圆的周长是25.12厘米,圆的面积与长方形的面积正好相等,则图中阴影部分的周长是多少厘米?(π取3.14)12.如图,把3根横截面直径都是20厘米的圆木用铁丝紧紧地捆在一起,捆一圈(接头不计)。
至少需要铁丝多少厘米?13.请用直尺和圆规画一个如图一模一样的图形(保留作图痕迹,不用涂色),并计算这个图形的周长。
14.一只蚂蚁从A地到B地有两条路线可走(如图中①、②)。
比较这两条路,你觉得是路线①近,还是②近,还是同样近呢?请运用学过的知识,用自己喜欢的方式说说理由。
15.探索与发现。
笑笑和淘气从A点走到B点,笑笑走最上面的路(大圆的半圆弧)、淘气走中间的路(几个小圆的半圆弧组成)。
(π取3)①如下图,大半圆弧的直径是12米,两个小半圆弧的直径都是6米,谁走的路程长?②如下图,如果在大半圆弧内再增加一个小半圆弧,这时谁走的路程长?(举例或用字母表示都可以)③你有什么发现?16.在课本第64页第12题中(下左图),我们已经探讨了它的规律。
那假如课本第59页第8题中的这幅图(下右图),表示的是3个圆柱形物体捆起来从底面方向看,如果按照已经探讨的规律研究的话,这个至少需要多长的绳子呢?(每个圆的直径都是7厘米,接头处忽略不计)2023-2024学年六年级数学上册典型例题系列第一单元:不规则或组合图形的周长“拓展型”专项练习一、图形计算。
54页北师大六年级数学上册圆面积周长及阴影面积专题附答案
北师大六年级数学上册第一单元专题练习目录第一单元《圆》选择题专题练习 (1)第一单元《圆》填空题专题练习................................................... 错误!未定义书签。
第一单元《圆》面积及阴影专题练习........................................... 错误!未定义书签。
第一单元《圆》应用题专题练习................................................... 错误!未定义书签。
第一单元《圆》:精选选择题及答案1.圆面积扩大16倍,则周长随着扩大( )A.16倍B.32倍C.4倍2.一个圆的周长扩大3倍,它的面积就扩大( )倍。
A.3B.6C.9D. 3.143.一个挂钟的时针长2.5厘米,一昼夜这根时针的尖端走了( )。
A.15.7厘米B.31.4厘米C.78.5厘米4.在周长相等的长方形、正方形和圆中,()的面积最大.A.圆B.长方形C.正方形5.已知圆的周长为4π,则这个圆的面积是()A.2πB.4πC.6πD.8π6.半圆的周长为( )。
A.πr+r B.πr+2r C.πr2+r7.直径为4厘米的圆,它的周长和面积( )。
A.相等B.不相等C.无法比较8.一个半圆形花圃,在花圃周围围上篱笆。
篱笆的长度是()。
A.21B.22.3C.23.6D.25.79.把一张圆形纸片沿半径平均分成若干份,拼成一个近似的长方形,其周长与圆的周长相比,( )。
A.等于圆的周长B.大于圆的周长C.小于圆的周长D.无法比较10.如果大圆的周长是小圆的2倍,当小圆的直径是2分米时,大圆的直径是()分米。
A.8B.4C.611.关于圆的知识,下面说法不正确的是()A.圆心只决定圆的位置,不决定圆的大小B.两端都在圆上的线段叫做直径C.半径相等的两个圆的面积相等12.下列关于圆的说法正确的是()。
北师大版小学数学六年级上册1.《圆的面积——巧求阴影部分的周长和面积》拓展课件
阴影部分的面积=大半圆的面积 3.14×52÷2 =3.14×25÷2 =39.25(平方厘米)
1.求下图中阴影部分的周长和面积。(单位:dm)
周长:3.14×4÷2+3.14×(4+1+1)÷2 +1×2=17.7(dm) 面积:4÷2=2(dm) 2+1=3(dm) 3.14×(32-22)÷2=7.85(dm2)
2.如图,正方形的边长是6 dm,求阴影部分的周长和 面积。
周长:3.14×6=18.84(dm) 面积:6×6-3.14×(6÷2)2= 7.74(dm2)
3.如图,阴影部分的面积是90 cm2,环形的面积是多 少平方厘米?
解:设大圆的半径为R cm,小圆 的半径为r cm。 R2÷2-r2÷2=90 R2-r2=180 3.14×180=565.2(cm2)
课后作业: 针对第一单元内容结合
今天所学制作一份数学小报。
北师大版六年级上册数学
本节课是我们在第一单元中认
识了圆,掌握了圆的周长与面积计 算方法之后安排的一节练习课,针 对同学们作业中出现的问题进行讲 授、分析。从而提高学生们的数学 思维能力和学习自信心。
圆的周长和面积公式是什么?
复习公式:
C=πd或者C=2πr S=πr2
如何求出下列图形阴影部分的周长?
反馈展示:
注意:此图中已知5厘米,既是大圆的半径又是小圆的 直径,计算时千万不要用错公式哦!
分析:此题中大圆半径等 于小圆半径的2倍,所以大 圆周长是小圆周长的2倍。 由此推出大圆周长的一半 等于小圆的周长。厘米)
怎样求出它阴影部分的面积呢?
六年级数学下册试题 一课一练《图形与几何-- 阴影部分面积 》习题-北师大版(含答案)
《图形与几何-- 阴影部分面积》习题1、如图所示,求图中阴影部分的面积。
(单位:分米,π取3.14)2、如图所示,正方形ABCD的边长为4 厘米,分别以B、D为圆心,以4厘米为半径在正方形内画圆,求阴影部分面积。
(π取3)3、计算阴影部分的面积。
(单位:cm)4、求出如图阴影部分的面积。
(单位:cm)5、已知如图,三角形ABC 的面积为8平方厘米,AE =ED ,BD=32BC ,求阴影部分的面积。
6、如图,AE =ED ,BC=3BD ,S △ABC =30平方厘米。
求阴影部分的面积。
7、两条对角线把梯形ABCD 分割成四个三角形,如图所示,已知两个三角形的面积,求另两个三角形的面积各是多少?8、两条对角线把梯形ABCD 分割成四个三角形,(如图所示),已知两个三角形的面积,求另两个三角形的面积是多少?9、四边形ABCD的对角线BD被E、F两点三等分,且四边形AECF的面积为15平方厘米。
求四边形ABCD的面积(如图所示)。
10、四边形ABCD的对角线BD被E、F、G三点四等分,且四边形AECG的面积为15平方厘米。
求四边形ABCD的面积(如图)。
11、如图所示,BO=2DO,阴影部分的面积是4平方厘米。
那么,梯形ABCD的面积是多少平方厘米?12、如图所示,阴影部分面积是4平方厘米,OC=2AO。
求梯形面积。
13、求图中阴影部分的面积(单位:厘米)。
14、求下面各个图形中阴影部分的面积(单位:厘米)。
15、求图中阴影部分的面积(单位:厘米)。
16、计算下面图形中阴影部分的面积(单位:厘米)。
17、如图所示,AE=ED ,DC =31BD ,S △ABC =21平方厘米。
求阴影部分的面积。
18、已知AO =31AC ,求梯形ABCD 的面积(如图所示)。
19、已知四边形ABCD 的对角线被E 、F 、G 三点四等分,且阴影部分面积为15平方厘米。
求四边形ABCD 的面积(如图所示)。
20、已知OC =2AO ,S △BOC =14平方厘米。
北师大版最新小学六年级数学经典奥数题训练50(含答案) (2)
一、拓展提优试题1.用1024个棱长是1的小正方体组成体积是1024的一个长方体.将这个长方体的六个面都涂上颜色,则六个面都没有涂色的小正方体最多有个.2.(15分)如图,半径分别是15厘米、10厘米、5厘米的圆形齿轮A、B、C 为某传动机械的一部分,A匀速转动后带动B匀速转动,而后带动C匀速转动,请问:(1)当A匀速顺时针转动,C是顺时针转动还是逆时针转动?(2)当A转动一圈时,C转动了几圈?3.若一个十位数是99的倍数,则a+b=.4.用1,2,3,4,5,6,7,8,9九个数字组成三个三位数(每个数字只能用1次),使最大的数能被3整除;次大的数被3除余2,且尽可能的大;最小的数被3除余1,且尽可能的小,求这三个三位数.5.根据图中的信息可知,这本故事书有页页.6.已知三个分数的和是,并且它们的分母相同,分子的比是2:3:4.那么,这三个分数中最大的是.7.被11除余7,被7除余5,并且不大于200的所有自然数的和是.8.如图,圆P的直径OA是圆O的半径,OA⊥BC,OA=10,则阴影部分的面积是.(π取3)9.若将算式9×8×7×6×5×4×3×2×1中的一些“×”改成“÷”使得最后的计算结果还是自然数,记为N,则N最小是.10.甲挖一条水渠,第一天挖了水渠总长度的,第二天挖了剩下水渠长度的,第三天挖了未挖水渠长度的,第四天挖完剩下的100米水渠.那么,这条水渠长米.11.甲、乙、丙三人去郊游,甲买了9根火腿,乙买了6个面包,丙买了3瓶矿泉水,乙花的钱是甲的,丙花的钱是乙的,丙根据每人所花钱的多少拿出9元钱分给甲和乙,其中,分给甲元,分给乙元.12.甲、乙两人分别从A、B两地同时出发,相向而行.甲、乙的速度比是5:3.两人相遇后继续行进,甲到达B地,乙到达A地后都立即沿原路返回.若两人第二次相遇的地点距第一次相遇的地点50千米,则A、B两地相距千米.13.甲、乙两人拥有邮票张数的比是5:4,如果甲给乙5张邮票,则甲、乙两人邮票张数的比变成4:5.两人共有邮票张.14.能被5和6整除,并且数字中至少有一个6的三位数有个.15.如图,将一根长10米的长方体木块锯成6段,表面积比原来增加了100平方分米,这根长方体木块原来的体积是立方分米.16.若(n是大于0的自然数),则满足题意的n的值最小是.17.小明把一本书的页码从1开始逐页相加,加到最后,得到的数是4979,后来他发现这本书中缺了一张(连续两个页码).那么,这本书原来有页.18.某项工程,开始由6人用35天完成了全部工程的,此后,增加了6人一起来完成这项工程.则完成这项工程共用天.19.如图,向装有水的圆柱形容器中放入三个半径都是1分米的小球,此时水面没过小球,且水面上升到容器高度的处,则圆柱形容器最多可以装水188.4立方分米.20.一次智力测试由5道判断对错的题目组成,答对一道得20分,答错或不答得0分.小花在答题时每道题都是随意答“对”或“错”,那么她得60分或60分以上的概率是%.21.如图1是一个正方体的展开图,图2的四个正方体中只有一个是和这个展开图对应的,这个正方体是.(填序号)22.有一口无水的井,用一根绳子测井的深度,将绳对折后垂到井底,绳子的一端高出井口9m;将绳子三折后垂到井底,绳子的一端高出井口2m,则绳长米,井深米.23.从12点开始,经过分钟,时针与分针第一次成90°角;12点之后,时针与分针第二次成90°角的时刻是.24.分子与分母的和是2013的最简真分数有个.25.某次数学竞赛,甲、乙、丙3人中只有一人获奖,甲说:“我获奖了.”乙说:“我没获奖.”丙说:“甲没有获奖.”他们的话中只有一句是真话,则获奖的是.26.某小学的六年级有学生152人,从中选男生人数的和5名女生去参加演出,该年级剩下的男、女生人数恰好相等,则该小学的六年级共有男生名.27.甲、乙两人分别从A、B两地同时出发,相向而行,甲乙两人的速度比是4:5,相遇后,如果甲的速度降低25%,乙的速度提高20%,然后继续沿原方向行驶,当乙到达A地时,甲距离B地30km,那么A、B两地相距km.28.宏富超市购进一批食盐,第一个月售出这批盐的40%,第二个月又售出这批盐的420袋,这时已售出的和剩下食盐的数量比是3:1,则宏富超市购进的这批食盐有袋.29.如图所示的容器中放入底面相等并且高都是3分米的圆柱和圆锥形铁块,根据图1和图2的变化知,圆柱形铁块的体积是立方分米.30.(15分)欢欢、乐乐、洋洋参加希望之星决赛,有200位评委为他们投了票,每位评委只投一票.如果欢欢与乐乐所得票数的比是3:2,乐乐与洋洋所得票数的比是6:5,那么欢欢、乐乐、洋洋各得多少票?31.定义新运算“*”:a*b=例如3.5*2=3.5,1*1.2=1.2,7*7=1,则=.32.认真观察图4中的三幅图,则第三幅图中的阴影部分应填的数字是.33.图中每一个圆的面积都是1平方厘米,则六瓣花形阴影部分的面积是平方厘米.34.从1,2,3,4,…,15,16这十六个自然数中,任取出n个数,其中必有这样的两个数:一个是另一个的3倍,则n最小是.35.某工程队修建一条铁路隧道,当完成任务的时,工程队采用新设备,使修建速度提高了20%,同时为了保养新设备,每天工作时间缩短为原来的,结果,前后共用185天完工,由以上条件可推知,如果不采用新设备,完工共需天.36.王涛将连续的自然数1,2,3,…逐个相加,一直加到某个自然数为止,由于计算时漏加了一个自然数而得到错误的结果2012.那么,他漏加的自然数是.37.对任意两个数x,y规定运算“*”的含义是:x*y=(其中m是一个确定的数),如果1*2=1,那么m=,3*12=.38.李华在买某一商品的时候,将单价中的某一数字“7”错看成了“1”,准备付款189元,实际应付147元,已知商品的单价及购买的数量都是整数,则这种商品的实际单价是元,李华共买了件.39.如图,已知AB=40cm,图中的曲线是由半径不同的三种半圆弧平滑连接而成,那么阴影部分的面积是cm2.(π取3.14)40.老师让小明在400米的环形跑道上按照如下规律插上一些旗子做标记:从起点开始,沿着跑道每前进90米就插上一面旗子,直到下一个90米的地方已经插有旗子为止,则小明要准备面旗子.【参考答案】一、拓展提优试题1.解:因为1024=210=8×8×16(8﹣2)×(8﹣2)×(16﹣2)=6×6×14=504答:六个面都没有涂色的小正方体最多有504个.故答案为:504.2.解:(1)如图,答:当A匀速顺时针转动,C是顺时针转动.(2)A:B:C=15:10:5=3:2:1答:当A转动一圈时,C转动了3圈.3.解:根据99的整除特性可知:20+16++20+17=99..a+b=8.故答案为:8.4.解:根据分析,最大的数最高位是:9,次大的数最高位是:8,最小的数最高位是1,次大的数倍3除余2,且要尽可能的大,则次大的三位数为:875;最小的数被3除余1,且要尽可能的小,则最小的三位数为:124;剩下的三个数字只有,3,6,9,故最大的三位数为:963.故答案是:963、875、124.5.解:(10+5)÷(1﹣×2)=15÷=25(页)答:这本故事书有25页;故答案为:25.6.解:==,答:这三个分数中最大的一个是.故答案为:.7.解:不大于200的所有自然数被11除余7的数是:18,29,40,62,73,84,95,106,117,128,139,150,161,172,183,194;不大于200的所有自然数被7除余5的是:12,19,26,33,40,47,54,61,68,75…;同时被11除余7,被7除余5的最小数是40,[11,7]=77,依次是117、194;满足条件不大于200的所有自然数的和是:40+117+194=351.故答案为:351.8.解:3×102÷2﹣3×(10÷2)2=3×100÷2﹣3×25=150﹣75=75答:阴影部分的面积是75.故答案为:75.9.解:根据分析,先分解质因数9=3×3,8=2×2×2,6=2×3,故有:9×8×7×6×5×4×3×2×1=(3×3)×(2×2×2)×7×(3×2)×5×(2×2)×3×2×1,所以可变换为:9×8×7÷6×5÷4÷3×2×1=70,此时N最小,为70,故答案是:70.10.解:把这条水渠总长度看作单位“1”,则第一天挖的分率为,第二天挖的分率(1﹣)×=,第三天挖的分率为(1﹣)×=,100÷((1﹣﹣﹣)=100÷=350(米)答:这条水渠长350米.故答案为:350.11.解:丙花钱是甲的×=甲:乙:丙=1::=13:12:8(13+12+8)÷3=11每份:9÷(11﹣8)=3(元)甲:(13﹣11)×3=6(元)乙:(12﹣11)×3=3(元)答:分给甲6元,分给乙3元.故答案为:6,3.12.解:因为,甲乙的速度比为 5:3;总路程是:5+3=8;第一次相遇时,两人一共行了AB两地的距离,其中甲行了全程的,相遇地点离A地的距离为AB两地距离的,第二次相遇时,两人一共行了AB两地距离的3倍,则甲行了全程的=,相遇地点离A地的距离为AB两地距离的2﹣=,所以,AB两地的距离为:50÷()=50÷=100(千米)答:A、B两地相距100千米.故答案为:100.13.解:5÷()=5=45(张)答:两人共有邮票 45张.故答案为:45.14.解:根据分析,分解质因数6=2×3∴这个三位数能同时被2、3、5整除,而且数字中至少含有一个6∴这个三位数的个位数必须为偶数或0,因被5整除的数个位数必须是0或5,故个位数为0,设此三位数为,按题意a、b中至少有一个数字为6,①a=6时,则6+b+0 是3的倍数,则b=0,3,6,9,符合的三位数为:600、630、660、690②b=6时,则6+a+0 是3的倍数,则a=3,6,9,符合的三位数为:360、660、960综上所述,符合题意的三位数为:360、660、960、600、630、690故答案为:6.15.解:依题意可知:将一根长10米的长方体木块锯成6段,表面积比原来增加了100平方分米,变面积增加了10个面,那么每一个面的面积为100÷10=10平方分米.10米=100分米.体积为:10×100=1000(立方分米).故答案为:100016.解:当n=1时,不等式左边等于,小于,不能满足题意;当n=2时,不等式左边等于+==,小于,不能满足题意;同理,当n=3时,不等式左边大于,能满足题意;所以满足题意的n的值最小是3.故答案是:317.解:设这本书的页码是从1到n的自然数,正确的和应该是1+2+…+n=n(n+1),由题意可知,n(n+1)>4979,由估算,当n=100,n(n+1)=×100×101=5050,所以这本书有100页.答:这本书共有100页.故答案为:100.18.解:总工作量看做单位“1”.剩余工作量为1﹣=,一个人的工作效率为÷6÷35,(1﹣)÷[÷6÷35×(6+6)]=÷(÷6÷35×12)=÷=35(天)35+35=70(天)答:完成这项工程共用70天.故答案为:70.19.解:×3.14×13×3÷(﹣)=12.56×15=188.4(立方分米)答:圆柱形容器最多可以装水188.4立方分米.故答案为:188.4.20.解:有答对一题,两题,三题,四题,五题,全错六种情况,答对三题是60分,四题是80分,五题是100分,她得60分或60分以上的概率是:=50%.答:她得60分或60分以上的概率是50%.故答案为:50%.21.解:如图.图1是一个正方体的展开图,图2的四个正方体中只有一个是和这个展开图对应的,这个正方体是图2①;故答案为:①22.解:(9×2﹣2×3)÷(3﹣2),=(18﹣6)÷1,=12÷1,=12(米),(12+9)×2,=21×2,=42(米).故答案为:42,12.23.解:分针每分钟走的度数是:360÷60=6(度),时针每分钟走的度数是:6×5÷60=0.5(度),第一成直角用的时间是:90÷(6﹣0.5),=90÷5.5,=16(分钟),第二次成直角用的时间是:270÷(6﹣0.5),=270÷5.5,=49(分钟).这时的时刻是:12时+49分=12时49分.故答案为:16,12时49分.24.解:分子与分母的和是2013的真分数有,,…,共1006个,2013=3×11×61,只要分子是2013质因数的倍数时,这个分数就不是最简分数,因数分子与分母相加为2013,若分子是3,11,61的倍数,则分母一定也是3,11或61的倍数.[1006÷3]=335,[1006÷11]=91,[1006÷61]=16,[1006÷3÷11]=30,[1006÷3÷61]=5,[1006÷11÷61]=1,1006﹣335﹣91﹣16+30+5+1=600.故答案为:600.25.解:由分析可知:假设甲说的是真话,那乙说的也是真话,所以不成立;假设乙说的是真话,那甲说的也是真话,也不成立;所以只能是丙说的是真话,乙说的是假话,即:乙得奖了;故答案为:乙.26.解:设男生有x人,(1﹣)x=152﹣x﹣5,x+x=147﹣x+x,x=147,x=77,答:该小学的六年级共有男生77名.故应填:77.27.解:根据题意可得:相遇时,甲走了全程的4÷(4+5)=,乙走了全程的1﹣=;相遇后,甲乙的速度比是4×(1﹣25%):5×(1+20%)=1:2;当乙到达A地时,乙又走了全程的1﹣=,甲又走了全程的×=;A、B两地相距:30÷(1﹣﹣)=90(km).答:A、B两地相距90km.28.解:420÷(1﹣40%﹣)=420÷0.35=1200(袋)答:宏富超市购进的这批食盐有1200袋.故答案为:1200.29.解:25.7÷(1+1+3)=25.7÷5=5.14(立方分米)5.14×3=15.42(立方分米)答:圆柱形铁块的体积是15.42立方分米.故答案为:15.42.30.解:根据欢欢与乐乐所得票数的比是3:2,乐乐与洋洋所得票数的比是6:5,可以求出欢欢、乐乐、洋洋所得票数的比9:6:5,200×=90(票)200×=60(票)200×=50(票)答:欢欢所得票数是90票,乐乐所得票数是60票,洋洋所得票数是50票.31.解:根据分析可得,,=,=2;32.解:由每个图形的数字表示该图形所含曲边的数目可得:第三幅图中的阴影部分含有5个曲边,所以阴影部分应填的数字是5,故答案为:5.33.解:1×2=2(平方厘米);答:六瓣花形阴影部分的面积是2平方厘米.故答案为:2.34.解:将有3倍关系的放入一组为:(1,3,9)、(2,6)、(4,12)、(5,15)共有4组,其余7个数每一个数为一组,即将这16个数可分为11组,.则第一组最多取2个即1和9,其余组最多取一个,即最多能取12个数保证没有一个数是另一个的三倍,此时只要再任取一个,即取12+1=13个数必有一个数是另一个数的3倍.所以n最小是13.35.解:设计划用x天完成任务,那么原计划每天的工作效率是,提高后每天的工作效率是×(1+20%)=×=,前面完成工程的所用时间是天,提高工作效率后所用的实际是(185﹣)×天,所以,+(185﹣)××=1,+(185﹣)××﹣=1﹣,(185﹣)××=,(185﹣)×÷=÷,185﹣+=x+,x÷=185÷,x=180,答:工程队原计划180天完成任务.36.解:设这个等差数列和共有n项,则末项也应为n,这个等差数列的和为:(1+n)n÷2=;经代入数值试算可知:当n=62时,数列和=1953,当n=63时,数列和=2016,可得:1953<2012<2016,所以这个数列共有63项,少加的数为:2016﹣2012=4.故答案为:4.37.解:①因为:x*y=(其中m是一个确定的数)且1*2=1所以:=18=m+6m+6=8m+6﹣6=8m=2②3*12===故答案为:2,.38.解:189=3×3×3×7=27×7147=3×7×7=21×7正好是27×7=189中把27看成21×7=147所以这种商品的实际单价是21元,卖了7件.故答案为:21,7.39.解:40÷2=20(厘米)20÷2=10(厘米)3.14×202﹣3.14×102÷2×4=1256﹣628=628(平方厘米)答:阴影部分的面积是628平方厘米.故答案为:628.40.解:400和90的最小公倍数是3600,则3600÷90=40(面).答:小明要准备40面旗子.故答案为:40.。